
What is a cell cycle checkpoint ?
The TotemBioNet answer

Déborah Boyenval, Gilles Bernot, Hélène Collavizza, and Jean-Paul Comet

University Côte d’Azur, I3S laboratory, UMR CNRS 7271, CS 40121,
06903 Sophia Antipolis Cedex, France

{firstname.lastname}@univ-cotedazur.fr

Abstract. TotemBioNet is a new software platform to assist the design
of qualitative regulatory network models by combining “genetically mod-
ified Hoare logic”, temporal logic model checking and optimized enumer-
ation techniques. TotemBioNet is particularly efficient to manage param-
eter identification, the most critical step of formal modelling. It is also
remarkably flexible and efficient to check properties in order to explore
biological assumptions. To illustrate this efficacy, we address the classical
example of the cell cycle, where the passage from one phase to the next
one, called checkpoint, is crucial but is usually a rather fuzzy informal
concept. The cyclic behaviour of the cell cycle is specified by temporal
logic and the order of individual events inside each phase is explored
thanks to quantifiers introduced in Hoare logic. This way, TotemBioNet
rapidly suggests a sensible formalization of the notion of checkpoint.

Keywords: Regulatory network · discrete modelling · parameter iden-
tification · Hoare logic · temporal logic · model-checking · cell cycle.

1 Formal Methods for Thomas Regulatory Networks

In the 70’s, qualitative models based on discrete mathematics [10,17] have proved
useful to understand the main causalities that govern observed phenotypes [19,18],
and the multivalued framework of René Thomas and Houssine Snoussi has be-
come a classic for biological regulatory networks. It gained new power with the
introduction of formal methods in the early 2000s [4], concomitantly with [5] for
signalling networks.

A qualitative model is an influence graph where the important actors for the
biological question, as well as their interactions, have been inventoried on the
basis of biological knowledge. Formally, the graph covers a huge set of different
discrete models because the strengths of combined activations and inhibitions are
unknown. They are encoded by a set of discrete parameters [15], which we need
to identify: Any biological knowledge reduces the number of possible parame-
ter values, by rejecting the parameterizations that do not comply. Parameter
identification is the most difficult part of the modelling activity.

Simulations rapidly reach their limit, because of the non-determinism of tra-
jectories and of a high number of parameterizations: A finite number of simu-
lations cannot establish general properties. Formal methods solve this difficulty.



2 Boyenval et al.

There are software platforms based on Thomas’ semantics: some study the in-
variants of a given model using Petri net tools [12] and some others perform
model checking algorithms inspired from program verification techniques [1,11].
Temporal logics allow to check very general properties, including those univer-
sally quantified on traces, and SMBioNet [4], based on CTL, has made possible
to exhaustively treat sets of models (sets of parameterizations) by optimized
enumeration algorithms. Nevertheless, to find the exhaustive set of possible pa-
rameterizations, enumeration asks for exponentially growing computation time
w.r.t. the size and connectivity of the regulatory network.

On another note, biological experiments directly request a set of traces in the
model, and the “genetically modified Hoare logic” [3] is much more effective than
temporal logic for this task. Instead of commonly enumerating parameterizations
as in many approaches [14], [16] and [9], it produces a set of constraints on the
parameters that characterizes those in which these traces exist. The program
Hoare-fol [13] efficiently computes these constraints.

TotemBioNet stands out by combining all these approaches in such a way
that modellers converge rapidly toward the exhaustive set of parameterizations
satisfying all formalized biological knowledge.

Finding the set of parameterizations compatible with current knowledge does
not end the modelling activity. It remains to use the model to study the bio-
logical question. . . which, most of the time, is not yet formalized. Each possible
explanation constitutes an hypothesis, and formalizing the latter is necessary
to, at least, check its consistency : if the set of compatible parameterizations is
empty then the hypothesis is inconsistent. TotemBioNet’s ability to repeatedly
question the model about its diverse properties, and to obtain quick answers,
allows for a fast convergence towards a formalisation of the biological question.

