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Introduction

I Modelling of genetic regulatory network
⇒ deep understanding of how the components

interact
⇒ non obvious predictions on possible behaviours

I information about interactions increases
6= kinetic data not available

I Parameter identification problem is crucial
I Qualitative models : the problem is easier
⇒ good compromise

I Importance of time in the dynamics of a system
I Qualitative models with time : Hybrid models
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A feedforward loop controled by a positive auto-regulation
I Feedforward loop : one of the most common interaction patterns

I Incoherent : the signs of
both paths are different

I 4 different patterns.
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I We consider that the action of a does not change with time
I the simplest way : a functional positive loop on a
I Incoherent type 1 feedforward loop combined with a positive

auto-regulation of a
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Differential Framework
I with each variable v is associated a value xv ∈ R (concentration)
I State a the system : (xv )v∈V
I Ordinary Differential Equation System :

dxv
dt = Fv (x)− λvxv ∀v ∈ {1, 2, . . . n}

with {
λv ≥ 0 : degradation coefficient
Fv (x) : synthesis rate of variable v

Often, synthesis rate is additive :

Fv (x) =
∑

u∈G−(v)

I(u, v) contribution of u to the synthesis rate of v
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Synthesis rate
I Often, u has a quasi-null effect when below threshold θuv and a

saturated effect when above =⇒ Sigmoïdal function

I+
Θuv

(xu)

xuxu0
0

0
0

Θuw

kuwkuv
I−
Θuw

(xu)

Θuv
I xu < Θuv : u is in too small quantity to regulate v
I xu > Θuv , u does regulate v

I u helps v
I if u is an activator of v and if xu > Θuv

I if u is an inhibitor of v and if xu < Θuv
I the absence of an inhibitor = the presence of an activator
I Resources(v) = {regulators of v contributing to the synthesis rate of v}
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Discretisation of phase space
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Ĩ+
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(.) is not defined at Θuv

Ĩ−Θuw
(.) is not defined at Θuw

synthesis rate is then : fv (x) = kv +
∑

u∈resources(v)

kuv
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Regular domains (for all variable u, xu 6= θ)
I Equations are independant – for variable xv : x′v = µ− λvxv
I Solution : xv (t) =

µv
λ
− (

µv
λ
− xv0 ).e−λt

I The vector (µvλv )v is the focal point of the domain

I Derivative : x ′v (t) = (
µv
λ
− xv0 ).e−λt

The sign of derivatives does not change
=⇒ trajectories are monotonous on each axis.

I A particular case : λv = λ,∀v ∈ V
−−→
v(0) =

(
(µ1λ − x10 ), (µ2λ − x20 ), . . . , (µnλ − xn0 )

)t
−−−→
v(t1) =

(
(µ1λ − x10 ), (µ2λ − x20 ), . . . , (µnλ − xn0 )

)t × e−λt1 =
−−→
v(0).e−λ(t1)

=⇒ trajectories are rectilinear
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FFL controled by a positive auto-regulation
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Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains
I a domain corresponds to a qualitative state
I frontiers are abstracted

I if trajectories do not stay in such frontier : OK
I if not : characteristic states or qualitative reasonning on differential

inclusion ( dxidt ∈ H(x))

2. Taking into account only qualitative behaviors

Φ(D1)

D1

D3 D4

D2

The focal point is in the current domain
Trajectories do not go out of the domain.
⇒ no exit
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Discrete models in a nutshell
Schema of modelling process
Relationship between Thomas’ & differential Frameworks

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains
I a domain corresponds to a qualitative state
I frontiers are abstracted

I if trajectories do not stay in such frontier : OK
I if not : characteristic states or qualitative reasonning on differential

inclusion ( dxidt ∈ H(x))

2. Taking into account only qualitative behaviors

D1

D3 D4

D2

Φ(D1)

The focal point is in the domain D3
All trajectories go out of the domain
⇒ in the north direction
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Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains
I a domain corresponds to a qualitative state
I frontiers are abstracted

I if trajectories do not stay in such frontier : OK
I if not : characteristic states or qualitative reasonning on differential

inclusion ( dxidt ∈ H(x))

2. Taking into account only qualitative behaviors

D1

D3 D4

D2

Φ(D1)

The focal point is in the domain D2
All trajectories go out of the domain
⇒ in the east direction
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Discrete models in a nutshell
Schema of modelling process
Relationship between Thomas’ & differential Frameworks

