M1 Info - Systemes Complexes Avances

Cours 5 - Algorithmes de detection de communautes Girvan-Newman, Louvain, Leiden

Semestre Automne 2022-2023 - Université Côte D'azur

Christophe Crespelle christophe.crespelle@univ-cotedazur.fr

What is a community?

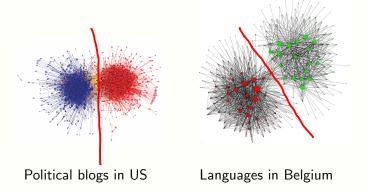
"Moral" definition

- A group of nodes that share something...
 - ▶ People with a common interest
 - Web pages with similar content
 - Proteins realising a common function

What is a community?

"Moral" definition

- A group of nodes that share something...
 - ► People with a common interest
 - Web pages with similar content
 - Proteins realising a common function
- ... that makes them be in relationship in the network!



What is a community? Structural definition

• A highly connected group of nodes

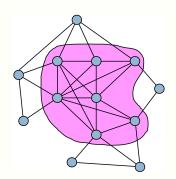
What is a community? Structural definition

- A highly connected group of nodes
 - Density inside the community much higher than global density of the network

What is a community?

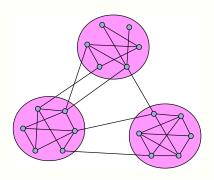
Structural definition

- A highly connected group of nodes
 - Density inside the community much higher than global density of the network
 - Only few edges toward the rest of the network



Types of structural communities

- Partition of the nodes into dense parts sparsely connected between them
 - ► High density inside communities
 - ► Few edges between communities

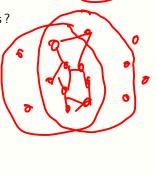


Types of structural communities

 Partition of the nodes into dense parts sparsely connected between them

- ► High density inside communities
- Few edges between communities
- Overlapping communities
 A node can belong to several communities
 - more realistic

problem : how to separate communities?



Types of structural communities

- Partition of the nodes into dense parts sparsely connected between them
 - ► High density inside communities
 - Few edges between communities
- Overlapping communities

A node can belong to several communities

- more realistic
- problem : how to separate communities?
- Partition of the links
 - ▶ a link belong to exactly one community
 - a node can have links in different communities

Partition of the nodes

Various approaches, among them:

- random walks
- spectral methods
- hierarchical clustering
- divisive methods
- Louvain, Leiden

Partition of the nodes

Various approaches, among them:

- random walks
- spectral methods
- hierarchical clustering
- divisive methods
- Louvain, Leiden

Partition of the nodes

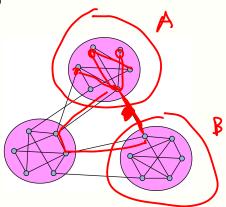
Various approaches, among them:

- random walks
- spectral methods
- hierarchical clustering
- divisive methods
- Louvain, Leiden

Divisive approach : Girvan & Newman 2002

The idea:

- 1. identify inter-community links
- 2. remove them



How to identify inter-community links?

Betweenness centrality of links

$$C_B = \sum_{s \neq t} \sigma_{st}(e) \text{ where }$$

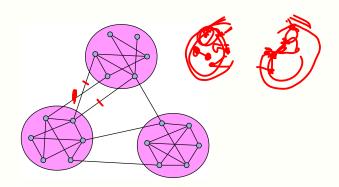
- $\sigma_{st} = \#$ shortest paths from s to t
- $ightharpoonup \sigma_{st}(e)=\#$ shortest paths from s to t containing e

How to identify inter-community links?

- Betweenness centrality of links
 - ho $C_B(e) = \sum_{s \neq t} rac{\sigma_{st}(e)}{\sigma_{st}}$ where
 - $\sigma_{st} = \#$ shortest paths from s to t
 - $\sigma_{st}(e) = \#$ shortest paths from s to t containing e
 - ▶ high betweenness \Leftrightarrow *e* is on a high proportion of shortest paths for a high proportion of pairs of nodes

How to identify inter-community links?

