M2 Complex Systems - Complex Networks

Lecture 3 - Network models

Erdös-Rényi random graphs and configuration model

Automn 2021 - ENS Lyon
Christophe Crespelle christophe.crespelle@ens-lyon.fr

* Thanks to Daron Acemoglu and Asu Ozdaglar for pedagogical material used for these slides.

Network models

Model $=$ random generation of synthetic networks

- To simulate :
- phenomena
- algorithms
- protocols
- In order to :
- design
- test
- predict
- better understand
- Example :

Would Internet protocols still work if Internet was 10 times larger?

- generate a synthetic network and simulate

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks !!!

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks!!!

Four classic properties of real-world complex networks :

- Low global density

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks!!!

Four classic properties of real-world complex networks :

- Low global density
- Short distances

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks!!!

Four classic properties of real-world complex networks :

- Low global density
- Short distances
- Heterogeneous degrees

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks!!!

Four classic properties of real-world complex networks:

- Low global density
- Short distances
- Heterogeneous degrees
- High local density

Network models

Model $=$ random generation of synthetic networks ... having the properties of real-world networks !!!

Four classic properties of real-world complex networks :

- Low global density
- Short distances
- Heterogeneous degrees
- High local density

Goal : generate synthetic networks having these four properties (in a generic way)

Erdös-Rényi (ER) random graphs

There are two models:

- $G_{n, m}$: choose uniformly at random (u.a.r.) m edges among the n vertices

Erdös-Rényi (ER) random graphs

There are two models:

- $G_{n, m}$: choose uniformly at random (u.a.r.) m edges among the n vertices
- $G_{n, p}$: for each couple of the n vertices, put an edge with probability p

Erdös-Rényi (ER) random graphs

There are two models:

- $G_{n, m}$: choose uniformly at random (u.a.r.) m edges among the n vertices
- $G_{n, p}$: for each couple of the n vertices, put an edge with probability p
\Rightarrow "essentialy" equivalent when $p=\frac{2 m}{n(n-1)}$

Erdös-Rényi (ER) random graphs

There are two models:

- $G_{n, m}$: choose uniformly at random (u.a.r.) m edges among the n vertices
- $G_{n, p}$: for each couple of the n vertices, put an edge with probability p
\Rightarrow "essentialy" equivalent when $p=\frac{2 m}{n(n-1)}$

Should we use $G_{n, m}$ or $G_{n, p}$?

- For generating networks? $G_{n, m}$
- For mathematical analysis of the model ? $G_{n, p}$

$G_{n, m}$: implementation and complexity

- Algo : Pick m times two vertices uniformly at random

$G_{n, m}$: implementation and complexity

- Algo : Pick m times two vertices uniformly at random
- How to deal with self-loops?

$G_{n, m}$: implementation and complexity

- Algo : Pick m times two vertices uniformly at random
- How to deal with self-loops?
- How to deal with multiple edges?

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- p parameter of the model, controls $m: \mathbb{E}(m)=\frac{p n(n-1)}{2}$

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- p parameter of the model, controls $m: \mathbb{E}(m)=\frac{p n(n-1)}{2}$
- law of large numbers: m is very concentrated around its mean

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances Expansion property
- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances Expansion property
- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$?

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances Expansion property
- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
- until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
- until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
$>$ until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees
- fix the average degree $\lambda=p(n-1)$

Properties of $G_{n, p}$

Four properties to check:

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
- until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees
- fix the average degree $\lambda=p(n-1)$
$\therefore \begin{aligned} \mathbb{P}\left(d^{\circ}=k\right) & =\left(\begin{array}{c}n-1\end{array}\right) p^{k}(1-p)^{(n-1-k)} \\ & =\frac{A_{n}^{k}}{k!} \frac{\lambda^{k}}{(n-1)^{k}}\left(1-\frac{\lambda}{n-1}\right)^{n-1-k} \\ & =\frac{A_{n}^{k}}{(n-1)^{k}} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n-1}\right)^{n-1}\left(1-\frac{\lambda}{n-1}\right)^{-k}\end{aligned}$

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
- until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees
- fix the average degree $\lambda=p(n-1)$
$-\mathbb{P}\left(d^{\circ}=k\right)=\binom{n-1}{k^{k}} p^{k}(1-p)^{(n-1-k)}$

$$
\begin{aligned}
& =\frac{\lambda_{n}^{k}}{k!} \frac{\lambda^{k}}{(n-1)^{k}}\left(1-\frac{\lambda}{n-1}\right)^{n-1-k} \\
& =\frac{A_{n}^{k}}{(n-1)^{k}} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n-1}\right)^{n-1}\left(1-\frac{\lambda}{n-1}\right)^{-k}
\end{aligned}
$$

- then when $n \rightarrow+\infty, \mathbb{P}\left(d^{\circ}=k\right) \rightarrow \frac{\lambda^{k} e^{-\lambda}}{k!}$: Poisson law

Properties of $G_{n, p}$

Four properties to check :

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
$>$ until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees
- High local density
- probability of an edge in the neighbourhood of a vertex?