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains
I a domain corresponds to a qualitative state
I frontiers are abstracted

I if trajectories do not stay in such frontier : OK
I if not : characteristic states or qualitative reasonning on differential

inclusion ( dxidt ∈ H(x))

2. Taking into account only qualitative behaviors

D1

D3 D4

D2

Φ(D1)

The focal point is in the domain D4
All trajectories go out of the domain
⇒ in the east direction
⇒ in the north direction
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Discrete Modelling (R. Thomas & E.H. Snoussi)

I Parameters :
I in the continuous framemork : degradation rates, synthesis rates
I in the discrete framework : positions of the focal points

Kv ,ω = coordinate v of the focal point when resources(v) = ω

⇒ Finite (but often enormous) number of parameterizations to consider
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Schema of modelling process

1. Construct the graph of schematic interactions
2. Associate with each “gene” a variable
3. Determine the number of levels of each variable

(generally, the number of interactions + 1)
4. Determine the different configurations that influence the synthesis of

the considered variable
I by default : the number of subsets of predecessors
I if information about cooperation is available : multiplexes...

5. for each interesting parameterization
I construct the dynamics
I retain it only if there is no contradiction

6. Results : {model M|dyn(M) does not present a contradiction}
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Discrete models in a nutshell
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Application to FFL (Interaction graph & levels)

1. Graph of schematic interactions, number of levels of each variable
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Application to FFL (number of models)

2. How many way to give values to parameters ?

c ∈ [0, 1] ⇒
{

Kc,∅ ∈ [0, 1]
Kc,{a} ∈ [0, 1]

b ∈ [0, 1] ⇒


Kb,∅ ∈ [0, 1]
Kb,{a} ∈ [0, 1]
Kb,{c} ∈ [0, 1]
Kb,{a,c} ∈ [0, 1]

if a ∈ [0, 1] ⇒
{

Ka,∅ ∈ [0, 1]
Ka,{a} ∈ [0, 1]

if a ∈ [0, 2] ⇒
{

Ka,∅ ∈ [0, 2]
Ka,{a} ∈ [0, 2]

if a ∈ [0, 3] ⇒
{

Ka,∅ ∈ [0, 3]
Ka,{a} ∈ [0, 3]

|models| = (22)× (24)× (22 + 32 + 42) = 1856
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Schema of modelling process
Relationship between Thomas’ & differential Frameworks

Application to FFL (State graph in the plane (c = 0))

a

1,
+

θa,b ,+2,+
b

c 1,−

3,
+

Ka,∅ = 0
Ka,{a} = 3
Kb,∅ = 0
Kb,{a} = 0
Kb,{c} = 0
Kb,{a,c} = 1
Kc,∅ = 0
Kc,{a} = 1

a b c ω(a) ω(b) ka,ω(a) kb,ω(b)

0 0 0 {} {c} 0 0
1 0 0 {a} {c} 3 0
2 0 0 {a} {a, c} 3 1
3 0 0 {a} {a, c} 3 1
0 1 0 {} {c} 0 0
1 1 0 {a} {c} 3 0
2 1 0 {a} {a, c} 3 1
3 1 0 {a} {a, c} 3 1

1

0

0 1 2

synchronous state graph asynchronous state graph

1

0

0 1 2 3 3a

bb

a
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Relationship between Thomas’ & differential Frameworks

I Kx ,ω : position (discrete space) of the focal point of the ODE :

dx
dt = (kx +

∑
y∈ω

kx ,y )− γxx ⇒ xeq =
(kx +

∑
y∈ω kx ,y )

γx

I xeq has to be inside the corresponding interval
I Snoussi’s constraints (monotonicity) :

ω1 ⊆ ω2 ⇒ Kx ,ω1 ≤ Kx ,ω2 (kx ,y : positive number)
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Parameter Identification Problem (discrete modelling)
I For current example : 256 + 576 + 1024 = 1856
I Number of parameterizations : Πv∈V (|G+(v)|+ 1)2

|G−(v)|

I If considering only monotonous parameterizations :
I for c : 3 different parameterizations
I for b : 4 different parameterizations
I for a :  if a ∈ [0, 1] 3 parameterizations

if a ∈ [0, 2] 6 parameterizations
if a ∈ [0, 3] 10 parameterizations

⇒ 36 + 72 + 120 = 228
I But this constraint can be relaxed...

two activators when both present can have no action because of
possible complexation...