- Betweenness centrality of links
 - ho $C_B(e) = \sum_{s \neq t} rac{\sigma_{st}(e)}{\sigma_{st}}$ where
 - $ightharpoonup \sigma_{st} = \#$ shortest paths from s to t
 - $\sigma_{st}(e) = \#$ shortest paths from s to t containing e
 - high betweenness \Leftrightarrow *e* is on a high proportion of shortest paths for a high proportion of pairs of nodes



- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G

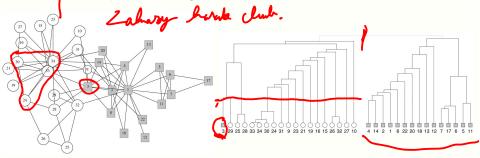
- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do

- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove e from G

- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G

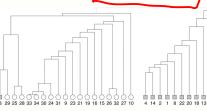
- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
 - 3. output the dendogram of G

- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove e from G
 - update the connected components of G
 - 3. output the dendogram of G



The algorithm

- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove *e* from *G*
 - update the connected components of GO update the betweenness centrality of all links
 - 3. output the dendogram of G

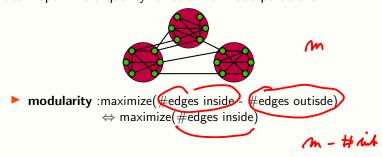


The algorithm

- Algo Girvan-Newman(G)
 - 1. Compute the betweenness centrality of all links e of G
 - 2. for all links e in decreasing betweenness centrality do
 - remove *e* from *G*
 - update the connected components of G
 - update the betweenness centrality of all links
 - 3. output the dendogram of G
- Complexity
 - betweenness for all links : O(nm)
 - ightharpoonup connected components : O(m)
 - m iterations
 - \triangleright Overall : $O(nm^2)$

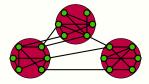
The Louvain algorithm

• Idea : optimize a quality function for node partitions



The Louvain algorithm

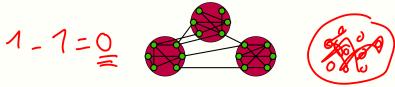
Idea: optimize a quality function for node partitions



- ▶ modularity :maximize(#edges inside #edges outisde) ⇔ maximize(#edges inside)
- Problem... the best partition is a single community!!!

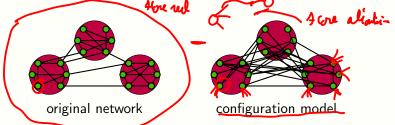
The Louvain algorithm

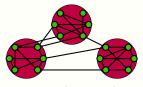
• Idea : optimize a quality function for node partitions

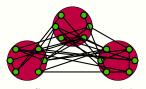


- ▶ modularity :maximize(#edges inside #edges outisde)
 ⇔ maximize(#edges inside)
- Problem... the best partition is a single community!!!

Correction: compare to a randomized version of the network







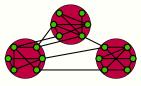
original network

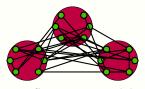
configuration model

Proportion of edges inside communities

A the adjacency matrix of G k_i the degree of node i c_i the community of node i δ is the Kronecker symbol : $\delta(c_i,c_j)=1$ iff $c_i=c_j$

13/20





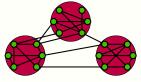
original network

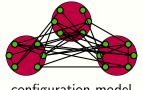
configuration model

• Proportion of edges inside communities

A the adjacency matrix of G k_i the degree of node i c_i the community of node i δ is the Kronecker symbol : $\delta(c_i, c_j) = 0$ 1 iff $c_i = c_j$

► In the original network : $\frac{1}{2m}$



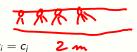


original network

configuration model

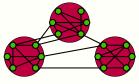
• Proportion of edges inside communities

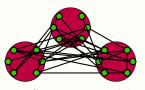
A the adjacency matrix of G k_i the degree of node i c_i the community of node i δ is the Kronecker symbol : $\delta(c_i, c_i) = 1$ iff $c_i = c_i$



In the original network : $\frac{1}{2m} \sum_{i,j \in V} A_{ij} (c_i, c_j)$ where

In the configuration model : $\frac{1}{2m} \sum_{i,j \in V} \frac{k_i k_j}{2m} (c_i, c_j)$





original network

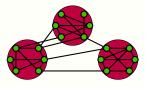
configuration model

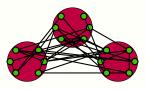
- Proportion of edges inside communities

 - A the adjacency matrix of G k_i the degree of node i c_i the community of node i

 - δ is the Kronecker symbol : $\delta(c_i, c_j) = 1$ iff $c_i = c_j$
 - In the original network : $\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j)$ where
 - In the configuration model : $\frac{1}{2m} \sum_{i,j \in V} \frac{k_i k_j}{2m} \delta(c_i, c_j)$
- modularity : Q(P)

$$\in \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2m} \sum_{c \in \mathcal{P}} [e_c - \frac{a_c^2}{2m}] \end{bmatrix}$$





original network

configuration model

Proportion of edges inside communities

A the adjacency matrix of G k_i the degree of node i c_i the community of node i

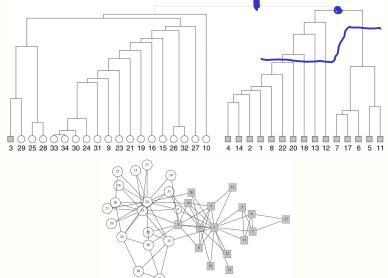
 δ is the Kronecker symbol : $\delta(c_i, c_j) = 1$ iff $c_i = c_j$

