M1 Info - Graphes et programmation dynamique

Cours 7 - voyageur de commerce, cycle et chemin hamiltonien

Programmation dynamique

Semestre 1 – Année 2022-2023 – Université Côte D'azur

Christophe Crespelle christophe.crespelle@univ-cotedazur.fr

• **Entrée**: un ensemble de villes $\{c_1, c_2, \dots, c_n\}$ et une fonction de distance $d(c_i, c_j)$ definie pour tous les couples (c_i, c_j) .

• **Entrée**: un ensemble de villes $\{c_1, c_2, \dots, c_n\}$ et une fonction de distance $d(c_i, c_j)$ definie pour tous les couples (c_i, c_j) .

Définition (Tour et tour minimum)

Un tour est une permutation $\pi = (c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)})$ des villes.

La longueur d'un tour π est

$$\sum_{i \in [\![1,n-1]\!]} d(c_{\pi(i)},c_{\pi(i+1)}) + d(c_{\pi(n)},c_{\pi(1)}).$$

Un tour minimum est un tour dont la longueur est minimum.

• **Entrée**: un ensemble de villes $\{c_1, c_2, \dots, c_n\}$ et une fonction de distance $d(c_i, c_j)$ definie pour tous les couples (c_i, c_j) .

Définition (Tour et tour minimum)

Un tour est une permutation $\pi = (c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)})$ des villes.

La longueur d'un tour π est

$$\sum_{i \in [1, n-1]} d(c_{\pi(i)}, c_{\pi(i+1)}) + d(c_{\pi(n)}, c_{\pi(1)}).$$

Un tour minimum est un tour dont la longueur est minimum.

• **Sortie**: un tour minimum de $\{c_1, c_2, \dots, c_n\}$.

Applications classiques :

• en logistique : optimisation des transports

Applications classiques :

- en logistique : optimisation des transports
- en electronique : minimisation des cablages entre composants des circuits integres

Applications classiques:

- en logistique : optimisation des transports
- en electronique : minimisation des cablages entre composants des circuits integres

<u>Difficulte de calcul</u> : **NP-complet**

Applications classiques:

- en logistique : optimisation des transports
- en electronique : minimisation des cablages entre composants des circuits integres

<u>Difficulte de calcul</u> : **NP-complet**

On va faire un algorithme exponentiel $(O^*(2^n))$ pour le resoudre, par la programmation dynamique.

Algo brute force:

- on essaye un par un tous les tours (= permutations des villes),
- pour chacun, on calcule sa longueur,
- on garde un tour qui realise le minimum de la longueur.

Algo brute force:

- on essaye un par un tous les tours (= permutations des villes),
- pour chacun, on calcule sa longueur,
- on garde un tour qui realise le minimum de la longueur.

Complexite:

• il y a n! tour π de $\{c_1, c_2, \dots, c_n\}$ (nombre de permutations sur n elements)

Algo brute force:

- on essaye un par un tous les tours (= permutations des villes),
- pour chacun, on calcule sa longueur,
- on garde un tour qui realise le minimum de la longueur.

Complexite:

- il y a n! tour π de $\{c_1, c_2, \dots, c_n\}$ (nombre de permutations sur n elements)
- calculer la longueur de π prend O(n)

Total : $O(n \cdot n!)$

Algo brute force:

- on essaye un par un tous les tours (= permutations des villes),
- pour chacun, on calcule sa longueur,
- on garde un tour qui realise le minimum de la longueur.

Complexite:

- il y a n! tour π de $\{c_1, c_2, \dots, c_n\}$ (nombre de permutations sur n elements)
- calculer la longueur de π prend O(n)

Total : $O(n \cdot n!)$

On va faire un algo en 2^n par la programmation dynamique.

Gain de complexite

Note importante : taille de n! comparee a 2^n ?

Gain de complexite

Note importante : taille de n! comparee a 2^n ?

Maths (Stirling) $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$

Retenez $n! = n^n$: enorme, bien plus gros que 2^n

Gain de complexite

Note importante : taille de n! comparee a 2^n ?

Maths (Stirling) $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$

Retenez $n! = n^n$: enorme, bien plus gros que 2^n

Conclusion: complexite en n! est redhibitoire.

On va faire un algo exponentiel, en 2^n , par la programmation dynamique.

