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Network models

Model = random generation of synthetic networks

• To simulate :
� phenomena
� algorithms
� protocols

• In order to :
� design
� test
� predict
� better understand

• Example :

Would Internet protocols still work if Internet was 10 times
larger ?
� generate a synthetic network and simulate
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Network models

Model = random generation of synthetic networks
... having the properties of real-world networks ! ! !

Four classic properties of real-world complex networks :

• Low global density

• Short distances

• Heterogeneous degrees

• High local density

Goal : generate synthetic networks having these four properties
(in a generic way)
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Erdös-Rényi (ER) random graphs

There are two models :

• Gn,m : choose uniformly at random (u.a.r.) m edges among
the n vertices
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Erdös-Rényi (ER) random graphs

There are two models :

• Gn,m : choose uniformly at random (u.a.r.) m edges among
the n vertices

• Gn,p : for each couple of the n vertices, put an edge with
probability p

⇒ ”essentialy” equivalent when p = 2m
n(n−1)

Should we use Gn,m or Gn,p ?

• For generating networks ? Gn,m

• For mathematical analysis of the model ? Gn,p
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Gn,m : implementation and complexity

• Algo : Pick m times two vertices uniformly at random
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Gn,m : implementation and complexity

• Algo : Pick m times two vertices uniformly at random

� How to deal with self-loops ?

� How to deal with multiple edges ?
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Properties of Gn,p

Four properties to check :

• Low global density
� p parameter of the model, controls m : E(m) = pn(n−1)

2
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Properties of Gn,p

Four properties to check :

• Low global density ✓

� p parameter of the model, controls m : E(m) = pn(n−1)
2� law of large numbers : m is very concentrated around its mean
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Properties of Gn,p

Four properties to check :

• Low global density ✓

• Short distances ✓
Expansion property
� def. (graph theory) : a graph G is a c-vertex-expander iff

∀S ⊆ V s.t. |S | ≤ |V (G)|
2 , we have |N(S)| ≥ c · |S |

� expansion of Gn,m ? ∼ m
n� until n

2 , exponential growth of |B(u, d)| ∼ (1 + c)d

• Heterogeneous degrees ✘
� fix the average degree λ = p(n − 1)
� P(d◦ = k) =

�
n−1
k

�
pk(1− p)(n−1−k)

=
Ak
n

k!
λk

(n−1)k
(1− λ

n−1 )
n−1−k

=
Ak
n

(n−1)k
λk

k! (1− λ
n−1 )

n−1(1− λ
n−1 )

−k

� then when n → +∞, P(d◦ = k) → λk e−λ

k! : Poisson law
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Properties of Gn,p

Four properties to check :
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Properties of Gn,p

Four properties to check :

• Low global density ✓

• Short distances ✓
Expansion property
� def. (graph theory) : a graph G is a c-vertex-expander iff

∀S ⊆ V s.t. |S | ≤ |V (G)|
2 , we have |N(S)| ≥ c · |S |

� expansion of Gn,m ? ∼ m
n� until n

2 , exponential growth of |B(u, d)| ∼ (1 + c)d

• Heterogeneous degrees ✘

• High local density ✘
� probability of an edge in the neighbourhood of a vertex ?
� same as everywhere : p (couples of vertices are independant)
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Phase transitions in Gn,p

N.B. : p (eventually) depends on n

• Threshold function t(n) for property A :

� P(A) → 0 if p(n)
t(n) → 0

� P(A) → 1 if p(n)
t(n) → +∞

� makes sense for monotonic properties (for inclusion of edge
set)

• such a threshold function exists ⇒ phase transition

• Seminal work of Erdös and Rényi in 1959
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Phase transitions in Gn,p

n = 50, p = 0.01
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Phase transitions in Gn,p

n = 50, p = 0.03
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Phase transitions in Gn,p

n = 50, p = 0.05
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Phase transitions in Gn,p

n = 50, p = 0.10
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Threshold for connectivity

• We show a threshold with function t(n) = log n
n

• Denote p(n) = λ log n
n (mean degree ∼ λ log n)

• We show a (much) stronger statement for threshold function
log n
n :

1. P(connectivity) → 0 if λ < 1
2. P(connectivity) → 1 if λ > 1

15/35



Proof of (1)

• to prove (1), it is enough to show that the probability of
existence of at least one isolated node goes to 1
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Proof of (1)

• to prove (1), it is enough to show that the probability of
existence of at least one isolated node goes to 1

• Let Ii be the Bernouilli random variable defined as
� Ii = 1 if vertex i is isolated
� Ii = 0 otherwise

• probability that a vertex is isolated :
q = P(Ii = 1) = (1− p)n−1 ∼ e−λ log n = n−λ

• Let X =
�n

i=1 Ii be the number of isolated vertices

• We have E[X ] = n.n−λ → +∞ for λ < 1

• enough to conclude that P(X = 0) → 0 ?