I which dynamics have to be considered ?
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Taking into account information about the behavior

Which class of models is interesting ?
1. models which are coherent with continuous framework
2. models which present homeostasis or multi-stationarities

(functionality of circuits, characteristic states)
3. models whose dynamics is coherent with known properties

I (non-) accessibility
I periodicity
I efficiency of a regulation / pathway
I temporal logic formulae (CTL for example)
⇒ automation
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R. Thomas’ Theory
construction of all possible dynamics

(steady states and functional circuits specified)

Checking
Selection of dynamics that satisfy

the CTL formula (NuSMV)

Set of dynamics satisfying specifications
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Limitations

I Computational wasteful =⇒ Constraint based methods
I Discrete models are not able to handle « measured time »

I Time necessary for the system to go from one state to another one is
often experimentally available.

I Time used by the system to cover a whole turn of a periodic trajectory
(e.g. circadian cycle) is often available.

I Non-determinism is sometimes excessive

Outgoing Spiral Incoming spiral
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Hybrid Modeling

I Notion of delays of activation/inhibition
1. when an order of activation/inhibition arrives, the biological machinery

starts to increase/decrease the corresponding protein concentration,
2. but this action takes time. =⇒ Clocks
3. d+

v (x) : delay to pass from level x to x + 1
d−v (x) : delay to pass from level x to x − 1

I linear hybrid automata are well suited to allow such refinement.
1. discrete states, transitions
2. additional variables : linear evolution inside each discrete state.
3. Idea : thresholds are no longer instantaneously triggered.
⇒ New parameters : delays mandatory to cross the threshold
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Example : FFL controled by a positive auto-regulation

θa,b ,+

1,+
b

c

a

1,
+

1,−

1,+

functionality of a −→ a :
{

Ka = 0
Ka,{a} = 1

functionality of a −→ c :
{

Kc = 0
Kc,{a} = 1

c inhibits b even if a = 1 :
{

Kb = 0
Kb,{a} = 0

functionality of a −→ b :
{

Kb,{a,c} = 1
if a = 0, b is inhibited :

{
Kb,{c} = 0

Dynamics :

10

0

1

10

0

1

a = 0 a = 1
b b

c c
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First Modeling (due to R. Thomas)

I hybrid automaton – in the plane (a = 1) :

RED :

BLUE :
updating

firing
condition

clocks

1,0,1

1,0,0
hb ≥ d+

b

hb ≥ d−
b

hb := 0

hb := 0

hc ≥ d+
c

1,1,0

1,1,1 dhc/dt = 0
dhb/dt = 1dhb/dt = 0

dhc/dt = 0

dhc/dt = 1
dhb/dt = 1 dhb/dt = 0

dhc/dt = 1

hc ≥ d+
chc := 0hc := 0

I initial state : (1, 0, 0) with hb = hc = 0
I if dc < db, b will never be switched on
I if dc > db, c gives b the time to be switched on
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First Modeling (due to R. Thomas)
I influence of the initial state :

initial states allowing
a switch-on of b

time from initial

d+
b + (d+

c − d+
b ) + d−b

state to (1,0,1)=

hb hb

hb

hchc

d+
b

d+ c d+ c

d−b

(1,0,1) (1,1,1)

(1,0,0) (1,1,0)

I

hypothesis constraints
starting from (1, 0, 0) with hb = hc = 0,
switch-on of b is observed

d+
c > d+

b

trajectory (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)→
(1, 0, 1) takes n seconds

d+
c + d−b = n
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Drawback of this modeling framework

I FFL controled by a (functional) negative circuit

θa,b ,+

1,+
b

c

a

1,−

1,+

1,+

1,−

ha′ha

ha′

ha

to b and c

reset to 0

activation order

hb and hc are

hb and hc are reset to 0
activation orders desappear

(0,0,b,c)

(1,1,b,c)

(1,0,b,c)

(0,1,b,c)

a′

I accumulation is not possible

Evry spring school’10 Jean-Paul Comet Discrete & Hybrid modelling of GRN 32



Differential Framework
Discrete Modelling

Parameter Identification Problem
Hybrid Modeling

Notion of delays of activation/inhibition
First Hybrid Modeling (R. Thomas)
Hybrid models inspired by Differential models

Accumulation is possible in the differential framework
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Hybrid models inspired by Differential models

I Main idea : express a relationship between delays of the hybrid model
and the differential model