Idee generale : stocker dans une table tous les resultats intermediaires

Idee generale : stocker dans une table tous les resultats intermediaires

Conditions de mise en oeuvre : il faut une "formule de reccurence" qui permette, a partir des resultats intermediaires plus petits, de deduire les resultats intermediaires un peu plus gros

Idee generale : stocker dans une table tous les resultats intermediaires

Conditions de mise en oeuvre : il faut une "formule de reccurence" qui permette, a partir des resultats intermediaires plus petits, de deduire les resultats intermediaires un peu plus gros

• avec peu de temps de calcul (ici, polynomial)

Idee generale : stocker dans une table tous les resultats intermediaires

Conditions de mise en oeuvre : il faut une "formule de reccurence" qui permette, a partir des resultats intermediaires plus petits, de deduire les resultats intermediaires un peu plus gros

- avec peu de temps de calcul (ici, polynomial)
- et surtout, sans stocker trop de resultats intermediaires

Idee generale : stocker dans une table tous les resultats intermediaires

Conditions de mise en oeuvre : il faut une "formule de reccurence" qui permette, a partir des resultats intermediaires plus petits, de deduire les resultats intermediaires un peu plus gros

- avec peu de temps de calcul (ici, polynomial)
- et surtout, sans stocker trop de resultats intermediaires

gain r/t a brute force : comme on stocke, on ne perd pas de temps a recalculer les resultats intermediaires

Idee generale : stocker dans une table tous les resultats intermediaires

Conditions de mise en oeuvre : il faut une "formule de reccurence" qui permette, a partir des resultats intermediaires plus petits, de deduire les resultats intermediaires un peu plus gros

- avec peu de temps de calcul (ici, polynomial)
- et surtout, sans stocker trop de resultats intermediaires

gain r/t a brute force : comme on stocke, on ne perd pas de temps a recalculer les resultats intermediaires

contrepartie: ca prend beaucoup d'espace (en fait on echange de l'espace contre du temps de calcul)

Remarque

On peut toujours commencer le tour sur la ville de notre choix : on choisit c_1 .

Remarque

On peut toujours commencer le tour sur la ville de notre choix : on choisit c_1 .

Définition

Pour $S \subseteq \{c_2, \ldots, c_n\}$ et $c_i \in S$, on note $OPT[S, c_i]$ la longueur minimum d'un parcours qui :

- commence en c₁
- parcours les villes de *S*, dans un ordre libre
- finit en ci

La formule de recurrence :

• si |S| = 1, c.a.d. $S = \{c_i\}$, $i \neq 1$, on a $OPT[S, c_i] = d(c_1, c_j)$.

La formule de recurrence :

- si |S| = 1, c.a.d. $S = \{c_i\}$, $i \neq 1$, on a $OPT[S, c_i] = d(c_1, c_j)$.
- si |S| > 1, alors $OPT[S, c_i] = \min_{c_j \in S \setminus \{c_i\}} \{OPT[S \setminus \{c_i\}, c_j] + d(c_j, c_i)\}$

La formule de recurrence :

- si |S| = 1, c.a.d. $S = \{c_i\}$, $i \neq 1$, on a $OPT[S, c_i] = d(c_1, c_j)$.
- si |S|>1, alors $OPT[S,c_i]=\min_{c_j\in S\setminus\{c_i\}}\{OPT[S\setminus\{c_i\},c_j]+d(c_j,c_i)\}$

La reponse au probleme : la longueur d'un tour minimum est $OPT = \min_{i \in [2,n]} \{OPT[\{c_2,\ldots,c_n\},c_i] + d(c_i,c_1)\}.$

Algorithme pour le voyageur de commerce

Algorithme 1 : Algorithme pour TSP

```
1 pour i de 2 a n faire
   OPT[\{c_i\}, c_i] \leftarrow d(c_1, c_i);
 3 fin
 4 pour i de 2 a n-1 faire
 5
        pour tous les S \subseteq \{c_2, \ldots, c_n\} avec |S| = j faire
             pour tous les c_i \in S faire
 6
                 OPT[S, c_i] = \min_{c_i \in S \setminus \{c_i\}} \{OPT[S \setminus \{c_i\}, c_j] + d(c_j, c_i)\}
             fin
 8
 9
        fin
10 fin
11 retourner min \{OPT[\{c_2, \ldots, c_n\}, c_i] + d(c_i, c_1)\};
                  i \in [2,n]
```

Complexite temporelle:

• pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble *S* a considerer?

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer? $\longrightarrow 2^{n-1} (n-1)$

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- **Total** : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

• le tableau $OPT[S,c_i]$ a une case pour chaque couple (S,c_i)

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

- le tableau $OPT[S, c_i]$ a une case pour chaque couple (S, c_i)
- mais... quand on en est a j, on peut ne conserver que les S de taille j et j-1

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

- le tableau $OPT[S, c_i]$ a une case pour chaque couple (S, c_i)
- mais... quand on en est a j, on peut ne conserver que les S de taille j et j-1
- re-mais... ca fait quand meme $\Omega(2^n)$ pour j = n/2.

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

- le tableau $OPT[S, c_i]$ a une case pour chaque couple (S, c_i)
- mais... quand on en est a j, on peut ne conserver que les S de taille j et j-1
- re-mais... ca fait quand meme $\Omega(2^n)$ pour j = n/2.
- au pire de l'algo : espace $\Omega(n \cdot 2^n)$... c'est la ou le bat blaisse

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

- le tableau $OPT[S, c_i]$ a une case pour chaque couple (S, c_i)
- mais... quand on en est a j, on peut ne conserver que les S de taille j et j-1
- re-mais... ca fait quand meme $\Omega(2^n)$ pour j = n/2.
- au pire de l'algo : espace $\Omega(n \cdot 2^n)$... c'est la ou le bat blaisse

Conclusion : la prog dynamique permet de gagner du temps en consommant de l'espace

Analyse de la complexite

Complexite temporelle:

- pour un S de taille k, les lignes 6 a 8 prennent un temps $O(k^2)$
- combien d'ensemble S a considerer ? $\longrightarrow 2^{n-1} (n-1)$
- Total : $O(n^2 \cdot 2^n) = O^*(2^n)$... beaucoup mieux que O(n!)