2 The platform TotemBioNet

TotemBioNet supports two variants of temporal logics: CTL and a dedicated
fair-path CTL, needed for certain reachability properties in the Thomas frame-
work. Indeed, the quantifiers A and E in CTL often induce artifactual results
because they consider unfair paths that cross an infinite number of times a given
state but never fire a possible transition from this state. So, universally quanti-
fied CTL formulas to study, for instance, attraction basins become unfairly false.
Fair-path CTL quantifiers A and E simply ignore unfair paths [13]. TotemBioNet
automatically translates fair-path CTL formulas into (more complex) CTL for-
mulas, allowing it to benefit from usual CTL model checking algorithms.

Besides, TotemBioNet Hoare triples contain: a pre-condition describing the
possible initial states of a given biological experiment, a path, and an observed
post-condition. The path abstracts the curves obtained from experimental obser-
vations: according to thresholds setting, a threshold crossing of a variable v along
the curve is written v+ if v increases, or v− if v decreases. When experimental
conditions are not precise enough to know which variable passes its threshold
first, existential quantifiers can express this uncertainty: ∃(v1+; v2− , v2−; v1+)



What is a cell cycle checkpoint ? The TotemBioNet answer 3

means that v1 has increased and v2 has decreased, but in an unknown order. Also,
universal quantifiers permit to abstract together a collection of similar experi-
mental observations. Genetically modified Hoare logic extends classical Hoare
logic by formalising under which conditions on the parameters each v+ or v− of
the path can occur. Then, the usual weakest pre-condition is the constraint on
the parameters that makes the abstract path possible [3].

The inputs of TotemBioNet are: an influence graph, any knowledge on the
parameter values, and properties on the dynamics of the system expressed using
CTL, fair-path CTL, or Hoare triples. TotemBioNet integrates Hoare-fol [8] and
an extended version of SMBioNet [4]. First, Hoare-fol computes and simplifies
the weakest pre-condition wp w.r.t. genetically modified Hoare logic [3]. Then,
the enumeration process of TotemBioNet is based on that of SMBioNet, which
exploits self-influences and the Snoussi constraint (more resources cannot reduce
the expression level) to greatly reduce the enumeration complexity.

TotemBioNet enumerates all parameterizations that satisfy wp: i) if wp ≡
False, the enumeration process stops, ii) if wp is a conjunction of atoms of the
form (Kvi ≤ si) or ¬(Kvi ≤ si) where Kvi is a parameter and si a threshold
for variable vi, then the enumeration domains of Kvi

are reduced, and iii) if wp
contains disjunctions, the validity of wp is checked on the fly. This considerably
reduces the search space of all possible parameterizations and TotemBioNet gen-
erates, for each remaining parameterization, one input file for the model checker
NuSMV [6]. This file contains the conjunction of temporal formulas and an
automaton which encodes the state transition graph for the current parame-
terization. TotemBioNet also offers environment variables used to freeze some
variables according to an experimental environment (by the way, it also reduces
the number of parameters).

TotemBioNet, see https://gitlab.com/totembionet/totembionet, comes with
many examples that illustrate the combination of CTL properties, fair-path CTL
properties and Hoare triples. TotemBioNet allows one to describe the influence
graph with yEd graph editor (https://www.yworks.com/products/yed). A typical
session consists in building the influence graph using yEd, in automatically gen-
erating the corresponding text file and then in adding temporal properties and
Hoare triples in concrete syntax. TotemBioNet generates an output file (possibly
in csv format) which contains all parameterizations, labeled with “OK” when
the dynamic properties are verified, and if not with all the properties which are
not satisfied. The global TotemBioNet process is illustrated in Figure 1.

