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Communities in complex networks

What is a community ?
”Moral” definition

• A group of nodes that share something...
� People with a common interest
� Web pages with similar content
� Proteins realising a common function
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Communities in complex networks

What is a community ?
”Moral” definition

• A group of nodes that share something...
� People with a common interest
� Web pages with similar content
� Proteins realising a common function

• ... that makes them be in relationship in the network !

Political blogs in US Languages in Belgium
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Structural definition

• A highly connected group of nodes
� Density inside the community much higher than global density

of the network
� Only few edges toward the rest of the network

3/20



Types of structural communities

• Partition of the nodes into dense parts sparsely connected
between them
� High density inside communities
� Few edges between communities
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Types of structural communities

• Partition of the nodes into dense parts sparsely connected
between them
� High density inside communities
� Few edges between communities

• Overlapping communities
A node can belong to several communities
� more realistic
� problem : how to separate communities ?

• Partition of the links
� a link belong to exactly one community
� a node can have links in different communities
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Partition of the nodes

Various approaches, among them :

• random walks

• spectral methods

• hierarchical clustering

• divisive methods

• Louvain, Leiden
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Divisive approach : Girvan & Newman 2002

The idea :

1. identify inter-community links

2. remove them
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How to identify inter-community links ?
• Betweenness centrality of links

� CB(e) =
�
s �=t

σst(e)
σst

where

� σst = # shortest paths from s to t
� σst(e) = # shortest paths from s to t containing e
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The algorithm

• Algo Girvan-Newman(G )

1. Compute the betweenness centrality of all links e of G

2. for all links e in decreasing betweenness centrality do

� remove e from G

� update the connected components of G

� update the betweenness centrality of all links

3. output the dendogram of G

• Complexity
� betweenness for all links : O(nm)
� connected components : O(m)
� m iterations
� Overall : O(nm2)
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The Louvain algorithm

• Idea : optimize a quality function for node partitions

� modularity :maximize(#edges inside - #edges outisde)
⇔ maximize(#edges inside)
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The Louvain algorithm

• Idea : optimize a quality function for node partitions

� modularity :maximize(#edges inside - #edges outisde)
⇔ maximize(#edges inside)

• Problem... the best partition is a single community ! ! !

• Correction : compare to a randomized version of the network

original network configuration model
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Modularity

original network configuration model
• Proportion of edges inside communities

A the adjacency matrix of G
ki the degree of node i
ci the community of node i
δ is the Kronecker symbol : δ(ci , cj) = 1 iff ci = cj
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Modularity

original network configuration model
• Proportion of edges inside communities

A the adjacency matrix of G
ki the degree of node i
ci the community of node i
δ is the Kronecker symbol : δ(ci , cj) = 1 iff ci = cj

� In the original network : 1
2m

�
i,j∈V

Aijδ(ci , cj) where

� In the configuration model : 1
2m

�
i,j∈V

ki kj
2m δ(ci , cj)

• modularity : Q(P) = 1
2m

�
i ,j∈V

[Aij − ki kj
2m ]δ(ci , cj)

= 1
2m

�
c∈P

[ec − a2c
2m ]

� NP-hard to maximize modularity
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Utility of modularity

• Come back to the dendogram produced by Girvan-Newman
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Other quality functions

• Distance to cluster graphs

� dist-cluster(P)=#missing edges inside + #edges outside
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• Distance to cluster graphs

� dist-cluster(P)=#missing edges inside + #edges outside
� NP-hard to minimize distance to cluster graphs

• Constant Potts Model
� CPM(P)=

�
c
[ec − γ

�
nc
2

�
]

where ec=# edges inside communauty c
and nc=# nodes in communauty c
γ is a chosen constant ≤ 1

� for γ = 0?
� for γ = 1?
� for γ = 1/2 ?
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Is modularity a good quality function ?

• Resolution isuue : tends to make too large communities
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Is modularity a good quality function ?

• Resolution isuue : tends to make too large communities
Example : ring of p copies of a k-clique (n = p.k)

Pa = the cliques
Pb = the cliques grouped by two

� Which one is ”morally” the best community partition ?
� Which one has higher modularity ?
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Louvain algorithm

• Given a partition, make a pass through all the vertices :
� consider each vertex x once in an arbitrary order
� move x to the community that gives the largest increase in

modularity

G (n=30,m=46)
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ΔQ(C , i) =
� eC+ki,C
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�
aC+ki
2m

�2�

−
�
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�
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�
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Louvain algorithm

• Given a partition, make a pass through all the vertices :
� consider each vertex x once in an arbitrary order
� move x to the community that gives the largest increase in

modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :
� place x alone in its own community
� consider moving x to each neighbourhing community

G (n=30,m=46) G/P

1

1

1

1

3

1

1

1

1

2
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Louvain algorithm

1 augmented← true;
2 while augmented do
3 P0 ← {{x} | x ∈ V (G)} ; P ← P0 ; Q ← 0;
4 while augmented do
5 augmented← faux;
6 for i de 1 a n do
7 Qori ← Q;
8 i moves to ciso = {i} ; Q ← Q −ΔQout(i);
9 Qmax ← Q ; cmax ← ciso ;

10 for c ∈ P do
11 if Q +ΔQin(c) > Qmax then
12 Qmax ← Q +ΔQin(i , c);
13 cmax ← c;

14 end

15 end
16 IfQmax = Qori then cmax ← cori else augmented← true;
17 i moves to cmax ; Q ← Qmax ;

18 end

19 end
20 If P �= P0 then augmented ← true ; G ← G/P;

21 end
22 return {Expand(P) | P ∈ P};
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Leiden algorithm

Two improvements over Louvain

• Complexity
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Leiden algorithm

Two improvements over Louvain

• Complexity
� Consider moving only vertices whose neighbours have moved
� Maintain a queue for them
� Same worst case complexity, but better in practice

• Disconnected (or poorly connected) communities
� Just before contracting communities, for each community

� Place vertices alone in their own sub-community
� Merge sub-communities that are strongly connected

� Contract only the obtained sub-communities
� At the next step start from the partition defined by the whole

communities
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