M2 Complex Systems - Complex Networks

Lecture 3 - Network models

Erdös-Rényi random graphs and configuration model

Automn 2021 - ENS Lyon

Christophe Crespelle christophe.crespelle@ens-lyon.fr

* Thanks to Daron Acemoglu and Asu Ozdaglar for pedagogical material used for these slides.

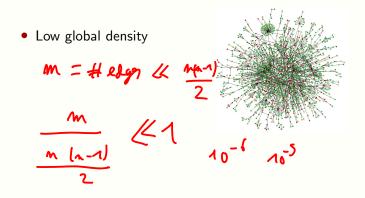
 $Model = random \ generation \ of \ synthetic \ networks$

- <u>To simulate :</u>
 - phenomena
 - algorithms
 - protocols
- In order to :
 - design
 - test
 - predict
 - better understand /
- Example :

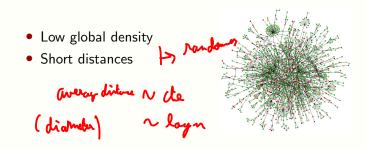
Would Internet protocols still work if Internet was 10 times larger ?

Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!

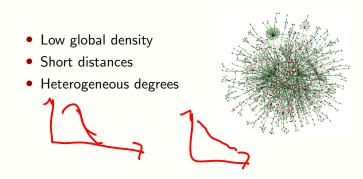
Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!



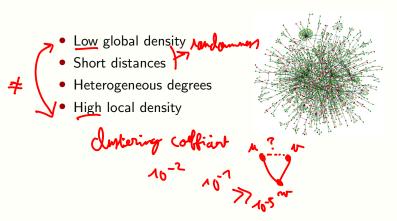
Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!



Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!

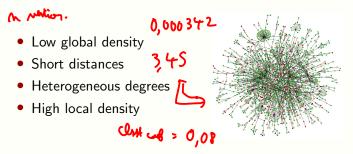


Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!



Model = **random generation** of synthetic networks ... having the properties of real-world networks!!!

Four classic properties of real-world complex networks :



<u>Goal :</u> generate synthetic networks having these four properties (in a generic way)

There are two models :

• *G_{n,m}* : choose uniformly at random (u.a.r.) *m* edges among the *n* vertices

There are two models :

- $G_{n,m}$: choose uniformly at random (u.a.r.) *m* edges among the *n* vertices
- $G_{n,p}$: for each couple of the *n* vertices, put an edge with probability *p*

$$P = \frac{2}{m(n-1)} = m$$

There are two models :

- *G_{n,m}* : choose uniformly at random (u.a.r.) *m* edges among the *n* vertices
- *G_{n,p}* : for each couple of the *n* vertices, put an edge with probability *p*

$$\Rightarrow$$
 "essentialy" equivalent when $p = \frac{2m}{n(n-1)}$

There are two models :

- *G_{n,m}* : choose uniformly at random (u.a.r.) *m* edges among the *n* vertices
- *G_{n,p}* : for each couple of the *n* vertices, put an edge with probability *p*
- \Rightarrow "essentialy" equivalent when $p=\frac{2m}{n(n-1)}$

Should we use $G_{n,m}$ or $G_{n,p}$?

- For generating networks? $G_{n,m} O(m)$
- For mathematical analysis of the model? $G_{n,p}$

$G_{n,m}$: implementation and complexity $O(\mathbf{A})$

• Algo : Pick *m* times two vertices uniformly at random

$G_{n,m}$: implementation and complexity

• Algo : Pick *m* times two vertices uniformly at random

How to deal with self-loops?

$G_{n,m}$: implementation and complexity

• Algo : Pick *m* times two vertices uniformly at random

How to deal with self-loops?

How to deal with multiple edges?

Four properties to check :

• Low global density

▶ *p* parameter of the model, controls $m : \mathbb{E}(m) = \frac{pn(n-1)}{2}$

Four properties to check :

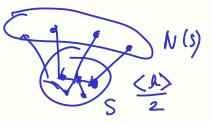
- Low global density
 - ▶ *p* parameter of the model, controls $m : \mathbb{E}(m) = \frac{pn(n-1)}{2}$
 - law of large numbers : m is very concentrated around its mean

Four properties to check :

- Low global density
- Short distances

Four properties to check :

- Low global density
- Short distances Expansion property



▶ def. (graph theory) : a graph *G* is a *c*-vertex-expander iff $\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot |S|$

Four properties to check :

- Low global density
- Short distances Expansion property

▶ def. (graph theory) : a graph G is a c-vertex-expander iff $\frac{\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}, \text{ we have } |N(S)| \geq c \cdot |S|$ ▶ expansion of G_{n,m}?