3 TotemBioNet Use Case: a Simplified Cell Cycle Model

The cell cycle is a series of events leading to correct duplication of DNA of a cell
(synthesis or S phase) and its division into two genetically identical daugther
cells (mitosis or M phase). Gap phases G1 and G2 lie respectively before S and
M. Progression through the cell cycle is driven by Cyclins/Cyclin-dependant ki-
nases complexes (Cyc/Cdks) and their inhibitors. A 5-variables cell-cycle model
has been designed in [2] where the variables sk, a and b are the main Cyc/Cdks



4 Boyenval et al.

m1

m2

PC

1

0

0 1
G

PC

1

0

0 1
G

PC

1

0

0 1
G

PC

1

0

0 1
G

PC

1

0

0 1
G

PC

1

0

0 1
G

Set of dynamics satisfying the specifications

G PC

L

Interaction graph

Model Checking

{Pre} x+;y−;... {Post}

(fair−path) CTL formula

Behavioural

properties

Selection of dynamics which satisfy 

the CTL/fair−path CTL formula (NuSMV)

R
e
a

s
s
e
s
s
m

e
n

t

R
e
a

s
s
e
s
s
m

e
n

t

Hoare Logic

Construction of
contraints C

G ≥ 1

¬(PC≥1 ∧ ¬(L≥1))

of parameterizations
Enumerator

R. Thomas’ modeling framework

yes

Mi |= C

Mi

co
nt

ra
in

ts
si
m

pl
e

(Mi |= Φ)

no

Φ: a fair-path
CTL formula

disjonctive
contraints

Fig. 1: TotemBioNet’ processing flow

involved in the mammalian cell cycle and en and ep their inhibitors. The in-
teraction graph and its variables are detailed in Appendix A. Moreover, the
succession of phases, G1, S, G2 and M, has been described in [2] via the Hoare

triple Hinit :
{
G1init

} sk+; sk+; en−;
a+; sk−; sk−; b+;

a−; ep+;

en+; b−; ep−;

{
G1init

}
where the pre- and post-condition

G1init specifies the state sk = 0, ep = 0, a = 0, b = 0, en = 1, G1 is the blue
subsequence, S the red one, G2 the dark gray one and M the green one.

Our main question is: Is this small model powerful enough to represent check-
points? First, notice that the model assumes constant infusion of growth factors
and consequently its dynamics must always be cyclic. The ability of TotemBioNet
to mix several formal approaches allows us to combine Hinit and this property
specified using fair-path CTL: ϕcyclic ≡ G1init ⇒ AX(AF (G1init)) (where
AXAF means a strict future). TotemBioNet results are synthetized in the first
line of Table 1: from the 100800 parameterizations satisfying Snoussi constraint,
676 of them satisfy the weakest precondition calculated from Hinit. Then 609
out of the 676 also validate ϕcyclic. Notice the great efficiency of Hoare Logic:
The use of the equivalent CTL formula ϕinit (see Appendix B) instead of the
Hinit Hoare triple in the first experiment of the table would drastically increase
the computation time: from 6.1s to 18.5min for the same result.

Another question to understand checkpoint is the order of transitions inside
phases. [2] suggests that some transitions inside a phase may admit permuta-
tions: all transitions except the first one for G1 and S, all transitions for G2 and
none for M. Hforall encodes the 12 possible paths owing to the Forall quantifier,

Hforall :
{
G1init

} sk+; Forall((sk+; en−), (en−; sk+));

a+; Forall((sk−; sk−; b+), (sk−; b+; sk−), (b+; sk−; sk−));
Forall((ep+; a−), (a−; ep+));

en+; b−; ep−;

{
G1init

}

and surprisingly TotemBioNet returns the same 609 parameterizations!



What is a cell cycle checkpoint ? The TotemBioNet answer 5

Exp Hoare triple |Hm|
Temporal logic

formula |Sm|
Computation
Time (s)

1 Hinit 676 ϕcyclic 609 6.1

2 Hforall 676 ϕcyclic 609 6.1

3 Hperm 0 ϕcyclic 0 0.24

4 HpermG1 260 ϕcyclic 240 2.4

5 HpermG1 260 ϕcyclic∧ϕG2/M ∧ϕG1/S 28 2.9

Table 1: Formal properties of a simplified 5-variables cell cycle model: Hm is the
set of models satisfying Hoare and Snoussi constraints. Sm is the set of selected
models after model-checking of a temporal logic formula on each element of Hm.
(Performed on an Intel Core i7-8650U processor, 1.90GHz, 8 cores.)