Properties of $G_{n, p}$

Four properties to check:

- Low global density
- Short distances

Expansion property

- def. (graph theory) : a graph G is a c-vertex-expander iff $\forall S \subseteq V$ s.t. $|S| \leq \frac{|V(G)|}{2}$, we have $|N(S)| \geq c \cdot|S|$
- expansion of $G_{n, m}$? $\sim \frac{m}{n}$
- until $\frac{n}{2}$, exponential growth of $|B(u, d)| \sim(1+c)^{d}$
- Heterogeneous degrees
- High local density X
- probability of an edge in the neighbourhood of a vertex?
- same as everywhere : p (couples of vertices are independant)

Phase transitions in $G_{n, p}$

N.B. : p (eventually) depends on n

- Threshold function $t(n)$ for property A :
$-\mathbb{P}(A) \rightarrow 0$ if $\frac{p(n)}{t(n)} \rightarrow 0$
- $\mathbb{P}(A) \rightarrow 1$ if $\frac{p(n)}{t(n)} \rightarrow+\infty$
- makes sense for monotonic properties (for inclusion of edge set)
- such a threshold function exists \Rightarrow phase transition
- Seminal work of Erdös and Rényi in 1959

Phase transitions in $G_{n, p}$

Threshold for connectivity

- We show a threshold with function $t(n)=\frac{\log n}{n}$
- Denote $p(n)=\lambda \frac{\log n}{n}($ mean degree $\sim \lambda \log n)$
- We show a (much) stronger statement for threshold function $\frac{\log n}{n}$:

1. \mathbb{P} (connectivity) $\rightarrow 0$ if $\lambda<1$
2. \mathbb{P} (connectivity) $\rightarrow 1$ if $\lambda>1$

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise
- probability that a vertex is isolated :

$$
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \sim e^{-\lambda \log n}=n^{-\lambda}
$$

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise
- probability that a vertex is isolated :

$$
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \sim e^{-\lambda \log n}=n^{-\lambda}
$$

- Let $X=\sum_{i=1}^{n} l_{i}$ be the number of isolated vertices

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise
- probability that a vertex is isolated :

$$
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \sim e^{-\lambda \log n}=n^{-\lambda}
$$

- Let $X=\sum_{i=1}^{n} l_{i}$ be the number of isolated vertices
- We have $\mathbb{E}[X]=n . n^{-\lambda} \rightarrow+\infty$ for $\lambda<1$

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise
- probability that a vertex is isolated :

$$
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \sim e^{-\lambda \log n}=n^{-\lambda}
$$

- Let $X=\sum_{i=1}^{n} l_{i}$ be the number of isolated vertices
- We have $\mathbb{E}[X]=n . n^{-\lambda} \rightarrow+\infty$ for $\lambda<1$
- enough to conclude that $\mathbb{P}(X=0) \rightarrow 0$?

Proof of (1)

- to prove (1), it is enough to show that the probability of existence of at least one isolated node goes to 1
- Let I_{i} be the Bernouilli random variable defined as
- $I_{i}=1$ if vertex i is isolated
- $I_{i}=0$ otherwise
- probability that a vertex is isolated :

$$
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \sim e^{-\lambda \log n}=n^{-\lambda}
$$

- Let $X=\sum_{i=1}^{n} l_{i}$ be the number of isolated vertices
- We have $\mathbb{E}[X]=n . n^{-\lambda} \rightarrow+\infty$ for $\lambda<1$
- enough to conclude that $\mathbb{P}(X=0) \rightarrow 0$?
\Rightarrow NO, we need a concentration property.

Proof of (1)

- We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, I_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

Proof of (1)

- We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, l_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

- And we also have :
- $\operatorname{var}\left(I_{1}\right)=\mathbb{E}\left[I_{1}^{2}\right]-\mathbb{E}\left[I_{1}\right]^{2}=q-q^{2}$
- $\operatorname{cov}\left(l_{1}, l_{2}\right)=\mathbb{E}\left[I_{1} l_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[l_{2}\right]$
- $\mathbb{E}\left[I_{1} l_{2}\right]=\mathbb{P}\left(I_{1}=1, I_{2}=1\right)=(1-p)^{2 n-3}=\frac{q^{2}}{1-p}$

Proof of (1)

- We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, I_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

- And we also have :
- $\operatorname{var}\left(I_{1}\right)=\mathbb{E}\left[I_{1}^{2}\right]-\mathbb{E}\left[I_{1}\right]^{2}=q-q^{2}$
- $\operatorname{cov}\left(l_{1}, l_{2}\right)=\mathbb{E}\left[l_{1} l_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[l_{2}\right]$
- $\mathbb{E}\left[I_{1} l_{2}\right]=\mathbb{P}\left(I_{1}=1, I_{2}=1\right)=(1-p)^{2 n-3}=\frac{q^{2}}{1-p}$
- We then obtain $\operatorname{var}(X)=n q(1-q)+n(n-1) \frac{q^{2} p}{1-p}$

Proof of (1)

- We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, I_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