Four properties to check :

- Low global density
- Short distances Expansion property

▶ def. (graph theory) : a graph G is a c-vertex-expander iff $\frac{\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}, \text{ we have } |N(S)| \geq c \cdot |S|$ ▶ expansion of $G_{n,m}$? ~ $\frac{m}{n}$ $\frac{2m}{n} = \langle A \rangle$

Four properties to check :

- Low global density
- Short distances
 Expansion property

 def. (graph theory) : a graph G is a c-vertex-expander iff ∀S ⊆ V s.t. |S| ≤ |V(G)|/2, we have |N(S)| ≥ c ⋅ |S|
 expansion of G_{n,m}? ~ m/n/n
 until n/2, exponential growth of |B(u, d)| ~ (1+c)^d

Four properties to check :

- Low global density
- Short distances
 Expansion property

def. (graph theory) : a graph G is a c-vertex-expander iff $\frac{\text{def. (graph theory) : a graph G is a c-vertex-expander iff}}
∀S ⊆ V s.t. |S| ≤ \frac{|V(G)|}{2}, we have |N(S)| ≥ c ⋅ |S|$ expansion of $G_{n,m}$? $\sim \frac{m}{n}$ until $\frac{n}{2}$, exponential growth of $|B(u,d)| \sim (1+c)^d$

Heterogeneous degrees

Four properties to check :

- Low global density
- Short distances
 Expansion property

def. (graph theory) : a graph G is a c-vertex-expander iff
 ∀S ⊆ V s.t. |S| ≤ |V(G)|/2, we have |N(S)| ≥ c ⋅ |S|
 expansion of G_{n,m}? ~ m/n

D (m)

• until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim (1 + c)^d$

• Heterogeneous degrees

• fix the average degree $\lambda = p(n-1)$

Four properties to check :

- Low global density
- Short distances Expansion property

def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subset V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot |S|$ • expansion of $G_{n,m}$? $\sim \frac{m}{n}$ • until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim (1+c)^d$

Heterogeneous degrees

ty t

Four properties to check :

- Low global density
- Short distances
 Expansion property
 - def. (graph theory) : a graph G is a c-vertex-expander iff
 - $\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}, \text{ we have } |N(S)| \geq c \cdot |S|$ $\blacktriangleright \text{ expansion of } G_{n,m}? \sim \frac{m}{2}$
 - until $\frac{n}{2}$, exponential growth of $|B(u,d)| \sim (1+c)^d$

Heterogeneous degree

Fix the average degree λ = p(n-1)
P(d° = k) = $\binom{n-1}{k} p^k (1-p)^{(n-1-k)}$ = $\frac{A_n^k}{k!} \frac{\lambda^k}{(n-1)^k} (1-\frac{\lambda}{n-1})^{n-1-k}$ = $\frac{A_n^k}{(n-1)^k} \frac{\lambda^k}{k!} (1-\frac{\lambda}{n-1})^{n-1} (1-\frac{\lambda}{n-1})^{-k}$ then when n → +∞, $\mathbb{P}(d^\circ = k) \rightarrow \underbrace{\frac{\lambda^k e^{-\lambda}}{k!}}_{k!}$ Poisson law

Four properties to check :

- Low global density
- Short distances
 Expansion property

▶ $\frac{\text{def. (graph theory) : a graph } G \text{ is a } c\text{-vertex-expander iff}}{\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}, \text{ we have } |N(S)| \geq c \cdot |S|}$ ▶ expansion of $G_{n,m}$? ~ $\frac{m}{2}$

• until $\frac{n}{2}$, exponential growth of $|B(u,d)| \sim (1+c)^d$

- Heterogeneous degrees X
- High local density

probability of an edge in the neighbourhood of a vertex?

Four properties to check :

- Low global density
- Short distances
 Expansion property

▶ def. (graph theory) : a graph *G* is a *c*-vertex-expander iff $\forall S \subseteq V \text{ s.t. } |S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot |S|$

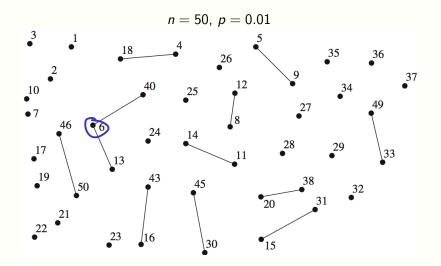
• expansion of $G_{n,m}$? $\sim \frac{m}{n}$

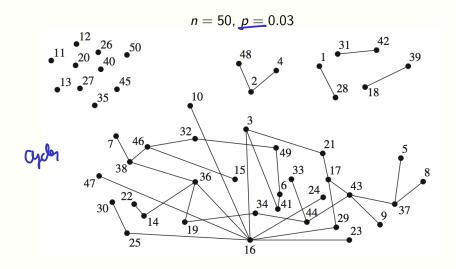
• until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim (1 + c)^d$

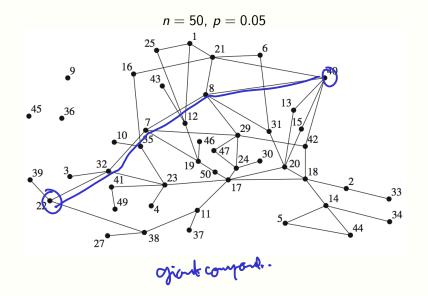
- Heterogeneous degrees X
- High local density X
 - probability of an edge in the neighbourhood of a vertex?
 - same as everywhere : p (couples of vertices are independant)