This suggests that a phase could be simply a bag of transitions that can be
performed in arbitrary order. We check this idea with the Hoare triple Hperm

(Appendix C) and TotemBioNet returns a unsatisfiable weakest precondition. So,
let us check individually for G1, S and M. HpermG1 asks for all permutations in
G1, whereas S, G2 and M are the same as in Hforall (Appendix D): TotemBioNet
returns 240 parameterizations. For S and for M no parameterization is selected.
We conclude that the order of transitions suggested in [2] is constrained within
S and M but not within G1 and G2.

Now, having a better idea of what goes on within a phase, it appears that a
checkpoint between two phases, p1 and p2 should ensure that none of the possible
first transitions of p2 can be performed before one of the transitions of p1. The
most biologically important and the most studied checkpoints are G2/M and
G1/S. They can be formalized using Hoare logic but the CTL formula is simpler
if we remark that the first state of a phase is unique, whatever the order of the

previous phases: ϕG2/M ≡


sk = 0

∧ ep = 0

∧ a = 1

∧ b = 1

∧ en = 0

⇒ ¬


EX(en = 1 ∧ EX(a = 0 ∧ EX(ep = 1)))

∨ EX(en = 1 ∧ EX(ep = 1 ∧ EX(a = 0)))

∨ EX(a = 0 ∧ EX(en = 1 ∧ EX(ep = 1)))

∨ EX(ep = 1 ∧ EX(en = 1 ∧ EX(a = 0)))

.

Similarly ϕG1/S is given in Appendix E, and TotemBioNet returns 28 parameter-
izations satisfying ϕG2/M and ϕG1/S in addition to HpermG1 and ϕcyclic. Thus,
checkpoints can be captured in a purely discrete framework. The biologically less
studied checkpoints, S/G2 and M/G1, have been also formalized (Appendix F).
No parameterisation is selected suggesting that the current model is not detailed
enough to satisfy S/G2 or M/G1 checkpoint, as defined.

4 Conclusion

TotemBioNet combines in an optimized manner Hoare logic and (different vari-
ants of) temporal logic. Two of our current works are to facilitate an incremen-



6 Boyenval et al.

tal analysis of models, as well as to provide a more user-friendly interface with
jupyter notebook as BioCHAM [7] and CoLoMoTo [11] do. TotemBioNet aims
at offering a growing palette of formal methods to the modellers, so that each
biological knowledge can be formalized according to the most suited one. Thanks
to the versatility and efficacy of TotemBioNet, the general properties of qualita-
tive Thomas models can be rapidly checked during their design. We showed on
the small cell cycle model initially specified with a Hoare triple in [2] how the
main properties of the phases can be explored, leading to a proper formalization
of the notions of phase and checkpoint.

Acknowledgements. We are grateful to all contributors/users: M. Folschette
(Hoare-fol), S. Ndèye and E. Gallésio (antlr4 parser and installation scripts),
L. Gibart (beta tests on big models). We are also indebted to A. Richard for
SMBioNet and the constructive proof of translation from fair-path CTL to CTL.
This work also benefited from fruitful collaborations and discussions with J.
Behaegel and F. Delaunay.

References

1. Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking
genetic regulatory networks using GNA and CADP. In: Graf, S., Mounier, L. (eds.)
Model Checking Software. pp. 158–163. Springer Berlin Heidelberg (2004)

2. Behaegel, J., Comet, J.P., Bernot, G., Cornillon, E., Delaunay, F.: A hybrid model
of cell cycle in mammals. J. Bioinformatics Comput. Biol. 14(1), 1640001 (2016)

3. Bernot, G., Comet, J.P., Khalis, Z., Richard, A., Roux, O.F.: A genetically modified
Hoare logic. Theoretical Computer Science 765, 145–157 (2019)

4. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: extending Thomas’ asynchronous logical approach
with temporal logic. J.Theor.Biol 229(3), 339 – 347 (2004)

5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB’2003. pp. 149–162. LNCS 2602, Springer-Verlag (2003)