- And we also have :
- $\operatorname{var}\left(I_{1}\right)=\mathbb{E}\left[I_{1}^{2}\right]-\mathbb{E}\left[I_{1}\right]^{2}=q-q^{2}$
- $\operatorname{cov}\left(l_{1}, l_{2}\right)=\mathbb{E}\left[l_{1} l_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[l_{2}\right]$
- $\mathbb{E}\left[l_{1} l_{2}\right]=\mathbb{P}\left(l_{1}=1, l_{2}=1\right)=(1-p)^{2 n-3}=\frac{q^{2}}{1-p}$
- We then obtain $\operatorname{var}(X)=n q(1-q)+n(n-1) \frac{q^{2} p}{1-p}$
- when $n \rightarrow+\infty$, then $q \rightarrow 0$ and $p \rightarrow 0$

Proof of (1)

- We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, I_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right)
\end{aligned}
$$

- And we also have :
- $\operatorname{var}\left(I_{1}\right)=\mathbb{E}\left[I_{1}^{2}\right]-\mathbb{E}\left[I_{1}\right]^{2}=q-q^{2}$
- $\operatorname{cov}\left(l_{1}, l_{2}\right)=\mathbb{E}\left[l_{1} l_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[l_{2}\right]$
- $\mathbb{E}\left[I_{1} l_{2}\right]=\mathbb{P}\left(l_{1}=1, I_{2}=1\right)=(1-p)^{2 n-3}=\frac{q^{2}}{1-p}$
- We then obtain $\operatorname{var}(X)=n q(1-q)+n(n-1) \frac{q^{2} p}{1-p}$
- when $n \rightarrow+\infty$, then $q \rightarrow 0$ and $p \rightarrow 0$
- this gives

$$
\begin{aligned}
\operatorname{var}(X) & \sim n q+n^{2} q^{2} p \\
& =n n^{-\lambda}+\lambda n \log n n^{-2 \lambda} \\
& \sim n n^{-\lambda}=\mathbb{E}[X]
\end{aligned}
$$

Proof of (1)

- so we have $\operatorname{var}(X) \sim \mathbb{E}[X]$
- and because $\operatorname{var}(X) \geq(0-\mathbb{E}[X])^{2} \mathbb{P}(X=0)$
- we obtain $\mathbb{P}(X=0) \leq \frac{1}{\mathbb{E}[X]} \rightarrow 0$
- it follows that $\mathbb{P}(X>0) \rightarrow 1$ when $n \rightarrow+\infty$
- and consequently $\mathbb{P}($ disconnected $) \rightarrow 1$ when $n \rightarrow+\infty$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty \checkmark$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty$
- observe that G is disconnected $\Longleftrightarrow \exists k$ vertices without edges to the other vertices, for some $k \leq n / 2$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty$
- observe that G is disconnected $\Longleftrightarrow \exists k$ vertices without edges to the other vertices, for some $k \leq n / 2$
- we have
$\mathbb{P}(\{1, \ldots, k\}$ not connected to the rest $)=(1-p)^{k(n-k)}$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty$
- observe that G is disconnected $\Longleftrightarrow \exists k$ vertices without edges to the other vertices, for some $k \leq n / 2$
- we have
$\mathbb{P}(\{1, \ldots, k\}$ not connected to the rest $)=(1-p)^{k(n-k)}$
- and so
$\mathbb{P}(\exists k$ vertices not connected to the rest $) \leq\binom{ n}{k}(1-p)^{k(n-k)}$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty$
- observe that G is disconnected $\Longleftrightarrow \exists k$ vertices without edges to the other vertices, for some $k \leq n / 2$
- we have
$\mathbb{P}(\{1, \ldots, k\}$ not connected to the rest $)=(1-p)^{k(n-k)}$
- and so
$\mathbb{P}(\exists k$ vertices not connected to the rest $) \leq\binom{ n}{k}(1-p)^{k(n-k)}$
- and finally $\mathbb{P}(G$ is disconnected $) \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)}$

Proof of (2)

- we now fix $\lambda>1$
- let's check that $\mathbb{E}[X]=n n^{-\lambda} \rightarrow 0$ when $n \rightarrow+\infty$
- observe that G is disconnected $\Longleftrightarrow \exists k$ vertices without edges to the other vertices, for some $k \leq n / 2$
- we have
$\mathbb{P}(\{1, \ldots, k\}$ not connected to the rest $)=(1-p)^{k(n-k)}$
- and so
$\mathbb{P}(\exists k$ vertices not connected to the rest $) \leq\binom{ n}{k}(1-p)^{k(n-k)}$
- and finally $\mathbb{P}(G$ is disconnected $) \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)}$
- using this expression, one can show that
$\mathbb{P}(G$ is disconnected $) \rightarrow 0$ when $n \rightarrow+\infty$