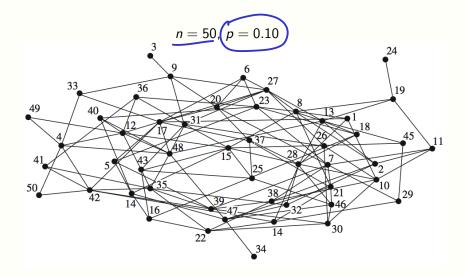
<u>N.B.</u> : p (eventually) depends on n

- such a threshold function exists \Rightarrow phase transition
- Seminal work of Erdös and Rényi in 1959









Threshold for connectivity

- We show a threshold with function t(n) = log n/n
 Denote p(n) = log n/n (mean degree ~ λ log n)
- We show a (much) stronger statement for threshold function $\frac{\log n}{2}$:

1.
$$\mathbb{P}(\text{connectivity}) \rightarrow 0$$
 if $\lambda < 1$

2. $\mathbb{P}(connectivity) \rightarrow 1 \text{ if } \lambda > 1$

Proof of (1)

p(m) = R Dogm

• to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1

 $\times 11$

Q

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_i be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let *I_i* be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise
- probability that a vertex is isolated : $q = \mathbb{P}(I_i = 1) = (1 - p)^{n-1} \sim e^{-\lambda \log n} = n^{-\lambda}$

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_i be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise
- probability that a vertex is isolated : $q = \mathbb{P}(l_i = 1) = (1 - p)^{n-1} \sim e^{-\lambda \log n} = n^{-\lambda}$
- Let $X = \sum_{i=1}^{n} I_i$ be the number of isolated vertices

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_i be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise
- probability that a vertex is isolated : $q = \mathbb{P}(l_i = 1) = (1 - p)^{n-1} \sim e^{-\lambda \log n} = n^{-\lambda}$
- Let $X = \sum_{i=1}^{n} I_i$ be the number of isolated vertices
- We have $\mathbb{E}[X] = n.n^{-\lambda}
 ightarrow +\infty$ for $\lambda < 1$ (17)

mr

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_i be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise
- probability that a vertex is isolated : $q = \mathbb{P}(I_i = 1) = (1 - p)^{n-1} \sim e^{-\lambda \log n} = n^{-\lambda}$
- Let $X = \sum_{i=1}^{n} I_i$ be the number of isolated vertices
- We have $\mathbb{E}[X] = n.n^{-\lambda}
 ightarrow +\infty$ for $\lambda < 1$
- enough to conclude that $\mathbb{P}(X = 0) \rightarrow 0$?

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let *I_i* be the Bernouilli random variable defined as
 - \blacktriangleright $I_i = 1$ if vertex *i* is isolated
 - $I_i = 0$ otherwise
- probability that a vertex is isolated : $q = \mathbb{P}(I_i = 1) = (1 - p)^{n-1} \sim e^{-\lambda \log n} = n^{-\lambda}$
- Let $X = \sum_{i=1}^{n} I_i$ be the number of isolated vertices
- We have $\mathbb{E}[X] = n.n^{-\lambda}
 ightarrow +\infty$ for $\lambda < 1$
- enough to conclude that $\mathbb{P}(X = 0) \rightarrow 0$?
 - \Rightarrow NO, we need a concentration property.

• We have

$$var(X) = \sum_{i} var(I_i) + \sum_{i} \sum_{j \neq i} cov(I_i, I_j)$$

 $= nvar(I_1) + n(n-1)cov(I_1, I_2)$

^

$$E(A) = \frac{A}{2}$$
• We have
 $var(X) = \sum_{i} var(l_i) + \sum_{i} \sum_{j \neq i} cov(l_i, l_j)$
 $= nvar(l_1) + n(n-1)cov(l_1, l_2)$
• And we also have:
• $var(l_1) = \mathbb{E}[l_1^2] - \mathbb{E}[l_1]^2 = q - q^2$
• $cov(l_1, l_2) = \mathbb{E}[l_1 l_2] - \mathbb{E}[l_1]\mathbb{E}[l_2]$
• $\mathbb{E}[l_1 l_2] = \mathbb{P}(l_1 = 1, l_2 = 1) = (1 - p)^{2n-3} = \frac{q^2}{1-p} \mathbf{a} = (1-p)^{n-1}$
 $X = 1$
 $X = 1$

• We have

$$var(X) = \sum_{i} var(I_i) + \sum_{i} \sum_{j \neq i} cov(I_i, I_j)$$

 $= nvar(I_1) + n(n-1)cov(I_1, I_2)$

• And we also have :

▶
$$var(l_1) = \mathbb{E}[l_1^2] - \mathbb{E}[l_1]^2 = q - q^2$$

▶ $cov(l_1, l_2) = \mathbb{E}[l_1 l_2] - \mathbb{E}[l_1]\mathbb{E}[l_2]$
▶ $\mathbb{E}[l_1 l_2] = \mathbb{P}(l_1 = 1, l_2 = 1) = (1 - p)^{2n-3} = \frac{q^2}{1-p}$

• We then obtain $var(X) = nq(1-q) + n(n-1)\frac{q^2p}{1-p}$

We have

$$var(X) = \sum_{i} var(l_i) + \sum_{i} \sum_{j \neq i} cov(l_i, l_j)$$

 $= nvar(l_1) + n(n-1)cov(l_1, l_2)$

• And we also have :
•
$$var(l_1) = \mathbb{E}[l_1^2] - \mathbb{E}[l_1]^2 = q - q^2$$