6. Cimatti, A. et al.: NuSMV 2: An opensource tool for symbolic model checking. In:
CAV ’02. pp. 359–364 (2002)

7. Fages, F., Soliman, S.: On robustness computation and optimization in BIOCHAM-
4. In: CMSB 2018. LNCS, vol. 11095 (2018)

8. Folschette, M.: The Hoare-fol tool. Tech. rep., Univ. Lille & CNRS UMR 9189
(2019), https://hal.archives-ouvertes.fr/hal-02409801

9. Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-
Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling net-
work using answer set programming. Bioinformatics 30 (07 2013)

10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J.Theor.Biol 22(3), 437–67 (1969)

11. Naldi, A. et al.: The CoLoMoTo interactive notebook. Frontiers in Physiology 9,
680 (2018)

12. Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regula-
tory graphs to standard Petri nets: Dynamical roles and functionality of feedback
circuits. In: Transactions on Computational Systems Biology VII. pp. 56–72 (2006)



What is a cell cycle checkpoint ? The TotemBioNet answer 7

13. Richard, A.: Fair paths in CTL (2008), personnal communication, available at
https://gitlab.com/totembionet/totembionet

14. Schwab, J., Kühlwein, S., Ikonomi, N., Kühl, M., Kestler, H.: Concepts in boolean
network modeling: What do they all mean? Computational and Structural Biotech-
nology Journal 18 (03 2020)

15. Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations : a
discrete mapping approach. Dynamics and stability of Systems 4, 189–207 (1989)

16. Streck, A., Thobe, K., Siebert, H.: Comparative statistical analysis of qualitative
parametrization set (09 2015)

17. Thomas, R.: Boolean formalization of genetic control circuits. J.Theor.Biol 42(3),
563–585 (1973)

18. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol.
73(4), 631–56 (1978)

19. Thomas, R., Gathoye, A., Lambert, L.: A complex control circuit. Regulation of
immunity in temperate bacteriophages. Eur. J. Biochem. 71(1), 211–27 (1976)

Appendix A: Static description of the cell cycle model

Fig. 2: A 5-variable interaction graph of the mammalian cell cycle,
from [2]. Progression through the cell cycle is driven by 2 types of genetic en-
tities: complexes of Cyclins/Cyclin-dependant kinases (Cyc/Cdks) and their in-
hibitors known as ennemies. The 5 variables of the graph represent these entities,
in orange. sk is the abstraction of both complexes CycE/Cdk2 and CycH/Cdk7,
known as starting kinases. a and b respectively represent CycA/Cdk1 and
CycB/Cdk1. en is the abstraction of the main Cyc/Cdks ennemies: the anaphase-
promoting complex APC/Cdh1, cyclin-kinase inhibitors p21 and p27, and Wee1
protein. The variable ep is the anaphase-promoting complex APC/Cdc20, which
is a Cyc/Cdks ennemy involved in mitosis exit and so-called exit protein. Regula-
tions between variables are described in [2]. This interaction graph was designed
using the tool yEd (www.yworks.com/products/yed).



8 Boyenval et al.

Appendix B: Equivalent specification of Hinit using a Fair
CTL formula

In the first experiment, the cell cycle is specified by the Hinit Hoare triple. Here,
the cell cycle is specified by the ϕinit CTL formula depicting the Hinit path.

ϕinit ≡



(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1)− > EX(sk = 1 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1)

∧(EX(sk = 2 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1) ∧ (EX(sk = 2 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 0)

∧(EX(sk = 2 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0) ∧ (EX(sk = 1 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0) ∧ (EX(sk = 0 ∧ ep = 0 ∧ a = 1 ∧ b = 1 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 1 ∧ en = 0) ∧ (EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 1 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 1 ∧ en = 1) ∧ (EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 0 ∧ en = 1)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1))))))))))))



Appendix C: Specification of Hperm

This Hoare triple encodes a cell cycle in which phases are described by all per-
mutations of their respective transitions. G1 is specified in blue, S in red, G2 in
grey and M in green.

