M2 Complex Systems - Complex Networks

Lecture 13
 Complex networks as almost structured graphs

Autumn 2021 - ENS Lyon

Christophe Crespelle

christophe.crespelle@ens-lyon.fr

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

For simulating:

- phenomena
- algorithms
- protocols

In order to:

- design
- test
- predict
- better understand

Q: Do Internet protocols still work if Internet is 10 times larger ?
\rightarrow Generate a synthetic network and simulate

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
- Short distances
- Heterogeneous degrees
- High local density

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
- Short distances
\rightarrow parameter
\rightarrow induced by randomness
- Heterogeneous degrees
- High local density

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
-...Short distannces
\rightarrow parameter
\rightarrow induced by randomness
\rightarrow compatible with randomnessholloy \& Reed 1995
- High local density

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
-...Short distances
- Heterogeneous degrees
- High local density
\rightarrow parameter
\rightarrow induced by randomness
Erdös-Rényi 1960
\rightarrow compatible with randomnessMolloy \& Reed 1995
\rightarrow problem
proba ???

local density

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
\rightarrow parameter
-...Short distances
- Heterogeneous degrees \rightarrow....... \rightarrow compatible with randomnessMolloy \& Reed 1995
- High local density \rightarrow problem

Big challenge: Generate networks having these 4 properties
short distances
heterogeneous degrees
high local density

Modelling static networks

MODEL = RANDOM GENERATION OF SYNTHETIC NETWORKS

4 classic properties:

- Low global density
-..Short distances
- Heterogeneous degrees
- High local density
\rightarrow parameter
\rightarrow induced by randomness
Erdös-Rényi 1960
\rightarrow compatible with randomnessMolloy \& Reed 1995

Big challenge: Generate networks having these 4 properties

Idea: obtain these properties as a consequence of a higher order property

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure

Complex networks = structure + randomness

[Watts \& Strogatz 1998]
High local density
Short distances

Watts \& Strogatz model

Regular

Small-world

$p=0 \longrightarrow p=1$

Regular lattice with n nodes $k^{\text {th }}$ power of the cycle, $k \ll n$

Second endpoint of each edge is rewired with probability p

Clustering $\mathrm{C}(\mathrm{p})$ vs average distance $L(p)$
as p increases

Watts \& Strogatz model

Regular

Small-world

$p=0 \longrightarrow p=1$

Regular lattice with n nodes $k^{\text {th }}$ power of the cycle, $k \ll n$

Second endpoint of each edge is rewired with probability p

Clustering $\mathrm{C}(\mathrm{p})$ vs average distance $L(p)$
as p increases

Almost structured graphs

- loosely constrained
\rightarrow randomness
-strongly impacted by their context
\rightarrow structure
Complex networks $=$
(1) strongly structured

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured

(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured

(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured
(2) random modifications

Almost structured graphs

- loosely constrained
\rightarrow randomness
- strongly impacted by their context
\rightarrow structure
Complex networks = structure + randomness
(1) strongly structured

structure
(2) random modifications

Graph editing algorithms

TARGET CLASS
(ex: chordal graphs)

Graph editing algorithms

Graph editing algorithms

GOAL: perform as few modifications as possible

Graph editing algorithms

Community detection

Original network

Resulting cluster graph

Degree anonymization

- Edit the graph so that all vertices have same degree

Graph editing algorithms

GOAL: perform as few modifications as possible
-Unfortunately: minimum number is NP-hard for most properties
Even when only one type of modifications is allowed (eg. only additions)
Different approaches:

- Restricted inputs
- Exact exponential algorithms
- Parameterized algorithms
- Approximation algorithms
- Inclusion minimal modification

Graph editing algorithms

GOAL: perform as few modifications as possible

- Unfortunately: minimum number is NP-hard for most properties

Even when only one type of modifications is allowed (eg. only additions)
Relaxation of the problem:
set of modifications minimal for inclusion \rightarrow polynomial time