• $cov(l_1, l_2) = \mathbb{E}[l_1 l_2] - \mathbb{E}[l_1]\mathbb{E}[l_2]$
• $\mathbb{E}[l_1 l_2] = \mathbb{P}(l_1 = 1, l_2 = 1) = (1 - p)^{2n-3} = \frac{q^2}{1-p}$
• We then obtain $var(X) = nq(1 - q) + n(n-1)\frac{q^2p}{1-p}$

P= > Juga

• when $n \to +\infty$, then $q \to 0$ and $p \to 0$

• We have

$$var(X) = \sum_{i} var(I_i) + \sum_{i} \sum_{j \neq i} cov(I_i, I_j)$$

 $= nvar(I_1) + n(n-1)cov(I_1, I_2)$

And we also have :

• We then obtain $var(X) = nq(1-q) + n(n-1)\frac{q^2p}{1-p}$

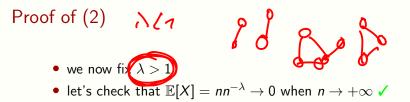
• when $n \to +\infty$, then $q \to 0$ and $p \to 0$

• this gives

$$var(X) \sim nq + n^2 q^2 p$$

 $= nn^{-\lambda} + \lambda n \log nn^{-2\lambda}$
 $\sim nn^{-\lambda} = \mathbb{E}[X]$

- so we have $\mathit{var}(X) \sim \mathbb{E}[X]$
- and because $var(X) \ge (0 \mathbb{E}[X])^2 \mathbb{P}(X = 0)$
- we obtain $\mathbb{P}(X = 0) \leq \frac{1}{\mathbb{E}[X]} \to 0$
- it follows that $\mathbb{P}(X>0)
 ightarrow 1$ when $n
 ightarrow +\infty$
- and consequently $\mathbb{P}(\textit{disconnected}) \to 1$ when $n \to +\infty$



19/35

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X] = nn^{-\lambda} \to 0$ when $n \to +\infty$ 🗸
- observe that G is disconnected $\iff \exists k$ vertices without edges to the other vertices, for some $k \le n/2$

- we now fix $\lambda > 1$
- let's check that $\mathbb{E}[X] = nn^{-\lambda} \to 0$ when $n \to +\infty$ 🗸
- observe that G is disconnected $\iff \exists k$ vertices without edges to the other vertices, for some $k \le n/2$

- we now fix $\lambda > 1$
- let's check that $\mathbb{E}[X] = nn^{-\lambda} \to 0$ when $n \to +\infty$ 🗸
- observe that G is disconnected $\iff \exists k$ vertices without edges to the other vertices, for some $k \le n/2$
- we have $\mathbb{P}(\{1,\ldots,k\} \text{ not connected to the rest}) = (1-p)^{k(n-k)}$
- and so

 $\mathbb{P}(\exists k \text{ vertices not connected to the rest}) \leq {n \choose k} (1-p)^{k(n-k)}$

- we now fix $\lambda > 1$
- let's check that $\mathbb{E}[X] = nn^{-\lambda} \to 0$ when $n \to +\infty$ 🗸
- observe that G is disconnected $\implies \exists k \text{ vertices without edges}$ to the other vertices, for some $k \leq n/2$
- we have $\mathbb{P}(\{1,\ldots,k\} \text{ not connected to the rest}) = (1-p)^{k(n-k)}$
- and so $\mathbb{P}(\exists k \text{ vertices not connected to the rest}) \leq {n \choose k}(1-p)^{k(n-k)}$
- and finally $\mathbb{P}(G \text{ is disconnected}) \leq \sum_{k=1}^{n/2} {n \choose k} (1-p)^{k(n-k)}$

- we now fix $\lambda > 1$ let's check that $\mathbb{E}[X] = nn^{-\lambda} \to 0$ when $n \to +\infty \checkmark$
- observe that G is disconnected $\iff \exists k$ vertices without edges to the other vertices, for some $k \leq n/2$
- we have $\mathbb{P}(\{1,\ldots,k\} \text{ not connected to the rest}) = (1-p)^{k(n-k)}$
- and so

 $\mathbb{P}(\exists k \text{ vertices not connected to the rest}) \leq {n \choose k}(1-p)^{k(n-k)}$

- and finally $\mathbb{P}(G \text{ is disconnected}) \leq \sum_{k=1}^{n/2} \binom{n}{k} (1-p)^{k(n-k)}$
- using this expression, one can show that $\mathbb{P}(G \text{ is disconnected}) \to 0 \text{ when } n \to +\infty$

Threshold for giant component $\Delta \dot{\gamma} = \frac{2m}{n} \int_{M} f_{x}(m t_{x} T)$

• Giant = constant fraction of the vertices in the (1) ~ 2

phil n

- We show a threshold with function $t(n) = \frac{1}{n}$
- Denote $p(n) = \bigcup_{n}^{N}$ (mean degree $\sim \lambda$)
- We again show a strong statement for threshold function ¹/_n:
 1. if λ < 1, ∀a ∈ ℝ^{*}₊, ℙ(maxsize(CC) ≥ a log n) → 0
 2. if λ > 1, ∃b ∈ ℝ^{*}₊, ℙ(maxsize(CC) ≥ b.n) → 1