Hperm :
{
G1init

}

Forall((sk+; sk+; en−), (sk+; en−; sk+), (en−; sk+; sk+));

Forall((a+; sk−; sk−; b+), (a+; sk−; b+; sk−),
(a+; b+; sk−; sk−), (sk−; a+; sk−; b+),

(sk−; a+; b+; sk−), (b+; a+; sk−; sk−),
(sk−; sk−; a+; b+), (sk−; b+; a+; sk−),
(b+; sk−; a+; sk−), (sk−; sk−; b+; a+),

(sk−; b+; sk−; a+), (b+; sk−; sk−; a+))

Forall[(ep+; a−), (a−; ep+)];

Forall((en+; b−; ep−), (en+; ep−; b−),
(ep−; b−; en+), (ep−; en+; b−),
(b−; en+; ep−), (b−; ep−; en+));

{
G1init

}

Appendix D: Specification of HpermG1

This Hoare triple describes the cell cycle in which G1 in addition to G2 allows
all permutations of its transitions.

HpermG1 :
{
G1init

}
Forall((sk+; sk+; en−),

(sk+; en−; sk+), (en−; sk+; sk+));

a+;

Forall((sk−; sk−; b+), (sk−; b+; sk−),
(b+; sk−; sk−));

Forall((ep+; a−), (a−; ep+));

en+; b−; ep−;

{
G1init

}



What is a cell cycle checkpoint ? The TotemBioNet answer 9

Appendix E: Specification of ϕG1/S with CTL

The premise G1init of the formula ϕG1/S is the precondition of the Hoare triple
Hinit defined in [2]. It defines the initial state of G1. The first transition of S, a+,
must not occur before any G1 transition. Thus 9 paths must not exist starting
from the first G1 state encoded in premise.
The notation EX(a = 1 ∧ EX(sk = 1 ∧ EX(en = 0 ∧ EX(sk = 2)) is a CTL
version of the Hoare path: a+; sk+; en−; sk+.

ϕG1/S ≡
(
G1init

)
⇒ ¬



EX(a=1 ∧ EX(sk = 1 ∧ EX(en = 0 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(a=1 ∧ EX(en = 0 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(en = 0 ∧ EX(a=1 ∧ EX(sk = 2))))

∨ EX(a=1 ∧ EX(en = 0 ∧ EX(sk = 1 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(a=1 ∧ EX(sk = 1 ∧ EX(en = 0))))

∨ EX(sk = 1 ∧ EX(sk = 2 ∧ EX(a=1 ∧ EX(en = 0))))

∨ EX(a=1 ∧ EX(sk = 1 ∧ EX(sk = 2 ∧ EX(en = 0))))

∨ EX(en = 0 ∧ EX(a=1 ∧ EX(sk = 1 ∧ EX(sk = 2))))

∨ EX(en = 0 ∧ EX(sk = 1 ∧ EX(a=1 ∧ EX(sk = 2))))



Appendix F: Specification and checking of S/G2 and
M/G1 checkpoints with CTL

The premise of ϕS/G2 formula (see below) encodes the first state of S. a− and
ep+ are the 2 possible first events of G2 according to HpermG1. They must not
occur before completion of S events. Thus 21 paths must not exist starting from
the state in premise. ϕS/G2 is then defined as:


sk=2

∧ ep=0

∧ a=0

∧ b=0

∧ en=0

⇒ ¬



EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))





10 Boyenval et al.

Similarly, the premise of ϕM/G1 formula (see below) encodes the first state
of M. sk+ and en− are the 2 possible first events of G1 according to HpermG1.
Thus the 8 paths enabling these events to occur before completion of M events
must not exist, starting from the state in premise. ϕM/G1 is then defined as:


sk=0

∧ ep=1

∧ a=0

∧ b=1

∧ en=0

⇒ ¬



EX(en=1 ∧ EX(b=0 ∧ EX(sk=1 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(en=1 ∧ EX(sk=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(sk=1 ∧ EX(en=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(en=1 ∧ EX(b=0 ∧ EX(sk=1 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(sk=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(sk=1 ∧ EX(en=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(b=0 ∧ EX(en=0 ∧ EX(ep=0 ∧ EX(sk=1 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(en=0 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=1 ∧ EX(sk=2))))))



TotemBioNet extracts no model (Table 2) for each of these checkpoints, from
which we conclude that the model is not precise enough to capture them.