Threshold for giant component

- Giant $=$ constant fraction of the vertices
- We show a threshold with function $t(n)=\frac{1}{n}$
- Denote $p(n)=\frac{\lambda}{n}$ (mean degree $\left.\sim \lambda\right)$
- We again show a strong statement for threshold function $\frac{1}{n}$:

$$
\begin{aligned}
& \text { 1. if } \lambda<1, \forall a \in \mathbb{R}_{+}^{*}, \mathbb{P}(\operatorname{maxsize}(C C) \geq a \log n) \rightarrow 0 \\
& \text { 2. if } \lambda>1, \exists b \in \mathbb{R}_{+}^{*}, \mathbb{P}(\operatorname{maxsize}(C C) \geq b . n) \rightarrow 1
\end{aligned}
$$

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual
- each individual generates a number of children according to a non-negative random variable ξ with distribution p_{k}
$\mathbb{P}(\xi=k)=p_{k}$
$\mathbb{E}[\xi]=\mu$
$\operatorname{var}(\xi) \neq 0$

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual
- each individual generates a number of children according to a non-negative random variable ξ with distribution p_{k}

$$
\mathbb{P}(\xi=k)=p_{k} \quad \mathbb{E}[\xi]=\mu \quad \operatorname{var}(\xi) \neq 0
$$

- Let Z_{k} be the number of individuals in the $k^{t h}$ generation we have $Z_{0}=1, Z_{1}=\xi, Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)}$

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual
- each individual generates a number of children according to a non-negative random variable ξ with distribution p_{k}

$$
\mathbb{P}(\xi=k)=p_{k} \quad \mathbb{E}[\xi]=\mu \quad \operatorname{var}(\xi) \neq 0
$$

- Let Z_{k} be the number of individuals in the $k^{t h}$ generation we have $Z_{0}=1, Z_{1}=\xi, Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)}$
- and consequently
- $\mathbb{E}\left[Z_{1}\right]=\mu$

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual
- each individual generates a number of children according to a non-negative random variable ξ with distribution p_{k}

$$
\mathbb{P}(\xi=k)=p_{k} \quad \mathbb{E}[\xi]=\mu \quad \operatorname{var}(\xi) \neq 0
$$

- Let Z_{k} be the number of individuals in the $k^{t h}$ generation we have $Z_{0}=1, Z_{1}=\xi, Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)}$
- and consequently
- $\mathbb{E}\left[Z_{1}\right]=\mu$
- $\mathbb{E}\left[Z_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{2} \mid Z_{1}\right]\right]=\mathbb{E}\left[\mu Z_{1}\right]=\mu^{2}$

Proof of (1) - preliminaries

- Galton-Watson branching process
- start with a single individual
- each individual generates a number of children according to a non-negative random variable ξ with distribution p_{k}

$$
\mathbb{P}(\xi=k)=p_{k} \quad \mathbb{E}[\xi]=\mu \quad \operatorname{var}(\xi) \neq 0
$$

- Let Z_{k} be the number of individuals in the $k^{t h}$ generation we have $Z_{0}=1, Z_{1}=\xi, Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)}$
- and consequently
- $\mathbb{E}\left[Z_{1}\right]=\mu$
- $\mathbb{E}\left[Z_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{2} \mid Z_{1}\right]\right]=\mathbb{E}\left[\mu Z_{1}\right]=\mu^{2}$
- and by recursion, for $k \geq 1$, we obtain

$$
\mathbb{E}\left[Z_{k}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{k} \mid Z_{k-1}\right]\right]=\mathbb{E}\left[\mu Z_{k-1}\right]=\mu \cdot \mu^{k-1}=\mu^{k}
$$

"Proof" of (1)

- Let $B\left(n, \frac{\lambda}{n}\right)$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$

(a) ER graph process
(b) branching process approx.

"Proof" of (1)

- Let $B\left(n, \frac{\lambda}{n}\right)$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$

(a) ER graph process
(b) branching process approx.
- Z_{k}^{G} and Z_{k}^{B} the number of individuals in generation k for the graph process and the branching process approximation

"Proof" of (1)

- Let $B\left(n, \frac{\lambda}{n}\right)$ denote the binomial random variable with n trials and success probability $\frac{\lambda}{n}$

(a) ER graph process
(b) branching process approx.
- Z_{k}^{G} and Z_{k}^{B} the number of individuals in generation k for the graph process and the branching process approximation
- we have $Z_{k}^{G} \leq Z_{k}^{B}$, for all k

"Proof" of (1)

- $\operatorname{fix} \lambda<1$

"Proof' of (1)

- $\operatorname{fix} \lambda<1$
- Let S_{i} be the number of nodes in the connected component of vertex i

"Proof' of (1)

- $\operatorname{fix} \lambda<1$
- Let S_{i} be the number of nodes in the connected component of vertex i
- we have $\mathbb{E}\left[S_{i}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \leq \sum_{k} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k} \lambda^{k}=\frac{1}{1-\lambda}$

"Proof' of (1)

- fix $\lambda<1$
- Let S_{i} be the number of nodes in the connected component of vertex i
- we have $\mathbb{E}\left[S_{i}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \leq \sum_{k} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k} \lambda^{k}=\frac{1}{1-\lambda}$
- so if $\lambda<1$, the expected size of the components of vertex i is constant \Longrightarrow no giant component

"Proof" of (1)