• Galton-Watson branching process

start with a single individual

- Galton-Watson branching process
 - start with a single individual each individual generates a number of children according to a non-negative random variable ξ with distribution p_k $\mathbb{P}(\xi = k) = p_k$ $\mathbb{E}[\xi] = \mu$ $var(\xi) \neq 0$ 20

- Galton-Watson branching process
 - start with a single individual
- Let Z_k be the number of individuals in the k^{th} generation we have $Z_0 = 1$, $Z_1 = \xi$, $Z_2 = \sum_{i=1}^{Z_1} \xi^{(i)}$

- Galton-Watson branching process
 - start with a single individual
 - each individual generates a number of children according to a non-negative random variable ξ with distribution p_k

 𝔅ξ = k) = p_k

 E[ξ] = μ

 var(ξ) ≠ 0
- Let Z_k be the number of individuals in the k^{th} generation we have $Z_0 = 1$, $Z_1 = \xi$, $Z_2 = \sum_{i=1}^{Z_1} \xi^{(i)}$
- and consequently

$$\blacktriangleright \mathbb{E}[Z_1] = \mu$$

- Galton-Watson branching process
 - start with a single individual
- Let Z_k be the number of individuals in the k^{th} generation we have $Z_0 = 1$, $Z_1 = \xi$, $Z_2 = \sum_{i=1}^{Z_1} \xi^{(i)}$
- and consequently

$$\mathbb{E}[Z_1] = \mu \mathbb{E}[Z_2] = \mathbb{E}[\mathbb{E}[Z_2|Z_1]] = \mathbb{E}[\mu Z_1] = \mu^2$$

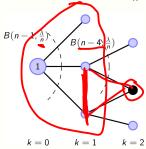
- Galton-Watson branching process
 - start with a single individual
- Let Z_k be the number of individuals in the k^{th} generation we have $Z_0 = 1$, $Z_1 = \xi$, $Z_2 = \sum_{i=1}^{Z_1} \xi^{(i)}$
- and consequently

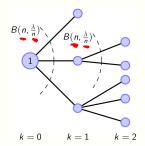
$$\mathbb{E}[Z_1] = \mu$$

$$\mathbb{E}[Z_2] = \mathbb{E}[\mathbb{E}[Z_2|Z_1]] = \mathbb{E}[\mu Z_1] = \mu^2$$
and by recursion, for $k \ge 1$, we obtain
$$\mathbb{E}[Z_k] = \mathbb{E}[\mathbb{E}[Z_k|Z_{k-1}]] = \mathbb{E}[\mu Z_{k-1}] = \mu \cdot \mu^{k-1} = \mu^k$$

• Let $B(n, \frac{\lambda}{n})$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$

P(~)= 7

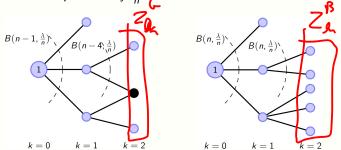




(a) ER graph process

(b) branching process approx.

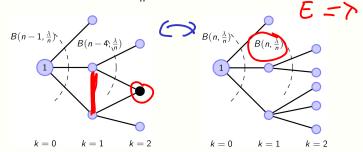
• Let $B(n, \frac{\lambda}{n})$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$



(a) ER graph process (b) branching process approx.

• Z_k^G and Z_k^B the number of individuals in generation k for the graph process and the branching process approximation

• Let $B(n, \frac{\lambda}{n})$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$



(a) ER graph process (b) branching process approx.

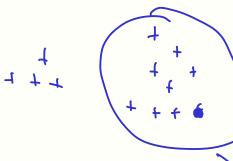
Z_k^G and Z_k^B the number of individuals in generation k for the graph process and the branching process approximation
we have Z_k^G ≤ Z_k^B for all k

• fix $\lambda < 1$

- fix $\lambda < 1$
- Let *S_i* be the number of nodes in the connected component of vertex *i*

• fix $\lambda < 1$

- Let S_i be the number of nodes in the connected component of vertex i
- we have $\mathbb{E}[S_i] = \sum_{k \in \mathcal{D}} \mathbb{E}[Z_k^G] \le \sum_{k \in \mathcal{D}} \mathbb{E}[Z_k^B] = \sum_k \lambda^k = \underbrace{\frac{1}{1-\lambda}}_{1-\lambda}$

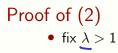


M

- fix $\lambda < 1$
- Let *S_i* be the number of nodes in the connected component of vertex *i*
- we have $\mathbb{E}[S_i] = \sum_k \mathbb{E}[Z_k^G] \le \sum_k \mathbb{E}[Z_k^B] = \sum_k \lambda^k = \frac{1}{1-\lambda}$
- so if λ < 1, the expected size of the components of vertex *i* is constant ⇒ no giant component

