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When we model a complex biological system, we try to understand the causality
chains that explain the different behaviours observed. However, these observa-
tions are often made under experimental conditions which are not necessarily
comparable since they depend on the culture medium for example. The con-
struction of a right modelisation therefore depends on our ability to take into
account all this information in a single framework.

In this article, we show that well-known R. Thomas’ modelling framework
allows the simulations of successive environmental situations in a unique global
network at the expense of the use of artefacts. Therefore, it becomes possi-
ble to search for parameter settings compatible with biological knowledge for
all environments by just enumerating the parameter settings. Another option
we recommend here, is a green extension of R. Thomas’ framework with the
notion of environments. For each environment, the regulatory network is adapted
and parameter settings compatible with the associated biological knowledge are
searched on a smaller search space. Then, these sets of settings are intersected
to obtain those which yield the traces consistent with observations of all envi-
ronments. This “divide and conquer” approach is amazingly more efficient than
the global approach.

1 Introduction

Modelling a biological system aims at understanding the underlying chains of
causalities which leads the system behave as observed. Biological systems are
called complex because the underlying causalities are difficult to be extracted
from global observation. Thus systems biology can be seen as the study of the
interactions between the components of biological systems, and of the conse-
quences of these interactions on functions and behaviours of these systems. In
order to complicate the portrait of this research field, observations are often made
under experimental conditions which are not necessarily comparable (constant
supply of glucose, and reduced supply of oxygen for example).

Moreover, even in a given modelisation framework, several modelling choices
are possible because different instantiations of dynamical parameters which pilot
the behaviour of the model can lead to traces consistent with all observations.
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If the modeller chooses a particular setting, when new information is known,
the parameter identification step must be restarted from the beginning. The
systematic approach would then consist in characterizing, at each step, all of
the parameter settings consistent with current knowledge: when a new observa-
tion becomes available, the modeller just refines the previous set of consistent
parameter settings by selecting only those that are also consistent with this new
information.

In the 70’s, qualitative models based on discrete mathematics [10,19] have
proved useful to understand the main causalities that govern observed pheno-
types [20,21], and the multivalued framework of R. Thomas and H. Snoussi
has become a classic for biological regulatory networks. It aroused new interest
when, in the early 2000s, formal methods came to complete this formalism [2],
as well as that of signaling networks [5]. For example, we developed a geneti-
cally modified Hoare Logic [1] for characterizing the set of parameter settings
making possible a particular trace (if known). If only global temporal properties
are available, these properties are translated into a formal temporal logic and
the right parameter settings are selected via a model checking decision proce-
dure [12]. These two approaches are combined in TotemBioNet , a tool which
enumerates all parameter settings and selects those that are consistent with the
biological properties [4].

The issue addressed in this paper is how to mix up the search for all param-
eter settings that are consistent with the temporal properties of multiple envi-
ronments. The difficulty arises from the very wide diversity of behaviours due
to diverse environments. We consider in this paper that behavioural biological
knowledge have already been translated into a formal temporal logic (here CTL,
Computational Tree Logic) and first show how the classic R. Thomas’ framework
allows the design of a unique regulatory network that mimics the different envi-
ronments. That requires the duplication of the states of the internal variables
to allow different behaviours according to the environments. A global property
encompassing all temporal properties in all environments is built and verified
for each parameter setting.

But we recommend another option based on a “divide and conquer” approach:
a green extension of R. Thomas’ framework with the notion of environments.
During the divide step, a specific (and thus smaller) regulatory network is built
for each environment, and the sets of settings consistent with the associated
temporal property are searched. During the combine step, the intersection of
these sets is compute to obtained the settings which satisfy the properties for
all environments.

Extending R. Thomas’ framework with environments is more efficient than
using a single network which takes into account all environments. When applied
to a network modelling the main regulations of cellular metabolic pathways, the
method based on a single network would only give the result after an unreason-
able time (estimated to 49,1 years), whereas the parameter settings are computed
in 44.6min in this new framework.
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Running Example. Pseudomonas æriginosa is an opportunistic bacteria that
can secrete mucus. Mucus production is due to the presence of the protein
mucB which is activated through a genetic element called an operon. More-
over mucB inhibits the operon and the operon activates itself through several
molecules. These individual influences are summarized in the influence graph of
Pseudomonas æriginosa framed in blue in Fig. 1.