Exp Hoare triple |Hm|
Temporal logic

formula |Sm|
Computation
Time (s)

6 HpermG1 260
ϕcyclic ∧ ϕG2/M ∧
ϕG1/S ∧ ϕS/G2 0 3.5

7 HpermG1 260
ϕcyclic ∧ ϕG2/M ∧
ϕG1/S ∧ ϕM/G1 0 3.2

Table 2: Verification of S/G2 and M/G1 checkpoints. Hm is the set of
models satisfying Hoare and Snoussi constraints. Sm is the set of selected models
after model-checking of a temporal logic formula on each element of Hm.



A step-by-step user guide of TotemBioNet
applied to the tool paper’s use case

This scenario is based on the 5th experiment of use case, tool paper’s table 1. TotemBioNet
and its user manual are available at https://gitlab.com/totembionet/totembionet.
Associated benchmarks are available at http://www.i3s.unice.fr/~comet/DOCUMENTS/
BenchTotemBioNet.zip.

Step 1: Build the interaction graph with yEd

The yEd graph editor can be downloaded at : https://www.yworks.com/products/yed.

JBCB16_cellcycleIG.graphml

1



Step 2: Generate static part of TotemBioNet’s .smb input file

$ totembionet -yed ./JBCB16_cellcycleIG.graphml

JBCB16_cellcycleIGFromYed.smb

VAR
sk = 0 .. 2;
a = 0 .. 1;
b = 0 .. 1;
ep = 0 .. 1;
en = 0 .. 1;

REG
sk_act1 [sk>=1] => sk;
a_ini_sk [!(a>=1)] => sk;
sk_act2 [sk>=2] => a;
b_ini [!(b>=1)] => a;
en_ini [!(en>=1)] => a;
a_act [a>=1] => b;
m[!((en>=1)|((en>=1)&(ep>=1)))]=>b;
b_act [(b>=1)] => ep;
sk_ini [!(sk>=1)] => en;
a_ini_en [!(a>=1)] => en;
ep_act [ep>=1] => en;

The tool automatically returns variables’ upper bounds equal to their outgoing degree.
Each variable’s upper bound must be manually decreased when several regulation thresh-
olds are equal.

2



Step 3: Add properties into TotemBioNet’s .smb input file

5_Experiment.smb

+

#######
HOARE
PRE : {sk=0,ep=0,a=0,b=0,en=1}

TRACE:
Forall((sk+; sk+; en-),
(sk+; en-; sk+),
(en-; sk+; sk+));
a+; sk-; sk-; b+;
Forall((a-;ep+), (ep+;a-));
en+; b-; ep-;

POST: {sk=0,ep=0,a=0,b=0,en=1}

#######
FAIRCTL
phicyclic=((sk=0 & ep=0 & a=0 & b=0 & en =1)->
AX(AF(sk=0 & ep=0 & a=0 & b=0 & en =1)));

###
CTL
phiG2M=((sk=0 & ep=0 & a=1 & b=1 & en=0) ->
(!( (EX((en=1) & EX((a=0) & EX((ep=1) ))))
| (EX((en=1) & EX((ep=1) & EX((a=0) ))))
| (EX((a=0) & EX((en=1) & EX((ep=1) ))))
| (EX((ep=1) & EX((en=1) & EX((a=0) )))))));

phiG1S=((sk=0 & ep=0 & a=0 & b=0 & en=1) ->
(!((EX((a=1) & EX((sk=1) & EX((en=0) & EX((sk=2))))))
| (EX((sk=1) & EX((a=1) & EX((en=0) & EX((sk=2))))))
| (EX((sk=1) & EX((en=0) & EX((a=1) & EX((sk=2))))))
| (EX((a=1) & EX((en=0) & EX((sk=1) & EX((sk=2))))))
| (EX((sk=1) & EX((a=1) & EX((sk=2) & EX((en=0))))))
| (EX((sk=1) & EX((sk=2) & EX((a=1) & EX((en=0))))))
| (EX((a=1) & EX((sk=1) & EX((sk=2) & EX((en=0))))))
| (EX((en=0) & EX((a=1) & EX((sk=1) & EX((sk=2))))))
| (EX((en=0) & EX((sk=1) & EX((a=1) & EX((sk=2)))))))));