- fix $\lambda < 1$
- Let S_i be the number of nodes in the connected component of vertex i
- we have $\mathbb{E}[S_i] = \sum_k \mathbb{E}[Z_k^G] \le \sum_k \mathbb{E}[Z_k^B] = \sum_k \lambda^k = \frac{1}{1-\lambda}$
- so if λ < 1, the expected size of the components of vertex *i* is constant ⇒ no giant component
- one can show (not shown here) that the size of the bigger component does not exceed log *n* :

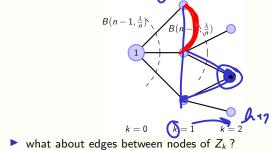
$$orall a > 0, \mathbb{P}(max_{1 \leq i \leq n} | S_i | \geq a \log n) \rightarrow 0 ext{ as } n \rightarrow +\infty$$



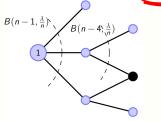
- fix $\lambda > 1$
- We want to compute $\mathbb{E}[S_i]$ and show that it is large

 \implies we can no longer ignore conflicts

- fix $\lambda > 1$
- We want to compute 𝔼[S_i] and show that it is large
 ⇒ we can no longer ignore conflicts
- We claim that $Z_k^{G} \approx Z_k^{B}$ as long as $\lambda^k \leq cte.\sqrt{n}$
 - $\mathbb{E}[\# \text{conflicts at stage } k] \leq n \mathfrak{O}\mathbb{E}[Z_k^2] = n \frac{\lambda^2}{n^2} \mathbb{E}[Z_k^2]$



- fix $\lambda > 1$
- We want to compute 𝔼[S_i] and show that it is large
 ⇒ we can no longer ignore conflicts
- We claim that $Z_k^{\mathcal{G}} \approx Z_k^{\mathcal{B}}$ as long as $\lambda^k \leq cte.\sqrt{n}$
 - $\mathbb{E}[\# \text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] = n \frac{\lambda^2}{n^2} \mathbb{E}[Z_k^2]$

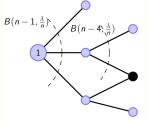


k = 0 k = 1 k = 2

• what about edges between nodes of Z_k ? • we assume that as long as conflicts are negligible, Z_k is a Poisson variable, that is $var(Z_k) = \lambda^k$

- fix $\lambda > 1$
- We want to compute 𝔼[S_i] and show that it is large
 ⇒ we can no longer ignore conflicts
- We claim that $Z_k^{\mathcal{G}} \approx Z_k^{\mathcal{B}}$ as long as $\lambda^k \leq cte.\sqrt{n}$

• $\mathbb{E}[\# \text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] = n \frac{\lambda^2}{n^2} \mathbb{E}[Z_k^2]$

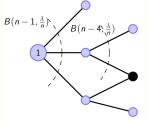


 $k=0 \qquad k=1 \qquad k=2$

what about edges between nodes of Z_k?
 we assume that as long as conflicts are negligible, Z_k is a Poisson variable, that is var(Z_k) = λ^k
 we obtain E[Z_k²] = var(Z_k) + E[Z_k]² = λ^k + λ^{2k} ~ λ^{2k}

- fix $\lambda > 1$
- We want to compute 𝔼[S_i] and show that it is large
 ⇒ we can no longer ignore conflicts
- We claim that $Z_k^{\mathcal{G}} \approx Z_k^{\mathcal{B}}$ as long as $\lambda^k \leq cte.\sqrt{n}$

• $\mathbb{E}[\# \text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] = n \frac{\lambda^2}{n^2} \mathbb{E}[Z_k^2]$



k = 0 k = 1 k = 2

what about edges between nodes of Z_k?
 we assume that as long as conflicts are negligible, Z_k is a Poisson variable, that is var(Z_k) = λ^k
 we obtain E[Z_k²] = var(Z_k) + E[Z_k]² = λ^k + λ^{2k} ~ λ^{2k}
 ⇒ E[#conflicts] becomes Ω(1) only when λ^k ≈ √n

•
$$\mathbb{E}[S_i]$$
 = $\sum_k \mathbb{E}[Z_k^G] \ge \sum_{\substack{k \le \log_\lambda(\sqrt{n}) \\ 1 - \lambda}} \mathbb{E}[Z_k^B] = \sum_{\substack{k \le \log_\lambda(\sqrt{n}) \\ \sqrt{n}}} \mathbb{E}[Z_k^B] = \sum_{\substack{k \ge \log_\lambda(\sqrt{n}) \\ \sqrt{n}}} \mathbb{E}[Z_$

•
$$\mathbb{E}[S_i] = \sum_k \mathbb{E}[Z_k^G] \ge \sum_{k \le \log_\lambda(\sqrt{n})} \mathbb{E}[Z_k^B] = \sum_{k \le \log_\lambda(\sqrt{n})} \lambda^k$$

 $\ge \frac{1 - \lambda^{\log_\lambda(\sqrt{n})}}{1 - \lambda} \ge \sqrt{n}$

- Let us assume again that $|Z_k|$ follows a Poisson law of parameter λ^k
 - we then have $\mathbb{P}(||Z_k| \lambda^k| \ge x) \le 2e^{-\frac{x^2}{2(\lambda^k+x)}}$
 - which gives for $x = \sqrt{\lambda^k}$, $\mathbb{P}(||Z_k| \lambda^k| \ge \sqrt{\lambda^k}) \le 2e^{-\frac{1}{3}}$