- ▶ In the original network : $\frac{1}{2m} \sum_{i,j \in V} A_{ij} \delta(c_i, c_j)$ where
- ▶ In the configuration model : $\frac{1}{2m} \sum_{i,j \in V} \frac{k_i k_j}{2m} \delta(c_i, c_j)$
- modularity : $Q(\mathcal{P}) = \frac{1}{2m} \sum_{i,j \in V} [A_{ij} \frac{k_i k_j}{2m}] \delta(c_i, c_j)$ $= \frac{1}{2m} \sum_{c \in \mathcal{P}} \left[e_c - \frac{a_c^2}{2m} \right]$

NP-hard to maximize modularity

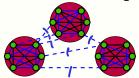
Utility of modularity

Come back to the dendogram produced by Girvan-Newman



Other quality functions

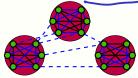
• Distance to cluster graphs



▶ dist-cluster(\mathcal{P})=#missing edges inside + #edges outside

Other quality functions

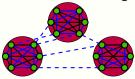
Distance to cluster graphs



- dist-cluster(\mathcal{P})=#missing edges inside + #edges outside
- ▶ NP-hard to minimize distance to cluster graphs

Other quality functions

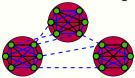
• Distance to cluster graphs



- ightharpoonup dist-cluster(\mathcal{P})=#missing edges inside + #edges outside
- NP-hard to minimize distance to cluster graphs
- Constant Potts Model
 - ► CPM(\mathcal{P})= $\sum_{c} [e_{c} \bigcap_{2}^{n_{c}})]$ where e_{c} =# edges inside communauty cand n_{c} =# nodes in communauty c γ is a chosen constant ≤ 1

Other quality functions

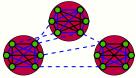
• Distance to cluster graphs



- \blacktriangleright dist-cluster(\mathcal{P})=#missing edges inside + #edges outside
- NP-hard to minimize distance to cluster graphs
- Constant Potts Model
 - ► CPM(\mathcal{P})= $\sum_{c} [e_{c} \gamma {n_{c} \choose 2}]$ where e_{c} =# edges inside communauty cand n_{c} =# nodes in communauty c γ is a chosen constant ≤ 1

Other quality functions

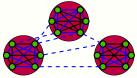
Distance to cluster graphs



- \blacktriangleright dist-cluster(\mathcal{P})=#missing edges inside + #edges outside
- ▶ NP-hard to minimize distance to cluster graphs
- Constant Potts Model
 - ► CPM(\mathcal{P})= $\sum_{c} [e_c \gamma \binom{n_c}{2}]$ where e_c =# edges inside communauty cand n_c =# nodes in communauty c γ is a chosen constant ≤ 1

Other quality functions

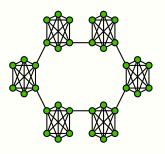
Distance to cluster graphs



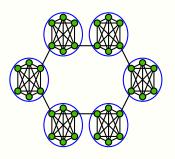
- ▶ dist-cluster(\mathcal{P})=#missing edges inside + #edges outside
- NP-hard to minimize distance to cluster graphs
- Constant Potts Model
 - ► CPM(\mathcal{P})= $\sum_{c} [e_{c} \gamma \binom{n_{c}}{2}]$ where e_{c} =# edges inside communauty cand n_{c} =# nodes in communauty c γ is a chosen constant ≤ 1

• Resolution is ue: tends to make too large communities

• Resolution issue: tends to make too large communities Example: ring of p copies of a k-clique (n = p.k)

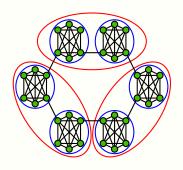


• Resolution issue: tends to make too large communities Example: ring of p copies of a k-clique (n = p.k)



 \mathcal{P}_a = the cliques

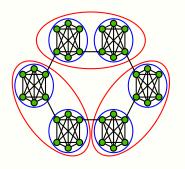
• Resolution issue: tends to make too large communities Example: ring of p copies of a k-clique (n = p.k)



 \mathcal{P}_a = the cliques

 \mathcal{P}_b = the cliques grouped by two

• Resolution issue: tends to make too large communities Example: ring of p copies of a k-clique (n = p.k)

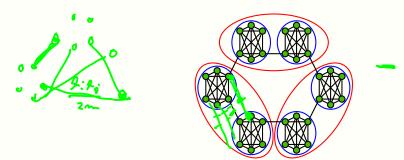


 P_a = the cliques

 \mathcal{P}_{b} = the cliques grouped by two

▶ Which one is "morally" the best community partition?