Complexite spatiale:

- le tableau $OPT[S, c_i]$ a une case pour chaque couple (S, c_i)
- mais... quand on en est a j, on peut ne conserver que les S de taille j et j-1
- re-mais... ca fait quand meme $\Omega(2^n)$ pour j = n/2.
- au pire de l'algo : espace $\Omega(n \cdot 2^n)$... c'est la ou le bat blaisse

Conclusion : la prog dynamique permet de gagner du temps en consommant de l'espace

Limites : l'espace est aussi une quantite critique dans les ordinateurs (au moins autant que le temps)

Problème du cycle hamiltonien

• **Entrée**: un graphe *G* (non-oriente, sans boucle, sans arete multiple).

Problème du cycle hamiltonien

• **Entrée**: un graphe *G* (non-oriente, sans boucle, sans arete multiple).

Définition (Cycle hamiltonien)

Un *cycle hamiltonien* est un cycle simple qui contient tous les sommets du graphe.

Problème du cycle hamiltonien

• **Entrée**: un graphe *G* (non-oriente, sans boucle, sans arete multiple).

Définition (Cycle hamiltonien)

Un cycle hamiltonien est un cycle simple qui contient tous les sommets du graphe.

• **Sortie** : OUI si *G* contient un cycle hamiltonien, NON sinon.

Algorithme:

1. Transformer le graphe donne en une instance de TSP.

Algorithme:

1. Transformer le graphe donne en une instance de TSP.

2. Resoudre TSP sur cette instance.

Algorithme:

1. Transformer le graphe donne en une instance de TSP.

- 2. Resoudre TSP sur cette instance.
- 3. En fonction de la reponse a TSP, determiner la reponse a Cycle hamiltonien.

Algorithme:

- 1. Transformer le graphe donne en une instance de TSP.
 - ► Comment?

- 2. Resoudre TSP sur cette instance.
- En fonction de la reponse a TSP, determiner la reponse a Cycle hamiltonien.
 - ► Comment?

Algorithme:

- 1. Transformer le graphe donne en une instance de TSP.
 - ► Comment?

- 2. Resoudre TSP sur cette instance.
- En fonction de la reponse a TSP, determiner la reponse a Cycle hamiltonien.
 - Comment?

- Transformation en TSP :
- Resolution TSP : $O^*(2^n)$ (avec l'algo donne ici)

Algorithme:

- 1. Transformer le graphe donne en une instance de TSP.
 - Comment?

- 2. Resoudre TSP sur cette instance.
- En fonction de la reponse a TSP, determiner la reponse a Cycle hamiltonien.
 - Comment?

- Transformation en TSP : $O(n^2)$
- Resolution TSP : $O^*(2^n)$ (avec l'algo donne ici)

Problème du chemin hamiltonien

• **Entrée**: un graphe *G* (non-oriente, sans boucle, sans arete multiple).

Définition (Chemin hamiltonien)

Un *chemin hamiltonien* est un chemin simple qui contient tous les sommets du graphe.

Sortie: OUI si G contient un chemin hamiltonien, NON sinon.

Algorithme:

 Transformer le graphe donne en une instance de Cycle hamiltonien.

- Resoudre Cycle hamiltonien sur cette instance.
- En fonction de la reponse a Cycle hamiltonien, determiner la reponse a Chemin hamiltonien.

Algorithme:

- Transformer le graphe donne en une instance de Cycle hamiltonien.
 - ► Comment?

- Resoudre Cycle hamiltonien sur cette instance.
- 3. En fonction de la reponse a Cycle hamiltonien, determiner la reponse a Chemin hamiltonien.
 - Comment?

Algorithme:

- Transformer le graphe donne en une instance de Cycle hamiltonien.
 - Comment?

- 2. Resoudre Cycle hamiltonien sur cette instance.
- En fonction de la reponse a Cycle hamiltonien, determiner la reponse a Chemin hamiltonien.
 - ► Comment?

- Transformation en Cycle hamiltonien :
- Resolution Cycle hamiltonien : $O^*(2^n)$ (avec l'algo ici)

Algorithme:

- Transformer le graphe donne en une instance de Cycle hamiltonien.
 - Comment?

- 2. Resoudre Cycle hamiltonien sur cette instance.
- En fonction de la reponse a Cycle hamiltonien, determiner la reponse a Chemin hamiltonien.
 - ► Comment?

- Transformation en Cycle hamiltonien : O(n)
- Resolution Cycle hamiltonien : $O^*(2^n)$ (avec l'algo ici)