0

•
$$\mathbb{E}[S_i] = \sum_k \mathbb{E}[Z_k^G] \ge \sum_{k \le \log_\lambda(\sqrt{n})} \mathbb{E}[Z_k^B] = \sum_{k \le \log_\lambda(\sqrt{n})} \lambda^k$$

 $\ge \frac{1 - \lambda^{\log_\lambda(\sqrt{n})}}{1 - \lambda} \ge \sqrt{n}$

• Let us assume again that $|Z_k|$ follows a Poisson law of parameter λ^k

▶ we then have
$$\mathbb{P}(||Z_k| - \lambda^k| \ge x) \le 2e^{-\frac{x^2}{2(\lambda^k + x)}}$$

▶ which gives for $x = \sqrt{\lambda^k}$. $\mathbb{P}(||Z_k| - \lambda^k| \ge \sqrt{\lambda^k}) \le 2e^{-\frac{1}{3}}$

for large *n*, we obtain $\mathbb{P}(|S_i| \ge \frac{\sqrt{n}}{2}) \ge cte)$ \implies there is a constant fraction of the nodes (say $\alpha.n$) that

are in a component of size at least $\frac{\sqrt{n}}{2}$

• Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$
- Let C₁ be the smallest of these components and let A be the union of all these components

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$
- Let C₁ be the smallest of these components and let A be the union of all these components

• we denote
$$|C_1| = k \geq rac{\sqrt{n}}{2}$$

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$
- Let C₁ be the smallest of these components and let A be the union of all these components

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$
- Let C₁ be the smallest of these components and let A be the union of all these components

• this means that the probability that the vertices of A are grouped in a single connected component $\rightarrow 1$ when $n \rightarrow +\infty$

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow +\infty$
- Let C₁ be the smallest of these components and let A be the union of all these components

- this means that the probability that the vertices of A are grouped in a single connected component $\rightarrow 1$ when $n \rightarrow +\infty$
- since $|A| \ge \alpha . n$, this constitutes a giant component

• Let
$$G = G_{n-1,p}$$
 pe an ER graph with $p(n) = \frac{\lambda}{n}$ with $\lambda > 1$

- Let $G = G_{n-1,p}$ pe an ER graph with $p(n) = \frac{\lambda}{n}$ with $\lambda > 1$
- Add a nth vertex to G and connect it to the rest of the vertices with probability p(n) and denote G' the resulting graph

- Let $G = G_{n-1,p}$ pe an ER graph with $p(n) = \frac{\lambda}{n}$ with $\lambda > 1$
- Add a nth vertex to G and connect it to the rest of the vertices with probability p(n) and denote G' the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G'

- Let $G = G_{n-1,p}$ pe an ER graph with $p(n) = \frac{\lambda}{n}$ with $\lambda > 1$
- Add a nth vertex to G and connect it to the rest of the vertices with probability p(n) and denote G' the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G'
- vertex *n* is not in the giant component iff none of its neighbours are

• This gives
$$\rho = \sum_{d \ge 0} P_d \rho^d = \Phi(\rho)$$

- Let $G = G_{n-1,p}$ pe an ER graph with $p(n) = \frac{\lambda}{n}$ with $\lambda > 1$
- Add a nth vertex to G and connect it to the rest of the vertices with probability p(n) and denote G' the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G'
- vertex *n* is not in the giant component iff none of its neighbours are

• This gives $\rho = \sum_{d \ge 0} P_d \rho^d = \Phi(\rho)$

• The analysis of function Φ shows that it has a unique fixed point $\rho^* \in]0,1[$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

• Conflicts are negligible until $\frac{\log^{2(k+1)} n}{n} = 1$, that is $k = \frac{\log n}{2\log \log n} - 1$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

• Conflicts are negligible until $\frac{\log^{2(k+1)} n}{n} = 1$, that is $k = \frac{\log n}{2 \log \log n} - 1$

• Then
$$|S_i| \approx (\log n)^{\frac{\log n}{2\log \log n} - 1} = \frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n} = \frac{\sqrt{n}}{\log n}$$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

• Conflicts are negligible until $\frac{\log^{2(k+1)} n}{n} = 1$, that is $k = \frac{\log n}{2\log \log n} - 1$

• Then
$$|S_i| \approx (\log n)^{\frac{\log n}{2\log \log n} - 1} = \frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n} = \frac{\sqrt{n}}{\log n}$$

• One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

• Conflicts are negligible until $\frac{\log^{2(k+1)} n}{n} = 1$, that is $k = \frac{\log n}{2 \log \log n} - 1$

• Then
$$|S_i| \approx (\log n)^{\frac{\log n}{2\log \log n} - 1} = \frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n} = \frac{\sqrt{n}}{\log n}$$

- One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$
- the probability for two such balls not to be connected by an edge is $(1-p)^{\frac{n}{\log^2 n}} \leq e^{-\frac{1}{\log n}}$

(very) roughly speaking

• $\mathbb{E}[\#\text{conflicts at stage } k] \le np^2 \mathbb{E}[Z_k^2] \approx \frac{\log^2 n}{n} \cdot \log^{2k} n = \frac{\log^{2(k+1)} n}{n}$

• What about edges between vertices of Z_k ?