⇒ NO, we need a concentration property.
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Proof of (1)

• We have
var(X ) =

�
i var(Ii ) +

�
i

�
j �=i cov(Ii , Ij)

= nvar(I1) + n(n − 1)cov(I1, I2)
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� cov(I1, I2) = E[I1I2]− E[I1]E[I2]
� E[I1I2] = P(I1 = 1, I2 = 1) = (1− p)2n−3 = q2

1−p

• We then obtain var(X ) = nq(1− q) + n(n − 1) q2p
1−p

• when n → +∞, then q → 0 and p → 0

• this gives
var(X ) ∼ nq + n2q2p

= nn−λ + λn log nn−2λ

∼ nn−λ = E[X ]
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Proof of (1)

• so we have var(X ) ∼ E[X ]

• and because var(X ) ≥ (0− E[X ])2P(X = 0)

• we obtain P(X = 0) ≤ 1
E[X ] → 0

• it follows that P(X > 0) → 1 when n → +∞

• and consequently P(disconnected) → 1 when n → +∞
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Proof of (2)

• we now fix λ > 1

• let’s check that E[X ] = nn−λ → 0 when n → +∞ ✓
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• observe that G is disconnected ⇐⇒ ∃k vertices without edges
to the other vertices, for some k ≤ n/2

• we have
P({1, . . . , k} not connected to the rest) = (1− p)k(n−k)

• and so
P(∃k vertices not connected to the rest) ≤

�n
k

�
(1− p)k(n−k)

• and finally P(G is disconnected) ≤ �n/2
k=1

�n
k

�
(1− p)k(n−k)

• using this expression, one can show that
P(G is disconnected) → 0 when n → +∞
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Threshold for giant component

• Giant = constant fraction of the vertices

• We show a threshold with function t(n) = 1
n

• Denote p(n) = λ
n (mean degree ∼ λ)

• We again show a strong statement for threshold function 1
n :

1. if λ < 1, ∀a ∈ R∗
+,P(maxsize(CC ) ≥ a log n) → 0

2. if λ > 1, ∃b ∈ R∗
+,P(maxsize(CC ) ≥ b.n) → 1

20/35



Proof of (1) – preliminaries

• Galton-Watson branching process
� start with a single individual
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• Galton-Watson branching process
� start with a single individual
� each individual generates a number of children according to a

non-negative random variable ξ with distribution pk
P(ξ = k) = pk E[ξ] = µ var(ξ) �= 0

• Let Zk be the number of individuals in the k th generation
we have Z0 = 1, Z1 = ξ, Z2 =

�Z1
i=1 ξ

(i)

• and consequently
� E[Z1] = µ
� E[Z2] = E[E[Z2|Z1]] = E[µZ1] = µ2

� and by recursion, for k ≥ 1, we obtain
E[Zk ] = E[E[Zk |Zk−1]] = E[µZk−1] = µ.µk−1 = µk
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”Proof” of (1)

• Let B(n, λn ) denote the binomial random variable with n trials

and success probability λ
n

(a) ER graph process (b) branching process approx.
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• Let B(n, λn ) denote the binomial random variable with n trials

and success probability λ
n

(a) ER graph process (b) branching process approx.

• ZG
k and ZB

k the number of individuals in generation k for the
graph process and the branching process approximation

• we have ZG
k ≤ ZB

k , for all k
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• Let Si be the number of nodes in the connected component of
vertex i

• we have E[Si ] =
�

k E[ZG
k ] ≤ �

k E[ZB
k ] =

�
k λ

k = 1
1−λ

• so if λ < 1, the expected size of the components of vertex i is
constant =⇒ no giant component

• one can show (not shown here) that the size of the bigger
component does not exceed log n :

∀a > 0,P(max1≤i≤n|Si | ≥ a log n) → 0 as n → +∞
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Proof of (2)
• fix λ > 1
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2
k ]

� what about edges between nodes of Zk ?
� we assume that as long as conflicts are negligible, Zk is a

Poisson variable, that is var(Zk) = λk

� we obtain E[Z 2
k ] = var(Zk) + E[Zk ]

2 = λk + λ2k ∼ λ2k
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• We want to compute E[Si ] and show that it is large
=⇒ we can no longer ignore conflicts