Graph editing algorithms

GOAL: perform as few modifications as possible
-Unfortunately: minimum number is NP-hard for most properties
Even when only one type of modifications is allowed (eg. only additions)
Relaxation of the problem:
set of modifications minimal for inclusion \rightarrow polynomial time

A.each target class needs a specific algorithm!
Ex : interval graphs, permutation graphs, cographs

Results for some target classes

Completion:

- Interval completion : O(n²) 1981, 2005, 2013
- Chordal completion : O(nm) 2006
Trivially perfect completion : $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ') 2008
Comparability completion : O(n²m) 2008
\square Split completion: $\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right)$ 2009
- Cograph completion : O(n+m') 2010
- Permutation completion: O(n^{2})

2015
Deletion:
Planar deletion: O(n+m) 2006

Coedit : a tool for cograph editing

INPUT: an arbitrary graph

Computes either:

- a minimal cograph completion
- a minimal cograph deletion
- a minimal cograph editing

OUTPUT: the cotree of the cograph obtained

Input format:
\# of vertices n
degrees $\left\{\begin{array}{c}u d^{\circ}(u) \\ v d^{\circ}(v) \\ \vdots\end{array}\right.$

$$
\text { edges }\left\{\begin{array}{c}
\text { u1 v1 } \\
\text { u2 v2 } \\
\vdots
\end{array}\right.
$$

Output format:
\# of nodes n
Label of the root I (=0 or 1)
\# of children $\left\{\begin{array}{l}u \text { \#child(} u \text {) } \\ v \text { \#child(v) } \\ \vdots\end{array}\right.$

$$
\underset{\text { Edges of }}{\text { the tree }} \left\lvert\, \begin{gathered}
\text { parent }(\mathrm{u}) \mathrm{u} \\
\text { parent }(\mathrm{v}) \mathrm{v} \\
\vdots
\end{gathered}\right.
$$

- Written in C
- Sources available at https://www.ii.uib.no/~christophec/coedit/
- Under GNU GPL licence (can do whatever you want with it)

Algorithms

For completion

- An $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ') algorithm with minimum at each incremental step \rightarrow improve heuristics

An O(n+m $\log ^{2} n$ n) algorithm
\rightarrow almost linear in the size of the input

For editing

An $\mathrm{O}(\mathrm{n}+\mathrm{m})$ algorithm with minimum at each incremental step

The vertex incremental approach : vertices are processed one by one

edit only edges incident to x

Cographs and incremental app.

Obtained from single vertices by using 2 operations:
disjoint union
(I/)

G

complete union
(S)

Incremental approach: a cograph G and x a new incoming vertex
$\mathrm{G}+\mathrm{x}$ is not a cograph and we want to add (and/or delete) edges incident to x so that G+x become a cograph

Completion algorithms

First algorithm: $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ')

A characterisation of cographs

[Corneil, Perl, Stewart 1981]

$\mathrm{G}+\mathrm{x}$ is a cograph iff there exists a node u st.:

A characterisation of cographs

[Corneil, Perl, Stewart 1981]

$\mathrm{G}+\mathrm{x}$ is a cograph iff there exists a node u st.:

A characterisation of cographs

In our algorithm : G+x is not a cograph

A characterisation of cographs

In our algorithm : $\mathrm{G}+\mathrm{x}$ is not a cograph

Choose one node u for which you make the situation of the [CPS 81]'s theorem happen

Eligible nodes

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Completion anchored at u

In our algorithm : G+x is not a cograph

Definition: u is an eligible node Iff all parallel strict ancestors of u are such that all their children (but one) are hollow

Proceed as follows:

1) choose one eligible node u
2) make the non-hollow children of u become full (leave the others hollow)
3) for each series ancestor v of u, make all its children (but one) full
\Rightarrow you obtain a cograph completion of G+x called the completion anchored at u

Question: Is it minimal ?