- $\operatorname{fix} \lambda<1$
- Let S_{i} be the number of nodes in the connected component of vertex i
- we have $\mathbb{E}\left[S_{i}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \leq \sum_{k} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k} \lambda^{k}=\frac{1}{1-\lambda}$
- so if $\lambda<1$, the expected size of the components of vertex i is constant \Longrightarrow no giant component
- one can show (not shown here) that the size of the bigger component does not exceed $\log n$:

$$
\forall a>0, \mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{i}\right| \geq a \log n\right) \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Proof of (2)

- $\operatorname{fix} \lambda>1$

Proof of (2)

- fix $\lambda>1$
- We want to compute $\mathbb{E}\left[S_{i}\right]$ and show that it is large \Longrightarrow we can no longer ignore conflicts

Proof of (2)

- fix $\lambda>1$
- We want to compute $\mathbb{E}\left[S_{i}\right]$ and show that it is large \Longrightarrow we can no longer ignore conflicts
- We claim that $Z_{k}^{G} \approx Z_{k}^{B}$ as long as $\lambda^{k} \leq c t e . \sqrt{n}$
- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right]=n \frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[Z_{k}^{2}\right]$

- what about edges between nodes of Z_{k} ?

Proof of (2)

- fix $\lambda>1$
- We want to compute $\mathbb{E}\left[S_{i}\right]$ and show that it is large \Longrightarrow we can no longer ignore conflicts
- We claim that $Z_{k}^{G} \approx Z_{k}^{B}$ as long as $\lambda^{k} \leq c t e . \sqrt{n}$
$-\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right]=n \frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[Z_{k}^{2}\right]$

- what about edges between nodes of Z_{k} ?
- we assume that as long as conflicts are negligible, Z_{k} is a Poisson variable, that is $\operatorname{var}\left(Z_{k}\right)=\lambda^{k}$

Proof of (2)

- fix $\lambda>1$
- We want to compute $\mathbb{E}\left[S_{i}\right]$ and show that it is large \Longrightarrow we can no longer ignore conflicts
- We claim that $Z_{k}^{G} \approx Z_{k}^{B}$ as long as $\lambda^{k} \leq c t e . \sqrt{n}$
$-\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right]=n \frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[Z_{k}^{2}\right]$

- what about edges between nodes of Z_{k} ?
- we assume that as long as conflicts are negligible, Z_{k} is a Poisson variable, that is $\operatorname{var}\left(Z_{k}\right)=\lambda^{k}$
$>$ we obtain $\mathbb{E}\left[Z_{k}^{2}\right]=\operatorname{var}\left(Z_{k}\right)+\mathbb{E}\left[Z_{k}\right]^{2}=\lambda^{k}+\lambda^{2 k} \sim \lambda^{2 k}$

Proof of (2)

- fix $\lambda>1$
- We want to compute $\mathbb{E}\left[S_{i}\right]$ and show that it is large \Longrightarrow we can no longer ignore conflicts
- We claim that $Z_{k}^{G} \approx Z_{k}^{B}$ as long as $\lambda^{k} \leq c t e . \sqrt{n}$
- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right]=n \frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[Z_{k}^{2}\right]$

- what about edges between nodes of Z_{k} ?
- we assume that as long as conflicts are negligible, Z_{k} is a Poisson variable, that is $\operatorname{var}\left(Z_{k}\right)=\lambda^{k}$
- we obtain $\mathbb{E}\left[Z_{k}^{2}\right]=\operatorname{var}\left(Z_{k}\right)+\mathbb{E}\left[Z_{k}\right]^{2}=\lambda^{k}+\lambda^{2 k} \sim \lambda^{2 k}$
$\Longrightarrow \mathbb{E}[\#$ conflicts $]$ becomes $\Omega(1)$ only when $\lambda^{k} \approx \sqrt{n}$

Proof of (2)

- $\begin{aligned} \mathbb{E}\left[S_{i}\right] & =\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \geq \sum_{k \leq \log _{\lambda}(\sqrt{n})} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k \leq \log _{\lambda}(\sqrt{n})} \lambda^{k} \\ & \geq \frac{1-\lambda^{\log _{\lambda}(\sqrt{n})}}{1-\lambda} \geq \sqrt{n}\end{aligned}$

Proof of (2)

- $\mathbb{E}\left[S_{i}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \geq \sum_{k \leq \log _{\lambda}(\sqrt{n})} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k \leq \log _{\lambda}(\sqrt{n})} \lambda^{k}$

$$
\geq \frac{1-\lambda^{\log _{\lambda}(\sqrt{n})}}{1-\lambda} \geq \sqrt{n}
$$

- Let us assume again that $\left|Z_{k}\right|$ follows a Poisson law of parameter λ^{k}
- we then have $\mathbb{P}\left(\left|\left|Z_{k}\right|-\lambda^{k}\right| \geq x\right) \leq 2 e^{-\frac{x^{2}}{2\left(\lambda^{k}+x\right)}}$
- which gives for $x=\sqrt{\lambda^{k}}, \mathbb{P}\left(| | Z_{k}\left|-\lambda^{k}\right| \geq \sqrt{\lambda^{k}}\right) \leq 2 e^{-\frac{1}{3}}$