I d+
v (µ) is an approximation of the time necessary to variable v

to cross the domain from left to right.
I d−v (µ) is an approximation of the time necessary to variable v

to cross the domain from right to left.
I From differential models to hybrid models :

I thresholds are given by the differntial equations
I parameters K... are given by the discretization of focal points
I delays are deducible :

I in each domain, the differential model has an analytic solution
I the time necessary to cross a domain is computable.
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Hybrid models inspired by Diff. models : sketch (1)
I with each domain is associated a temporal zone which is divided into

sub-zone

Φ(D1)

D1

d+
x d−x

d−y

d+
y

Φ(D1)

D1

Φ(D1)

d+
x

d−y

d+
y

Φ(D1)

D1

d+
x

Φ(D1)

d+
y

Φ(D1)
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Hybrid models inspired by Diff. models : sketch (2)

I inside a sub-domain : continuous linear evolution

I =⇒ trajectories are approximated by polylines
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Hybrid models inspired by Diff. models : sketch (3)

I transitions between domains :
if target temporal zone is

compatible
if target temporal zone does

not accept entering trajectories

Rule of three

Rule of three

Rule of three

Rule of three

Sliding
mode
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Building constraints on delays from known trajectories

I Is it possible to build constraints on delays in order to make possible a
trajectory passing through a given sequence of domains ?

I Principle : enumeration of constraints due to paths of length 2
I 12 situations
I example µ0

i0−→µ1
i1−→µ2 :

µ2µ1

i1

i ′1
Blue trajectory is possible :

hi0 hi1 hi1

hi′1
hi′1

(d+
i1 (µ1)− clocki1) < (d+

i′1
(µ1)− clocki′1 )

i0

µ0
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Hybrid models inspired by Differential models

Constraints on the FFL with positive auto-regulation
I b is switched-on before c :

(1, 0, 0)→ (2, 0, 0)→ (3, 0, 0)→ (3, 1, 0)→ (3, 1, 1)→ (3, 0, 1)

1. From (2, 0, 0), 2 possible successors : (3, 0, 0) and (2, 0, 1). Considering
that clocks are reset to 0 when entering into (2, 0, 0) :

d+
a ((2, 0, 0)) < d+

c ((2, 0, 0))

2. From (3, 0, 0), 2 possible successors : (3, 1, 0) and (3, 0, 1).

d+
b ((3, 0, 0)) < d+

c ((3, 0, 0))− d+
a ((2, 0, 0))

(c has begun to increase)
3. From (3, 1, 0), there exists a unique successor =⇒ No constraint.
4. From (3, 1, 1), there exists a unique successor =⇒ No constraint.
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Is accumulation possible in such models ?
(FFL controled by a negative circuit)
Simulation of a hybrid model for the FFL controled by a negative circuit.
Initial state : (1, 0, 0, 0), initial clocks : (2., 0., 0., 0.).

d+
a,0,{a′} = 4 d+

a′,0,{a} = 4
d+
a,0,∅ = 1 d+

a′,0,∅ = 1

d−a,0,∅ = 1 d−a′,0,∅ = 1
d+
a,1,{a′} = 1 d+

a′,1,{a} = 1

d−a,1,{a′} = 1 d−a′,1,{a} = 1

d−a,1,∅ = 4 d−a′,1,∅ = 4
0

d+
b,0,{a,c} = 7 d+

c,0,{a} = 10O
d+
b,0,∅ = 2 d+

c,0,∅ = 4
d−b,0,∅ = 2 d−c,0,∅ = 16
d+
b,1,{a,c} = 2 d+

c,1,{a} = 4
d−b,1,{a,c} = 2 d−c,1,{a} = 4
d−b,1,∅ = 80 d−c,1,∅ = 10
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Conclusion

I Parameter identification problem
I This step depends on the information the modeler put into the model

I possible automation for discrete models
I no automation for differential models

I Properties with elapsed time are available :
I Discrete models do not take into account elapsed time
I Differential models do, but difficulty for model-checking

I Hybrid models can fill up the gap between discrete models and
differential ones.
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Open questions

1. automation of the transcription of dynamical properties
2. enumeration of the parameter valuations compatible with reachability

properties (hybrid constraints programming)
3. model checking between a real time property and a hybrid model

(combinatorial explosure / symbolic model-checking).
4. hybrid formal logic for constraining parameters (Berlin)

⇒ Aim : predictions =⇒ (discriminating) biological experiments
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– Thanks for your attention –
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