We have a characterization for this

First algorithm : O(n+m')

Search the tree bottom up from the leaves adjacent to x

- Find the eligible nodes that satisfy the characterization

Note : we search only non-hollow nodes

Complexity: O(d')
[LMP 10]

Choose one u of minimum cost and update the data structure by running [CPS 81]'s algorithm.

Complexity: $O\left(d^{\prime}\right)$ for one incremental step $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ') for the whole algorithm

Completion algorithms

Second algorithm: $O\left(n+m \log ^{2} n\right)$

Why is $\mathrm{O}(\mathrm{n}+\mathrm{m}$ ') not necessarily optimal?

No reason to use adjacency lists to encode the output
\rightarrow there is an $\mathrm{O}(\mathrm{n})$ space representation of cographs

Why is $O(n+m$ ') not necessarily optimal?

No reason to use adjacency lists to encode the output
\rightarrow there is an $\mathrm{O}(\mathrm{n})$ space representation of cographs

What is the expected number of edges m ' in a cograph completion?

- If the input G has the vertex-expansion property, then G ' has $O\left(n^{2}\right)$ edges
- Random graphs with fixed average degree, $\mathbf{O}(\mathbf{n})$ edges, have the expansion property with high probability
\rightarrow In practice, $\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right) \sim \mathrm{O}\left(\mathrm{n}^{2}\right)$
\rightarrow We achieve $\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$ time

- No reason to use adjacency lists to encode the output
\rightarrow there is an $O(n)$ space representation of cographs

What is the expected number of edges m ' in a cograph completion?

- If the input G has the vertex-expansion property, then G ' has $O\left(n^{2}\right)$ edges
- Random graphs with fixed average degree, $\mathbf{O}(\mathbf{n})$ edges, have the expansion property with high probability
\rightarrow In practice, $\mathrm{O}\left(\mathrm{n}+\mathrm{m}^{\prime}\right) \sim \mathrm{O}\left(\mathrm{n}^{2}\right)$
\rightarrow We achieve $\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$ time
Where is the room for improvement of the complexity?

> A constant number of neighbours of x can force to search an $\Omega(n)$ part of the co tree

Second algorithm : $O\left(n+m \log ^{2} n\right)$

Note: we abandon the minimum incremental \rightarrow only minimal
we use a dynamic data-structure for lowest ancestor queries [Sleator, Tarjan 1983]

- In $O(\log n)$ time: $w=I c a(u, v)$ and w_{u} the child of w that is an ancestor of u
- Update the structure in $\mathrm{O}(\log \mathrm{n})$ time under elementary tree modifications
we use ordered lists
[Dietz, Sleator 1987]
- In O(1) time: order between two elements in the list
- Update the structure in $\mathrm{O}(1)$ time under deletion and insertion of an element

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion
Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T^{\prime} : the subtree of lowest common ancestors of neighburs of x
- Keep the highest parallel nodes in T'

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T^{\prime} : the subtree of lowest common ancestors of neighburs of x
- Keep the highest parallel nodes in T'

1) sort neighbours of x from left to right: $O\left(d \log ^{2} n\right)$ time

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T' : the subtree of lowest common ancestors of neighburs of x
- Keep the highest parallel nodes in T'

1) sort neighbours of x from left to right: $O\left(d \log ^{2} n\right)$ time

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T' : the subtree of lowest common ancestors of neighburs of x
- Keep the highest parallel nodes in T'

1) sort neighbours of x from left to right: $O\left(d \log ^{2} n\right)$ time

Second algorithm : O(n + m $\left.\log ^{2} n\right)$

Our goal : determine the lowest eligible, non-hollow and non-forced nodes \rightarrow minimal completion

- Lowest eligible nodes
\rightarrow highest parallel nodes with ≥ 2 non-hollow children
- build T' : the subtree of lowest common ancestors of neighburs of x
- Keep the highest parallel nodes in T'