Proof of (2)

- $\mathbb{E}\left[S_{i}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \geq \sum_{k \leq \log _{\lambda}(\sqrt{n})} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k \leq \log _{\lambda}(\sqrt{n})} \lambda^{k}$

$$
\geq \frac{1-\lambda^{\log _{\lambda}(\sqrt{n})}}{1-\lambda} \geq \sqrt{n}
$$

- Let us assume again that $\left|Z_{k}\right|$ follows a Poisson law of parameter λ^{k}
- we then have $\mathbb{P}\left(\left|\left|Z_{k}\right|-\lambda^{k}\right| \geq x\right) \leq 2 e^{-\frac{x^{2}}{2\left(\lambda^{k}+x\right)}}$
- which gives for $x=\sqrt{\lambda^{k}}, \mathbb{P}\left(| | Z_{k}\left|-\lambda^{k}\right| \geq \sqrt{\lambda^{k}}\right) \leq 2 e^{-\frac{1}{3}}$
- for large n, we obtain $\mathbb{P}\left(\left|S_{i}\right| \geq \frac{\sqrt{n}}{2}\right) \geq$ cte
\Longrightarrow there is a constant fraction of the nodes (say $\alpha . n$) that are in a component of size at least $\frac{\sqrt{n}}{2}$

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$
- Let C_{1} be the smallest of these components and let A be the union of all these components

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$
- Let C_{1} be the smallest of these components and let A be the union of all these components
- we denote $\left|C_{1}\right|=k \geq \frac{\sqrt{n}}{2}$

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$
- Let C_{1} be the smallest of these components and let A be the union of all these components
- we denote $\left|C_{1}\right|=k \geq \frac{\sqrt{n}}{2}$
- $\mathbb{P}\left(C_{1}\right.$ not connected to $\left.A \backslash C_{1}\right)=(1-p)^{k(|A|-k)} \leq$ $\left(1-\frac{\lambda}{n}\right)^{\frac{\alpha n \sqrt{n}}{4}} \leq e^{-\frac{\lambda}{n} \cdot \frac{\alpha n \sqrt{n}}{4}}=e^{-\frac{\lambda \alpha \sqrt{n}}{4}} \rightarrow 0$ when $n \rightarrow+\infty$

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$
- Let C_{1} be the smallest of these components and let A be the union of all these components
- we denote $\left|C_{1}\right|=k \geq \frac{\sqrt{n}}{2}$
- $\mathbb{P}\left(C_{1}\right.$ not connected to $\left.A \backslash C_{1}\right)=(1-p)^{k(|A|-k)} \leq$

$$
\left(1-\frac{\lambda}{n}\right)^{\frac{\alpha n \sqrt{n}}{4}} \leq e^{-\frac{\lambda}{n} \cdot \frac{\alpha n \sqrt{n}}{4}}=e^{-\frac{\lambda \alpha \sqrt{n}}{4}} \rightarrow 0 \text { when } n \rightarrow+\infty
$$

- this means that the probability that the vertices of A are grouped in a single connected component $\rightarrow 1$ when $n \rightarrow+\infty$

Proof of (2)

- Assume there is more than one component of size $\frac{\sqrt{n}}{2}$, we will show that the probability this happens $\rightarrow 0$ when $n \rightarrow+\infty$
- Let C_{1} be the smallest of these components and let A be the union of all these components
- we denote $\left|C_{1}\right|=k \geq \frac{\sqrt{n}}{2}$
- $\mathbb{P}\left(C_{1}\right.$ not connected to $\left.A \backslash C_{1}\right)=(1-p)^{k(|A|-k)} \leq$

$$
\left(1-\frac{\lambda}{n}\right)^{\frac{\alpha n \sqrt{n}}{4}} \leq e^{-\frac{\lambda}{n} \cdot \frac{\alpha n \sqrt{n}}{4}}=e^{-\frac{\lambda \alpha \sqrt{n}}{4}} \rightarrow 0 \text { when } n \rightarrow+\infty
$$

- this means that the probability that the vertices of A are grouped in a single connected component $\rightarrow 1$ when $n \rightarrow+\infty$
- since $|A| \geq \alpha$.n, this constitutes a giant component

Size of the giant component

- Let $G=G_{n-1, p}$ pe an ER graph with $p(n)=\frac{\lambda}{n}$ with $\lambda>1$

Size of the giant component

- Let $G=G_{n-1, p}$ pe an ER graph with $p(n)=\frac{\lambda}{n}$ with $\lambda>1$
- Add a $n^{\text {th }}$ vertex to G and connect it to the rest of the vertices with probability $p(n)$ and denote G^{\prime} the resulting graph

Size of the giant component

- Let $G=G_{n-1, p}$ pe an ER graph with $p(n)=\frac{\lambda}{n}$ with $\lambda>1$
- Add a $n^{\text {th }}$ vertex to G and connect it to the rest of the vertices with probability $p(n)$ and denote G^{\prime} the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G^{\prime}