Content of JBCB16_cellcycleIGFromYed.smb

3



Step 4: Call TotemBioNet with .smb input file

$ totembionet -csv ./5_Experiment.smb

./hoare/5_Experiment.out

./5_Experiment.out

./5_Experiment.csv

Step 5: Content of TotemBioNet output files

The weakest precondition (wp) calculated from the Hoare triple is in:

./hoare/5_Experiment.out

(((sk=0) & ((ep=0) & ((a=0) & ((b=0) & (en=1)))))
& ((((K_sk:a_ini_sk>0) & ((K_sk:sk_act1:a_ini_sk>1)
& ((K_en:a_ini_en<1) & ((K_a:sk_act2:b_ini:en_ini>0)
& ((K_sk:sk_act1<2) & ((K_sk:sk_act1<1)
& ((K_b:a_act:m>0) & (((K_a:en_ini<1)
& ((K_ep:b_act>0) & ((K_en:sk_ini:a_ini_en:ep_act>0)
& ((K_b<1) & (K_ep<1))))) & ((K_ep:b_act>0)
& ((K_a:en_ini<1) & ((K_en:sk_ini:a_ini_en:ep_act>0)
& ((K_b<1) & (K_ep<1))))))))))))) & ((K_sk:a_ini_sk>0)
& ((K_en:a_ini_en<1) & ((K_sk:sk_act1:a_ini_sk>1)
& ((K_a:sk_act2:b_ini:en_ini>0) & ((K_sk:sk_act1<2)
& ((K_sk:sk_act1<1) & ((K_b:a_act:m>0)
& (((K_a:en_ini<1) & ((K_ep:b_act>0)
& ((K_en:sk_ini:a_ini_en:ep_act>0) & ((K_b<1)
& (K_ep<1))))) & ((K_ep:b_act>0) & ((K_a:en_ini<1)
& ((K_en:sk_ini:a_ini_en:ep_act>0) & ((K_b<1)
& (K_ep<1)))))))))))))) & ((K_en:sk_ini:a_ini_en<1)
& ((K_sk:a_ini_sk>0) & ((K_sk:sk_act1:a_ini_sk>1)
& ((K_a:sk_act2:b_ini:en_ini>0) & ((K_sk:sk_act1<2)
& ((K_sk:sk_act1<1) & ((K_b:a_act:m>0)
& (((K_a:en_ini<1) & ((K_ep:b_act>0)
& ((K_en:sk_ini:a_ini_en:ep_act>0)
& ((K_b<1) & (K_ep<1))))) & ((K_ep:b_act>0)
& ((K_a:en_ini<1) & ((K_en:sk_ini:a_ini_en:ep_act>0)
& ((K_b<1) & (K_ep<1)))))))))))))))

4



The conjunctive or disjunctive form of wp and results of model-checking are in:

./5_Experiment.out

Hoare result is a conjunction of conditions on K.
100540 models have been removed.

########### Result of model checking ###########
# Total number of models 260
# Selected models: 28
# Computation time: 2s999ms

Selected (OK) and rejected (KO) parameterizations are saved in ./5_Experiment.csv.
The first line contains the complete list of K parameters. For example K_sk:a_ini_sk:sk_act1
is the parameter of sk variable that denotes the presence of two resources: a_ini_sk and
sk_act1. 28 parameterizations are selected in the 5th experiment, so the file contains 28
OK models and 232 KO models.

./5_Experiment.csv: OK model section

5



The last column of ./5_Experiment.csv, named Explanation, is filled in only for KO
parameterizations. It provides an explanation of model rejection by giving the unsatisfied
formulas. Only 5 out of the 232 KO models are shown below:

./5_Experiment.csv: extract of KO model section

./5_Experiment.csv: extract of KO model explanations

6