1) sort neighbours of x from left to right: $O\left(d \log ^{2} n\right)$ time

- Non-forced condition
- Find the lowest non-forced node above each node of W (grand-parent)

Complexity: $O\left(d \log ^{2} n\right)$ for one incremental step $O\left(n+m \log ^{2} n\right)$ for the whole algorithm

Editing algorithm
 $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

Algorithm for cograph editing

Editing: use both additions and deletions of edges
Minimal for inclusion

Linear time: O(n+m)

- Additional feature: minimum editing at each incremental step
number of edits returned is $\mathbf{\leq} \mathbf{m}$

The local incremental approach

- Vertices are processed one by one

Only edges incident to x are modified

edit only edges incident to x

Always possible when: - The class is hereditary

- Contains no maximal element for induced subgraph relationship

Our goal : O(d) time complexity at each incremental step

Editing anchored at u

In our algorithm : G+x is not a cograph

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow
2) for each series ancestor of u, make all its children (but one) full

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow
2) for each series ancestor of u, make all its children (but one) full

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow
2) for each series ancestor of u, make all its children (but one) full
3) make the preponderant children of u become full and make the non-preponderant ones hollow

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow
2) for each series ancestor of u, make all its children (but one) full
3) make the preponderant children of u become full and make the non-preponderant ones hollow
\rightarrow you obtain a cograph editing of G+x called the editing anchored at u

Editing anchored at u

In our algorithm : G+x is not a cograph

Proceed as follows:

1) for each parallel ancestor of u, make all its children (but one) hollow
2) for each series ancestor of u, make all its children (but one) full
3) make the preponderant children of u become full and make the non-preponderant ones hollow
\rightarrow you obtain a cograph editing of G+x called the editing anchored at u

Question: Is it minimal? minimum ?

O(n) time algorithm trying all possible nodes of the cotree

Maximal preponderant nodes

Def.: u is preponderant iff the subtree of u contains more neighbours of x than non-neighbours of x

Def.: u is maximal preponderant iff u is preponderant and no ancestor of u is.

Cor. [CPS81]: the insertion node of a minimum editing has a preponderant child

The insertion node is either in the subtree of some maximal preponderant node or is the parent of some maximal preponderant node

> Only O(d) candidates for the insertion node

Outline of the algorithm

1) compute all maximal preponderant nodes (and their parents)
2) for each maximal preponderant node u, determine the minimum editing anchored in its subtree or at its parent
$\rightarrow \mathrm{O}(\mathrm{n})$ algo applied on a subcotree where $\mathrm{n}=\mathrm{O}(\mathrm{d})$
3) keep the minimum editing among all the editings found for each maximal preponderant node u : need to compute cost-above(u)

Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less than the cost of the delete-all editing

Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less than the cost of the delete-all editing

Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less than the cost of the delete-all editing

Encounter a series node v: $\operatorname{bud}(u) \leftarrow \underline{\operatorname{bud}(u)+B_{\text {prep }}(v)-W_{\text {prep }}(v)+B_{\text {nonp }}(v)-W_{\text {nonp }}(v), ~(v)}$ = bud
\rightarrow Routine SearchTree(q,bud)
Encounter a parallel node: bud(u) unchanged

Initialisation : $\operatorname{bud}(\mathrm{u})=\mathrm{B}_{\text {prep }}(\mathrm{u})-\mathrm{W}_{\text {prep }}(\mathrm{u})$ $=\operatorname{exc}(u)$

Principle of the bottom-up search

Obs.: we need the cost of the editing anchored at u only if it is less than the cost of the delete-all editing

Stop when either the budget becomes negative or when the search reaches the root with nonnegative budget \rightarrow deduce cost-above(u)

Encounter a series node v: $\operatorname{bud}(\mathrm{u}) \leftarrow \frac{\operatorname{bud}(\mathrm{u})+\mathrm{B}_{\text {prep }}(\mathrm{v})-\mathrm{W}_{\text {prep }}(\mathrm{v})}{=\text { bud }}+\mathrm{B}_{\text {nonp }}(\mathrm{v})-\mathrm{W}_{\text {nonp }}(\mathrm{v})$
\rightarrow Routine SearchTree(q,bud)
Encounter a parallel node: bud(u) unchanged