Size of the giant component

- Let $G=G_{n-1, p}$ pe an ER graph with $p(n)=\frac{\lambda}{n}$ with $\lambda>1$
- Add a $n^{\text {th }}$ vertex to G and connect it to the rest of the vertices with probability $p(n)$ and denote G^{\prime} the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G^{\prime}
- vertex n is not in the giant component iff none of its neighbours are
- This gives $\rho=\sum_{d \geq 0} P_{d} \rho^{d}=\Phi(\rho)$

Size of the giant component

- Let $G=G_{n-1, p}$ pe an ER graph with $p(n)=\frac{\lambda}{n}$ with $\lambda>1$
- Add a $n^{\text {th }}$ vertex to G and connect it to the rest of the vertices with probability $p(n)$ and denote G^{\prime} the resulting graph
- We denote ρ the fraction of vertices that are not in the giant component and we assume that, for large n, ρ is the same in G and G^{\prime}
- vertex n is not in the giant component iff none of its neighbours are
- This gives $\rho=\sum_{d \geq 0} P_{d} \rho^{d}=\Phi(\rho)$
- The analysis of function Φ shows that it has a unique fixed point $\left.\rho^{*} \in\right] 0,1[$

Mean distance at the connectivity threshold (very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$

What about edges between vertices of Z_{k} ?

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$
- What about edges between vertices of Z_{k} ?
- Conflicts are negligible until $\frac{\log ^{2(k+1)} n}{n}=1$, that is $k=\frac{\log n}{2 \log \log n}-1$

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$
- What about edges between vertices of Z_{k} ?
- Conflicts are negligible until $\frac{\log ^{2(k+1)} n}{n}=1$, that is $k=\frac{\log n}{2 \log \log n}-1$
- Then $\left|S_{i}\right| \approx(\log n)^{\frac{\log n}{2 \log \log n}-1}=\frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n}=\frac{\sqrt{n}}{\log n}$

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$
- What about edges between vertices of Z_{k} ?
- Conflicts are negligible until $\frac{\log ^{2(k+1)} n}{n}=1$, that is $k=\frac{\log n}{2 \log \log n}-1$
- Then $\left|S_{i}\right| \approx(\log n)^{\frac{\log n}{2 \log \log n}-1}=\frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n}=\frac{\sqrt{n}}{\log n}$
- One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$
- What about edges between vertices of Z_{k} ?
- Conflicts are negligible until $\frac{\log ^{2(k+1)} n}{n}=1$, that is $k=\frac{\log n}{2 \log \log n}-1$
- Then $\left|S_{i}\right| \approx(\log n)^{\frac{\log n}{2 \log \log n}-1}=\frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n}=\frac{\sqrt{n}}{\log n}$
- One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$
- the probability for two such balls not to be connected by an edge is $(1-p)^{\frac{n}{\log ^{2} n}} \leq e^{-\frac{1}{\log ^{n}}}$

Mean distance at the connectivity threshold

(very) roughly speaking

- $\mathbb{E}[\#$ conflicts at stage $k] \leq n p^{2} \mathbb{E}\left[Z_{k}^{2}\right] \approx \frac{\log ^{2} n}{n} \cdot \log ^{2 k} n=$ $\frac{\log ^{2(k+1)} n}{n}$
- What about edges between vertices of Z_{k} ?
- Conflicts are negligible until $\frac{\log ^{2(k+1)} n}{n}=1$, that is $k=\frac{\log n}{2 \log \log n}-1$
- Then $\left|S_{i}\right| \approx(\log n)^{\frac{\log n}{2 \log \log n}-1}=\frac{\sqrt{(\log n)^{\frac{\log n}{\log \log n}}}}{\log n}=\frac{\sqrt{n}}{\log n}$
- One can cover the vertex set by approx. $\sqrt{n} \log n$ balls of size approx. $\frac{\sqrt{n}}{\log n}$
- the probability for two such balls not to be connected by an edge is $(1-p)^{\frac{n}{\log ^{2} n}} \leq e^{-\frac{1}{\log ^{n} n}}$
- so the proba for them to be connected is at least $1-e^{-\frac{1}{\log n}} \sim \frac{1}{\log n}$

Mean distance at the connectivity threshold

- let us write $N=\sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G

Mean distance at the connectivity threshold

- let us write $N=\sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have $\log N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{p}=\frac{1}{2 \log N}$

Mean distance at the connectivity threshold

- let us write $N=\sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have $\log N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{p}=\frac{1}{2 \log N}$
- In \tilde{G} the probability for two given nodes to be at distance more than 2 is at most $\left(1-\frac{1}{2 \log N}\right)^{N-1} \leq e^{-\frac{N-1}{2 \log N}} \rightarrow 0$ when $N \rightarrow+\infty$.