Mucus produced by mucoid Pseudomonas æriginosa is composed by alginate
and its accumulation can lead to the creation of bacteria biofilms. When these
bacteria affect the lung, they cause serious infections, particularly for Cystic
Fibrosis (CF) diagnosed patient [16]. Microbiologists discovered that the tran-
sition of bacteria from non-mucoid state to mucoid one is due to a very high
concentration of calcium-ion in the cell environment in lung of CF patients.
This led us to add in Fig. 1 the environment variable Calcium (in green).

Fig. 1. Influence graph and parameters for Pseudomonas æriginosa mucus production
system. Blue frame: initial influence graph. Grey frame: influence graph with environ-
ment variable Calcium (green) playing a role in the lungs of Cystic Fibrosis patients.
(Color figure online)

This article is organised as follows. Section 2 sketches the framework of reg-
ulatory networks. Section 3 is dedicated to the approach based on a unique reg-
ulation network encompassing all environments. Section 4 defines the regulatory
networks with environments and presents the environment by environment app-
roach. Section 5 then compares these two approaches from a theoretical and
efficiency point of view. Finally, Sect. 6 presents the case study based on an
abstract model of the regulation of the cellular metabolism.

2 Adding Environment Variables to Thomas’ Framework

Given a biological system, and some hypothesis on the dynamics of this system,
our modelling approach is to:
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– Create an influence graph IG that defines the individual influences between
variables,

– Deduce from IG the set of parameters which express the relative strength of
influences on their common target. These parameters are used to define the
global dynamics of the system, via a parameter setting P ,

– Find an appropriate translation of the biological knowledge in terms of a
temporal logic formula,

– and at the end, use the TotemBioNet tool to find the parameter settings
which make the dynamics based on IG and P consistent with this formula.

In this section, we first define the influence graph, and then introduce param-
eters. These two pieces of information describe the biological system and consti-
tute a regulatory network. The next definitions concern the biological property:
the temporal logic language (CTL) and the models of a CTL formula.

2.1 Regulatory Network with Multiplexes

Multiplexes were introduced in [11], as an extension of R. Thomas’ modelling
framework. They express, via a logic formula, some conditions under which an
influence occurs. For example, if both variables a and b influence the variable
c only when they form a protein complex, then, this coordinated influence can
be represented in a multiplex which allows the effective influence only when
both a and b are simultaneously present. A multiplex then combines in a unique
predecessor some conditions on many variables. As the number of parameters to
be identified depends directly on the number of predecessors, the introduction
of multiplexes reduces the number of parameters (see Definition 2).

Definition 1 (Influence Graph with multiplexes). An influence graph
with multiplexes IG = (V,M,A) is a directed graph such that:

– Vertices are variables in V or multiplexes in M (V ∩ M = ∅),
– With each variable v ∈ V is associated a discrete domain Dv = �vl, vu� where

0 ≤ vl ≤ vu,
– Arcs in A go from multiplexes to variables (A ⊂ M × V ),
– With each multiplex m ∈ M is associated a formula ϕm which expresses the

condition under which m influences its target variable(s). The language of
multiplex formulas is defined by:

• Atoms are atomic formulas (v � n) with v ∈ V and n ∈ Dv

• if ϕ, ϕ1 and ϕ2 are multiplex formulas, then ¬ϕ, ϕ1�ϕ2 are also multiplex
formulas, where � is either ∧, ∨ or ⇒.

Given an influence graph, parameters represent the relative strength of influ-
ences on a variable, and by allowing to build the global behaviour of the system.

Definition 2 (Parameters). The parameters of a variable v are denoted Kv,ω

where ω is a subset of the predecessors of v in IG. Kv,ω represents the direction
of evolution of variable v when it is controlled according to the multiplexes in ω.
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– A variable v has 2d−(v) parameters where d−(v) is the number of predecessors
of v in IG.

– K(v) denotes the set of parameters of variable v.
– K is the set of all parameters: K = ∪v∈V (K(v)).

Definition 3 (Regulatory network). A Regulatory network is a couple N =
(IG,K).

Pseudomonas æriginosa Regulatory Network. In Fig. 1, variables of IG are rep-
resented by circles and multiplexes (with their associated formulas) by round
rectangles. Parameters are listed in dashed line rectangles, written in the con-
crete syntax of TotemBioNet . For example, K_MucB:prod represents the case where
MucB is influenced by prod while K_Operon:alg:free represents the case where Operon
is influenced by both alg and free.

2.2 Formulas of Biological Properties and Their Models

We focus here on biological properties which express some global behaviour such that
the existence of an attraction basin or a sustained oscillation. For such properties, we
need to talk about future, and about the successive transitions of the system, in other
words, to talk about the paths. Among the different temporal logics we have chosen the
Computational Tree Logic (CTL ). Formulas of CTL are inductively built over variables
in V in the usual way, using boolean operators and using modalities on time X (neXt),
F (Future), U (Until), G (Generally), and modalities on paths E (Exists), A (All),
see [7,9] where the semantics of these formulas is formally defined.