• Resolution issue: tends to make too large communities Example: ring of p copies of a k-clique (n = p.k)

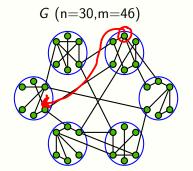


 \mathcal{P}_a = the cliques

 \mathcal{P}_b = the cliques grouped by two

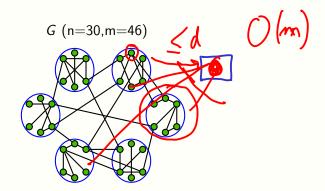
- ▶ Which one is "morally" the best community partition?
- Which one has higher modularity?

- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity



- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity

Obs. : non-neighbouring community is never the best



- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

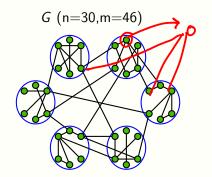
Obs. : non-neighbouring community is never the best

- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :

- place x alone in its own community
- consider moving x to each neighbourhing community



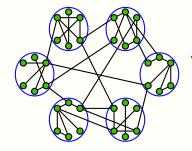
- 20 (m)
- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs.: non-neighbouring community is never the best

Decompose the move :

- place x alone in its own community
- consider moving x to each neighbourhing community

$$G (n=30, m=46)$$



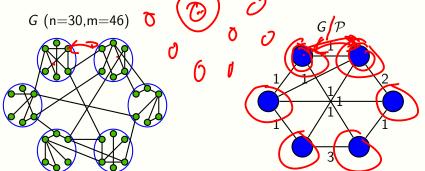
$$\Delta Q(C,i) = \begin{bmatrix} \frac{e_C + k_{i,C}}{2m} - \left(\frac{a_C + k_i}{2m}\right)^2 \\ -\left[\frac{e_C}{2m} - \left(\frac{a_C}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2 \end{bmatrix}$$

- Given a partition, make a pass through all the vertices :
 - consider each vertex x once in an arbitrary order
 - move x to the community that gives the largest increase in modularity (eventually isolated in its own community)

Obs. : non-neighbouring community is never the best

Decompose the move :

- place x alone in its own community
- consider moving x to each neighbourhing community



```
while augmented do > Itage Quotient Miles
          \mathcal{P}_0 \leftarrow \{\{x\} \mid x \in V(G)\}; \mathcal{P} \leftarrow \mathcal{P}_0; Q \leftarrow 0;
           while augmented do 🐤
                augmented← taux; Ja Jame son tons la 1
              _ augmented← faux;
                       Q_{ori} \leftarrow Q:
                       i moves to c_{iso} = \{i\}; Q \leftarrow Q - \Delta Q_{out}(i);
                       Q_{max} \leftarrow Q; c_{max} \leftarrow c_{iso};
                       for c \in \mathcal{P} do
                             if Q + \Delta Q_{in}(c) > Q_{max} then
                                                                               dans quelle commends
                                  Q_{max} \leftarrow Q + \Delta Q_{in}(i, c);
c_{max} \leftarrow c;
                             end
14
15
                      end
16
                       If Q_{max} = Q_{ori} then c_{max} \leftarrow c_{ori} else augmented \leftarrow true;
17
                       i moves to c_{max}: Q \leftarrow Q_{max}:
18
19
          end
20
          If \mathcal{P} \neq \mathcal{P}_0 then augmented \leftarrow true; G \leftarrow G/\mathcal{P};
21 end
22 return {Expand(P) \mid P \in \mathcal{P}};
```

Two improvements over Louvain

Complexity

- Complexity
 - Consider moving only vertices whose neighbours have moved

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - Maintain a queue for them

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - Same worst case complexity, but better in practice

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - ► Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - ► Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities
 - Just before contracting communities, for each community

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - Maintain a queue for them
 - ► Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities
 - Just before contracting communities, for each community
 - Place vertices alone in their own sub-community

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - ► Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities
 - Just before contracting communities, for each community
 - Place vertices alone in their own sub-community
 - Merge sub-communities that are strongly connected

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - ► Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities
 - ▶ Just before contracting communities, for each community
 - ▶ Place vertices alone in their own sub-community
 - Merge sub-communities that are strongly connected

- Complexity
 - Consider moving only vertices whose neighbours have moved
 - ► Maintain a queue for them
 - Same worst case complexity, but better in practice
- Disconnected (or poorly connected) communities
 - Just before contracting communities, for each community
 - ▶ Place vertices alone in their own sub-community
 - Merge sub-communities that are strongly connected
 - Contract only the obtained sub-communities
 - At the next step start from the partition defined by the whole communities