Mean distance at the connectivity threshold

- let us write $N=\sqrt{n} \log n$, and call \tilde{G} the graph on the N balls that cover G
- we have $\log N \sim \frac{\log n}{2}$ and \tilde{G} contains an ER graph on N vertices with $\tilde{p}=\frac{1}{2 \log N}$
- In \tilde{G} the probability for two given nodes to be at distance more than 2 is at most $\left(1-\frac{1}{2 \log N}\right)^{N-1} \leq e^{-\frac{N-1}{2 \log N}} \rightarrow 0$ when $N \rightarrow+\infty$.
- Therefore, between any two vertices of G there exists with probability tending to 1 when $n \rightarrow+\infty$ a path of length $\left(\frac{\log n}{2 \log \log n}-1\right)+1+2\left(\frac{\log n}{2 \log \log n}-1\right)+1+\left(\frac{\log n}{2 \log \log n}-1\right) \leq \frac{2 \log n}{\log \log n}$

Configuration model - Molloy \& Reed 1995

Input: an arbitrary degree distribution
Output : a random graph with this degree distribution

Configuration model - Molloy \& Reed 1995

Input: an arbitrary degree distribution
Output: a random graph with this degree distribution
Generation process :

1. Assign a fixed number of semi-links to each node (according to the input degree distribution)
2. Pair the semi-links uniformly at random
3. Remove self-loops and multiple edges

Configuration model - Molloy \& Reed 1995

Input: an arbitrary degree distribution
Output: a random graph with this degree distribution
Generation process :

1. Assign a fixed number of semi-links to each node (according to the input degree distribution)
2. Pair the semi-links uniformly at random
3. Remove self-loops and multiple edges

What degree distribution should we take as parameter?

- The degree distribution of some real-world network
- A mathematically defined one, powerlaw $\mathbb{P}(k) \sim k^{-\alpha}$.

Configuration model : implementation and complexity

- Put the semi-links in a table of size $2 m$
- Pick m times two of them uniformly at random

Properties of the configuration model

Four properties to check :

- Low global density
- the degree distribution is the parameter of the model and controls $m: m=\frac{\sum_{0 \leq k \leq n-1} k \cdot N_{k}}{2}$

Properties of the configuration model

Four properties to check:

- Low global density
- Short distances

Expansion property :

- Degree of the extremity of one edge :

$$
\mathbb{P}\left(d^{\circ}(e x t)=k^{\prime}\right)=\frac{k^{\prime} \mathbb{P}\left(k^{\prime}\right)}{\langle k\rangle}
$$

- Probability that following one edge leads to k new vertices:

$$
q(k)=\mathbb{P}\left(d^{\circ}(e x t)=k+1\right)
$$

- Expected number of new vertices following one edge :

$$
\sum_{k} k q(k)=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}
$$

Properties of the configuration model

Four properties to check:

- Low global density
- Short distances
- Heterogeneous degrees
- the degree distribution is the parameter of the model

Properties of the configuration model

Four properties to check:

- Low global density
- Short distances
- Heterogeneous degrees
- High local density

- Probability to have a link between u and k with $d^{\circ}(u)=k$ and

$$
d^{\circ}(v)=k^{\prime}: \mathbb{P}\left(u v \mid k k^{\prime}\right)=\frac{k k^{\prime}}{<k>N}
$$

Properties of the configuration model

Four properties to check:

- Low global density
- Short distances
- Heterogeneous degrees
- High local density

- Probability to have a link between u and k with $d^{\circ}(u)=k$ and $d^{\circ}(v)=k^{\prime}: \mathbb{P}\left(u v \mid k k^{\prime}\right)=\frac{k k^{\prime}}{<k>N}$
- Probability to have a link between u and v :

$$
\begin{aligned}
\mathbb{P}(\text { triangle }) & =\sum_{k \geq 1} \sum_{k^{\prime} \geq 1} \frac{k k^{\prime}}{<k>N} q(k) q\left(k^{\prime}\right) \\
& =\frac{1}{<k>N} \sum_{k \geq 1}^{k q(k) \sum_{k^{\prime} \geq 1} k^{\prime} q\left(k^{\prime}\right)} \\
& =\frac{1}{N} \frac{\left(\left\langle k^{2}>-<k>\right)^{2}\right.}{<k>^{3}}
\end{aligned}
$$

Properties of the configuration model

Four properties to check:

- Low global density
- Short distances
- Heterogeneous degrees
- High local density X

- Probability to have a link between u and k with $d^{\circ}(u)=k$ and $d^{\circ}(v)=k^{\prime}: \mathbb{P}\left(u v \mid k k^{\prime}\right)=\frac{k k^{\prime}}{<k>N}$
- Probability to have a link between u and v :

$$
\begin{aligned}
\mathbb{P}(\text { triangle }) & =\sum_{k \geq 1} \sum_{k^{\prime} \geq 1} \frac{k k^{\prime}}{<k>N} q(k) q\left(k^{\prime}\right) \\
& =\frac{1}{<k>N} \sum_{k \geq 1} k q(k) \sum_{k^{\prime} \geq 1} k^{\prime} q\left(k^{\prime}\right) \\
& =\frac{1}{N} \frac{\left(\left\langle k^{2}>-<k>\right)^{2}\right.}{<k>3} \\
& \rightarrow 0 \text { when } N \rightarrow+\infty
\end{aligned}
$$