Definition 4 (CTL Language). Given an influence graph IG, the language LV of
CTL formulas over V is defined by :

– an atom is either a boolean constant (�, ⊥), or a comparison v�n with v ∈ V ,
n ∈ DV , and � an operator among <, >, ≤, ≥,=

– a CTL formula is either an atom or :
• ¬ϕ1, ϕ1�ϕ2 where � is a boolean operator among ∧, ∨, ⇒, ⇔
• E(ϕ1Uϕ2) or A(ϕ1Uϕ2)
• �ϕ1 where � is in EX, EF, EG, AX, AF, AG

with ϕ1 and ϕ2 CTL formulas

Operon Stable States. From biologists we know that a non-mucoid Pseudomonas
æriginosa will never create mucus, and that when Pseudomonas æriginosa is mucoid,
it cannot turn off again. This can be translated by the following CTL formula:

ϕ0
bacteria ≡ ((Operon = 0) ⇒ AG(¬(Operon = 2))) ∧

((Operon = 2) ⇒ AG(¬(Operon = 0)))

It expresses that starting from a state where Operon = 0 (non-mucoid) then there is
no path leading to a state where Operon = 2 (mucoid), and vice versa.

The dynamics of a regulatory network N = (IG, K) is determined by a valuation
of its parameters in K, which is called a parameter setting. Our aim is therefore to
find the parameter settings which lead to dynamics consistent with the CTL formula
expressing a temporal biological knowledge.
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Definition 5 (Parameter Setting). Given a regulatory network N = (IG, K), a
parameter setting P ∈ PN assigns a value in Dv to each parameter Kv,ω associated
with variable v:

P : K → �0, m�
Kv,ω �→ kv,ω ∈ Dv

where m = max{vu| v ∈ V } and PN denotes the set of parameter settings of N .

A parameter setting P ∈ PN sets the global dynamics of the system. On each
state, the possible transitions of the system depend on the applicable parameters of
the variables. Indeed, the applicable parameter of a variable v in a particular state is
determined by the combination of multiplexes targeting v whose formulas are true in
that state. The value given by P to the applicable parameter of a variable defines how
this variable can evolve.

Definition 6 (States). The set of states of the system is the Cartesian product S =
Πv∈V Dv. We denote s ∈ S a state.

Definition 7 (Applicable parameter on a state). The applicable parameter of
variable v on a state s ∈ S, is the only parameter Kv,ω s.t.

– ∀m ∈ ω, ϕm is true on state s,
– ∀m ∈ pred(v), m /∈ ω, ϕm is false on state s (where pred(v) is the set of predeces-

sors of v).

The applicable parameter of v in state s is denoted Kv[s]. Each multiplex m, predecessor
of v, such that ϕm is true on s is called a resource of v in s.

Applicable Parameters for Pseudomonas æriginosa. The applicable parameter of
Operon for state 01 (where 0 is the value of Operon and 1 the value of Mucus)
is K_Operon because neither ϕalg = (Operon ≥ 2) nor ϕfree = ¬(Mucus ≥ 1)
are true. The applicable parameter of MucB for state 21 is K_MucB:prod because
ϕprod = ¬(Operon ≥ 1) is true.

Given a parameter setting P , a variable v and a state s, the value of the applicable
parameter for v on s indicates if, on state s, v tends to increase, decrease or stay stable.
This allows the definition of the (asynchronous) state transition graph which sums up
the global behaviour of the system for this chosen parameter setting.

Definition 8 (ASTG for a parameter setting P ). Given a regulatory network N =
(IG, K) whose variables are denoted v1, . . . , vn and P ∈ PN a parameter setting for
N , the associated Asynchronous State Transition Graph ASTGP is defined as follow:

– Vertices are states s ∈ S,
– Loops: there is an arc from s to itself if P (Kvi [s]) = si, ∀i = 1 . . . n. This expresses

that each variable vi has reached its focal value toward which it tends.
– Arcs: there is an arc from sp = (sp

1, ..., s
p
n) to sq = (sq

1, ..., s
q
n) if there exists one

and only one index i s.t. sp
i �= sq

i with either : sq
i = sp

i + 1 and P (Kvi [s
p]) > sp

i or
sq

i = sp
i − 1 and P (Kvi [s

p]) < sp
i . This expresses that vi has not reached its focal

value and will increase (or decrease) by one level.