• Conflicts are negligible until $\frac{\log^{2(k+1)} n}{n} = 1$, that is $k = \frac{\log n}{2\log \log n} - 1$

• Then
$$|S_i| \approx (\log n)^{\frac{\log n}{2\log \log n} - 1} = \frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n} = \frac{\sqrt{n}}{\log n}$$

- One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$
- the probability for two such balls not to be connected by an edge is $(1-p)^{\frac{n}{\log^2 n}} \leq e^{-\frac{1}{\log n}}$
- so the proba for them to be connected is at least $1 e^{-\frac{1}{\log n}} \sim \frac{1}{\log n}$

• let us write $N = \sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G

- let us write $N = \sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have log $N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{\rho} = \frac{1}{2 \log N}$

- let us write $N = \sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have log $N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{p} = \frac{1}{2 \log N}$
- In \tilde{G} the probability for two given nodes to be at distance more than 2 is at most $(1 - \frac{1}{2 \log N})^{N-1} \le e^{-\frac{N-1}{2 \log N}} \to 0$ when $N \to +\infty$.

- let us write $N = \sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have log $N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{p} = \frac{1}{2 \log N}$
- In \tilde{G} the probability for two given nodes to be at distance more than 2 is at most $(1 - \frac{1}{2 \log N})^{N-1} \le e^{-\frac{N-1}{2 \log N}} \to 0$ when $N \to +\infty$.
- Therefore, between any two vertices of *G* there exists with probability tending to 1 when $n \to +\infty$ a path of length $(\frac{\log n}{2\log \log n} 1) + 1 + 2(\frac{\log n}{2\log \log n} 1) + 1 + (\frac{\log n}{2\log \log n} 1) \le \frac{2\log n}{\log \log n}$

Configuration model – Molloy & Reed 1995

Input : an arbitrary degree distribution

Output : a random graph with this degree distribution

Configuration model – Molloy & Reed 1995

Input : an arbitrary degree distribution

Output : a random graph with this degree distribution

Generation process :

- 1. Assign a fixed number of semi-links to each node (according to the input degree distribution)
- 2. Pair the semi-links uniformly at random
- 3. Remove self-loops and multiple edges

Configuration model – Molloy & Reed 1995

Input : an arbitrary degree distribution

Output : a random graph with this degree distribution

Generation process :

- 1. Assign a fixed number of semi-links to each node (according to the input degree distribution)
- 2. Pair the semi-links uniformly at random
- 3. Remove self-loops and multiple edges

What degree distribution should we take as parameter?

- The degree distribution of some real-world network
- A mathematically defined one, powerlaw $\mathbb{P}(k) \sim k^{-\alpha}$.

Configuration model : implementation and complexity

- Put the semi-links in a table of size 2m
- Pick *m* times two of them uniformly at random

Four properties to check :

- Low global density
 - ► the degree distribution is the parameter of the model and controls $m : m = \frac{\sum_{0 \le k \le n-1} k \cdot N_k}{2}$

Four properties to check :

- Low global density
- Short distances
 Expansion property :
 - Degree of the extremity of one edge : $\mathbb{P}(d^{\circ}(ext) = k') = \frac{k'\mathbb{P}(k')}{\langle k \rangle}$
 - Probability that following one edge leads to k new vertices : q(k) = P(d°(ext) = k + 1)
 - Expected number of new vertices following one edge : $\sum_{k} kq(k) = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle}$

Four properties to check :

- Low global density
- Short distances 🗸
- Heterogeneous degrees ✓

the degree distribution is the parameter of the model

Four properties to check :

- Low global density
- Short distances 🗸
- Heterogeneous degrees
- High local density

Probability to have a link between u and k with $d^{\circ}(u) = k$ and $d^{\circ}(v) = k' : \mathbb{P}(uv|kk') = \frac{kk'}{\langle k \rangle N}$

Four properties to check :

- Low global density
- Short distances 🗸
- Heterogeneous degrees 🗸
- High local density

Probability to have a link between u and k with d°(u) = k and d°(v) = k' : P(uv|kk') = kk'/(k > N)
 Probability to have a link between u and v : P(triangle) = ∑_{k≥1}∑_{k'≥1} kk'/(k > N) q(k)q(k') = 1/(k > N) ∑_{k≥1} kq(k)∑_{k'≥1} k'q(k') = 1/N ((k > - (k >))²/(k > 3)

Four properties to check :

- Low global density
- Short distances 🗸
- Heterogeneous degrees
- High local density X

Probability to have a link between u and k with d°(u) = k and d°(v) = k' : P(uv|kk') = kk'/(k > N)
 Probability to have a link between u and v : P(triangle) = ∑_{k≥1}∑_{k'≥1} k'(k)/(k) q(k') = 1/(k > N) ∑_{k'≥1} kq(k) ∑_{k'≥1} k'q(k') = 1/N ((k > 2 - (k >)))/(k > 2 - (k >)))
 = 1/N ((k > 2 - (k >)))/(k > 2 - (k >)))
 ⇒ 0 when N → +∞