Initialisation : $\operatorname{bud}(u)=\frac{B_{\text {prep }}(u)-W_{\text {prep }}(u)}{=\operatorname{exc}(u)}$

Routine SearchTree(u,s)

Makes a DFS limited by a ttl and counts the difference between black and white leaves in cpt

- Initially, $t t l \leftarrow 2+5$ s and $c p t \leftarrow \mathrm{~s}$
${ }^{\bullet} t t l$ is decreased when an edge is traversed
- DFS stops when $t t=-1$

Main property:
$\mathbf{W}(u)-B(u) \leq s$ iff Search-tree (u, s) searches the entire subtree of u and ends with a value cpt ≥ 0. Complexity: $\mathbf{O}(\min \{\mathrm{s}, \mathrm{W}(\mathrm{u})-\mathrm{B}(\mathrm{u})\})$
why $t t \mid \leftarrow 2+5 s ?$

Two threats to the complexity

Searching repeatedly the same part of the tree with the same budget

Using repeatedly the same budget in the bottom-up search

Some open algorithmic questions

Inclusion-minimal cograph editing in linear time

- minimum at each incremental step
- at most m edits at the end

Showing that minimal cograph completion is not solvable in linear time
$\mathrm{O}\left(\mathrm{n}+\mathrm{m} \log ^{2} \mathrm{n}\right)$ from [Crespelle,Lokshtanov,Phan, Thierry 2020]

Inclusion-minimal editing for other graph classes, in linear time?

Complex networks as almost cographs?

 \title{Cograph edition of real-world graphs
}
 \title{
Cograph edition of real-world graphs
}

35 real-world graphs

8 random graphs

Context	Network	n	m	d°	\%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22 \%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29 \%
WWW	eu-2005	835044	15718784	37.7	29 \%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68 \%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79 \%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81 \%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93\%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

Cograph edition of real-world graphs

35 real-world graphs

8 random graphs

Context	Network	n	m	d°	\%mod
WWW	in-2004	1148875	12281937	21.4	12 \%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29 \%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68 \%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93\%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

RESULTS

Some networks are very close from cographs

Cograph edition of real-world graphs

Cograph edition of real-world graphs

Cograph edition of real-world graphs

Close to cographs
\qquad WWW
software

Context	Network	\mathbf{n}	\mathbf{m}	\mathbf{d}°	\%mod
WWW	in-2004	1148875	12281937	21.4	12%
WWW	cnr-2000	227058	2187201	19.3	19%
PROTEIN	reactome	5973	145778	48.8	22%
SOFTWARE	jdk	6434	53658	16.7	29%
SOFTWARE	jung-j	6120	50290	16.4	29%
WWW	eu-2005	835044	15718784	37.7	29%
CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%
CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%
SPECIES	foodweb	183	2434	26.6	43%
CO-AUTHOR	dblp	317080	1049866	6.6	45%
WORD-REL.	wordnet	145145	656230	9.0	48%
COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%
CO-SOLD	amazon	334863	925872	5.5	49%
CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%
RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%
CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%
INTERNET	as2000	6474	12572	3.9	54%
ROAD	roadNet-TX	1351137	1879201	2.8	54%
INTERNET	as-caida2007	26475	53381	4.0	55%
CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%
INTERNET	topology	34761	107720	6.2	61%
RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%
INTERNET	as-skitter	1694616	11094209	13.1	64%
CO-OCCUR	bible-names	1707	9059	10.6	67%
PROTEIN	figeys	2217	6418	5.8	67%
CITATION-SCI.	cora	23166	89157	7.7	68%
SOCIAL	youtube	1134890	2987624	5.3	69%
CO-ACTOR	actor-col.	374511	15014839	80.2	71%
P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71%
RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71%
CITATION-SCI.	citeseer	365154	1721981	9.4	75%
CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%
SOFTWARE	linux	30817	213208	13.8	77%
SOCIAL	LiveJournal	3997962	34681189	17.4	78%
CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%
RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%
CITATION-SCI.	cit-HepPh	34401	420784	24.5	81%
RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84%
RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87%
RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91%
SOCIAL	orkut	3072441	117185083	76.3	91%
RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93%
WORD-REL.	Thesaurus	23132	297094	25.7	93%