• We claim that ZG
k ≈ ZB

k as long as λk ≤ cte.
√
n

� E[#conflicts at stage k] ≤ np2E[Z 2
k ] = nλ2

n2 E[Z
2
k ]

� what about edges between nodes of Zk ?
� we assume that as long as conflicts are negligible, Zk is a

Poisson variable, that is var(Zk) = λk

� we obtain E[Z 2
k ] = var(Zk) + E[Zk ]

2 = λk + λ2k ∼ λ2k

=⇒ E[#conflicts] becomes Ω(1) only when λk ≈ √
n
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• Let us assume again that |Zk | follows a Poisson law of
parameter λk

� we then have P(||Zk |− λk | ≥ x) ≤ 2e
− x2

2(λk+x)

� which gives for x =
√
λk , P(||Zk |− λk | ≥

√
λk) ≤ 2e−

1
3

• for large n, we obtain P(|Si | ≥
√
n
2 ) ≥ cte

=⇒ there is a constant fraction of the nodes (say α.n) that

are in a component of size at least
√
n
2
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√
n
2 , we will

show that the probability this happens → 0 when n → +∞
• Let C1 be the smallest of these components and let A be the
union of all these components

� we denote |C1| = k ≥
√
n
2

� P(C1 not connected to A \ C1) = (1− p)k(|A|−k) ≤
(1− λ

n )
αn

√
n

4 ≤ e−
λ
n .

αn
√

n
4 = e−

λα
√

n
4 → 0 when n → +∞

• this means that the probability that the vertices of A are
grouped in a single connected component → 1 when n → +∞

• since |A| ≥ α.n, this constitutes a giant component
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• Let G = Gn−1,p pe an ER graph with p(n) = λ
n with λ > 1

• Add a nth vertex to G and connect it to the rest of the vertices
with probability p(n) and denote G � the resulting graph

• We denote ρ the fraction of vertices that are not in the giant
component and we assume that, for large n, ρ is the same in
G and G �

• vertex n is not in the giant component iff none of its
neighbours are
� This gives ρ =

�
d≥0 Pdρ

d = Φ(ρ)

• The analysis of function Φ shows that it has a unique fixed
point ρ∗ ∈]0, 1[
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approx.
√
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log n

• the probability for two such balls not to be connected by an

edge is (1− p)
n

log2 n ≤ e−
1

log n

• so the proba for them to be connected is at least

1− e−
1

log n ∼ 1
log n
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• let us write N =
√
n log n, and call G̃ the graph on the N balls

that cover G

• we have logN ∼ log n
2 and G̃ contains an ER graph on N

vertices with p̃ = 1
2 logN

• In G̃ the probability for two given nodes to be at distance

more than 2 is at most (1− 1
2 logN )

N−1 ≤ e−
N−1
2 log N → 0 when

N → +∞.

• Therefore, between any two vertices of G there exists with
probability tending to 1 when n → +∞ a path of length
( log n
2 log log n−1)+1+2( log n

2 log log n−1)+1+( log n
2 log log n−1) ≤ 2 log n

log log n
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Configuration model – Molloy & Reed 1995

Input : an arbitrary degree distribution

Output : a random graph with this degree distribution

Generation process :

1. Assign a fixed number of semi-links to each node
(according to the input degree distribution)

2. Pair the semi-links uniformly at random

3. Remove self-loops and multiple edges

What degree distribution should we take as parameter ?

• The degree distribution of some real-world network

• A mathematically defined one, powerlaw P(k) ∼ k−α.
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Configuration model : implementation and complexity

• Put the semi-links in a table of size 2m

• Pick m times two of them uniformly at random
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Properties of the configuration model

Four properties to check :

• Low global density ✓
� the degree distribution is the parameter of the model and

controls m : m =
�

0≤k≤n−1 k.Nk

2

32/35



Properties of the configuration model

Four properties to check :

• Low global density ✓

• Short distances ✓
Expansion property :
� Degree of the extremity of one edge :

P(d◦(ext) = k �) = k�P(k�)
<k>� Probability that following one edge leads to k new vertices :

q(k) = P(d◦(ext) = k + 1)
� Expected number of new vertices following one edge :�

k kq(k) =
<k2>−<k>

<k>
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Properties of the configuration model

Four properties to check :

• Low global density ✓

• Short distances ✓

• Heterogeneous degrees ✓

• High local density ✘
w

u v

?

� Probability to have a link between u and k with d◦(u) = k and

d◦(v) = k � : P(uv |kk �) = kk�

<k>N� Probability to have a link between u and v :
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kk�
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�
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→ 0 when N → +∞
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