The proximity with cographs highly depends on the real-world context

Cograph edition of real-world graphs

	Context	Network	n	m	d°	\%mod	
	WWW	in-2004	1148875	12281937	21.4	12\%	
	WWW	cnr-2000	227058	2187201	19.3	19%	
	PROTEIN	reactome	5973	145778	48.8	22 \%	
	SOFTWARE	jdk	6434	53658	16.7	29%	
	SOFTWARE	jung-j	6120	50290	16.4	29%	
	WWW	eu-2005	835044	15718784	37.7	29%	
	CO-AUTHOR	ca-GrQc	4158	13422	6.5	34\%	
	CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%	
	SPECIES	foodweb	183	2434	26.6	43%	
	CO-AUTHOR	dblp	317080	1049866	6.6	45%	
	WORD-REL.	wordnet	145145	656230	9.0	48%	
	COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%	
	CO-SOLD	amazon	334863	925872	5.5	49%	
	CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%	
	RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%	
	CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%	
	INTERNET	as2000	6474	12572	3.9	54%	
N	ROAD	roadNet-TX	1351137	1879201	2.8	54%	
Not close not ar	INTERNET	as-caida2007	26475	53381	4.0	55%	
	CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%	
internet	INTERNET	topology	34761	107720	6.2	61%	
internet	RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%	
	INTERNET	as-skitter	1694616	11094209	13.1	64\%	
$\square \mathrm{road}$	CO-OCCUR	bible-names	1707	9059	10.6	67\%	
	PROTEIN	figeys	2217	6418	5.8	67%	
	CITATION-SCI.	cora	23166	89157	7.7	68%	
	SOCIAL	youtube	1134890	2987624	5.3	69%	
	CO-ACTOR	actor-col.	374511	15014839	80.2	71\%	
	P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71\%	
	RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71\%	
	CITATION-SCI.	citeseer	365154	1721981	9.4	75%	The proximity with cographs
	CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%	the proximity with eographs
	SOFTWARE	linux	30817	213208	13.8	77%	
	SOCIAL	LiveJournal	3997962	34681189	17.4	78%	highly depends on the
	CITATION-SCI.	cit-HepTh	27400	352021	25.7	79%	
	RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79%	
	CITATION-SCI.	cit-HepPh	34401	420784	24.5	81\%	real-world context
	RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84\%	
	RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87\%	
	RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91\%	
	SOCIAL	orkut	3072441	117185083	76.3	91\%	
	RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93\%	
34	WORD-REL.	Thesaurus	23132	297094	25.7	93\%	

Cograph edition of real-world graphs

	Context	Network	n	m	d°	\%mod	
	WWW	in-2004	1148875	12281937	21.4	12\%	
	WWW	cnr-2000	227058	2187201	19.3	19%	
	PROTEIN	reactome	5973	145778	48.8	22\%	
	SOFTWARE	jdk	6434	53658	16.7	29%	
	SOFTWARE	jung-j	6120	50290	16.4	29 \%	
	WWW	eu-2005	835044	15718784	37.7	29%	
	CO-AUTHOR	ca-GrQc	4158	13422	6.5	34%	
	CO-AUTHOR	ca-HepPh	11204	117619	21.0	34%	
	SPECIES	foodweb	183	2434	26.6	43%	
	CO-AUTHOR	dblp	317080	1049866	6.6	45%	
	WORD-REL.	wordnet	145145	656230	9.0	48\%	
	COMMUNIC.	wiki-Talk	2388953	4656682	3.9	49%	
	CO-SOLD	amazon	334863	925872	5.5	49%	
	CO-AUTHOR	ca-CondMat	21363	91286	8.6	52%	
	RANDOM	ER-Gnm_1M-2	796208	958827	2.4	52%	
	CO-AUTHOR	ca-HepTh	8638	24806	5.7	54%	
	INTERNET	as2000	6474	12572	3.9	54%	
	ROAD	roadNet-TX	1351137	1879201	2.8	54%	
	INTERNET	as-caida2007	26475	53381	4.0	55%	
	CO-AUTHOR	ca-AstroPh	17903	196972	22.0	59%	
	INTERNET	topology	34761	107720	6.2	61%	
	RANDOM	ER-Gnm_1M-3	940987	1494643	3.2	63%	
	INTERNET	as-skitter	1694616	11094209	13.1	64%	
	CO-OCCUR	bible-names	1707	9059	10.6	67\%	
	PROTEIN	figeys	2217	6418	5.8	67%	
	CITATION-SCI.	cora	23166	89157	7.7	68 \%	
	SOCIAL	youtube	1134890	2987624	5.3	69%	
	CO-ACTOR	actor-col.	374511	15014839	80.2	71\%	
	P2P-CONNECT.	p2p-Gnutella	62561	147878	4.7	71\%	
	RANDOM	ER-Gnm_1M-4	980191	1999203	4.1	71\%	
Far from cographs	CITATION-SCI.	citeseer	365154 3764117	1721981	9.4	75\%	- The proximity with cographs
	CITATION-PAT.	cit-Patents	3764117	16511740	8.8	76%	-
citation	SOFTWARE	linux	30817	213208	13.8	77%	
	SOCIAL	LiveJournal	3997962	34681189	17.4	78\%	highly depends on the
	CITATION-SCI.	cit-HepTh	27400	352021	25.7	79\%	
- SOCIal	RANDOM	ER-Gnm_1M-6	997479	2999988	6.0	79\%	
	CITATION-SCI.	cit-HepPh	34401	420784	24.5	81\%	real-world context
	RANDOM	ER-Gnm_1M-8	999684	3999999	8.0	84\%	
	RANDOM	ER-Gnm_1M-10	999952	5000000	10.0	87\%	
	RANDOM	ER-Gnm_1M-15	1000000	7500000	15.0	91\%	
	SOCIAL	orkut	3072441	117185083	76.3	91\%	
	RANDOM	ER-Gnm_1M-20	1000000	10000000	20.0	93\%	
34	WORD-REL.	Thesaurus	23132	297094	25.7	93\%	

Testing the modelling approach

(1) strongly structured

Testing the modelling approach

Conclusion

(1) strongly structured

(2) random modifications

, global density distances
? degree distribution
? local density

Results of generation

Local density

Global clustering coefficient

Degree distribution

- Almost cograph model
- Real distribution

LiveJournal (78\%)

Conclusion

(1) strongly structured

Conclusion

(1) strongly structured

The cograph structure successfully captures these properties

global density distances degree distribution local density

Conclusion

(1) strongly structured

The cograph structure successfully captures these properties

global density distances
degree distribution
local density

To complete the model

- Edit a real-world graph into a cograph
- Generate a similar cotree
- Apply random modifications to the cograph

Perspectives

- Complete the modelling approach for cographs

Consider other graph classes suitable for other kind of networks

- Chordal graphs \rightarrow social networks, citations
- Related to planar graphs \rightarrow internet, road networks
-Improve algorithms : complexity and quality
- edition instead of completion
- avoid incremental approach

Perspectives

- Modelling

Efficient encoding : space + query time

- Analysis
- Global organization
- Specific roles
- Algorithmic theory of almost structured graphs

Take advantage of the proximity with a strongly structured graph