Finally, the two last definitions characterize what is a model of a property on the
dynamics of the system. They are based on a decision procedure (such as a model
checking procedure).
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Definition 9 (Decision procedure for properties on N ). Given a regulatory net-
work N and the language LV of CTL formulas over variables of N , checkN is a decision
procedure for formulas in LV :

checkN : PN × Lv → Bool
(P, ϕ) �→ true/false

such that checkN (P, ϕ) = true iff ϕ is true on ASTGP .

Definition 10 (Model of ϕ ∈ LV ). P ∈ PN is a model of ϕ in the regulatory
network N iff checkN (P, ϕ) = true. The set of models of ϕ is denoted M(ϕ) = {P ∈
PN | checkN (P, ϕ) = true}.

2.3 Environmental Regulatory Networks

We are now ready to introduce environments, the new concept proposed in this article.
In an influence graph with environments, some variables can be used to set the system
into a specific configuration.

Definition 11 (Influence graph with environment variables). An influence
graph with environment variables IGEV = (V, EV, M, A) is an influence graph s.t.:

– (V, M, A) is an influence graph,
– EV � V is an ordered set of environment variables,
– The environment variables have no predecessors in IG: ∀v ∈ EV, d−(v) = 0,
– Environment variables appear in atoms of multiplex formulas.

Calcium Environment Variable. In the grey frame of Fig. 1, the Calcium variable is
an environment variable which can be set to 0 or 1. It does not have any associated
parameter, but the presence of Calcium adds new parameters to Operon variable which
is targeted by Calcium through the multiplex ca (in the grey dashed-line rectangle).

Definition 12 (Environments). Given IGEV = (V, EV, M, A), an environment
assigns a value to each environment variable of EV . It is a tuple of values (e1, . . . , ep)
s.t. for all k in 1 . . . p, ek ∈ Dvk , where p = |EV | is the number of environment vari-
ables. The set of environments is denoted E.

Definition 13 (Environmental property). An environmental property is a couple
(ϕ, e) where ϕ is a CTL formula in LV \EV , the language of CTL formulas over systemic
variables in V \ EV and e ∈ E is an environment. ϕ expresses a biological temporal
property which occurs under the environmental condition represented by e.

Environmental Properties for Pseudomonas æriginosa. Because Calcium variable can
be set to 0 or 1, there are two environments: e0 when Calcium = 0 and e1 when
Calcium = 1. In e1 the bacteria will become mucoid, expressed by the CTL formula:

ϕ1
bacteria ≡ AG(AF (mucB = 1))

In e0, the bacteria does not change its phenotype: a mucoid (resp. non mucoid)
bacterium will remain mucoid (resp. non mucoid); this is the formula ϕ0

bacteria used to
illustrate Definition 4. Thus, there are two environmental properties (ϕ0

bacteria, e0) and
(ϕ1

bacteria, e1).
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Our main objective is now to study a system for which different dynamic behaviours
are known under different environment contexts. So, the temporal biological knowledge
that we search exhaustively for all models is a list of environmental properties Ψ =
[(ϕi, ei)]ni=1. We present in the next sections two ways to compute these models. The
first one is a global approach which uses a modelling artefact to simulate the different
environments in a single network. The second approach begins by defining as many
regulatory networks with environment as there are environments : In each network, the
number of parameters is reduced. It then computes the global models by intersection
of the sets of models found for each of the environments.

3 All Environments’ Coexistence in Thomas’ Framework

In order to handle the biological knowledge on the behaviours of the system in different
environments, the first idea is to design a unique regulatory network that takes into
account the different environments. In this section, we present the formalisation of such
regulatory network.

3.1 Regulatory Network

Because each environment can make the system behave in a peculiar way, the ASTG
under construction has to handle “copies” of the useful states, one copy per environ-
ment. An environment variable is then considered as an inner variable which can take
as many different qualitative levels as imposed by the environment. In the influence
graph with environments presented in the previous section, environment variables have
no predecessors. Then a unique parameter is associated with them, and each environ-
ment variable is attracted towards the value to its unique parameter, whatever its
initial value, leading to an implicit change of value. To guarantee the stability of envi-
ronment variables, we complete the influence graph by adding auto-regulations on each
environment variable.

Auto-regulations for Simulating the Stability of Environment Variables. Let us
suppose that the environment variable v ∈ EV takes its value in �vl, vu�. Then, for
each value n ∈ �vl + 1, vu�, one adds a multiplex An

v whose formula is simply v � n.
Thus when v < n (resp. v � n), the multiplex An

v is not a resource (resp. is a resource)
of v. In Fig. 1, multiplex A allows the variable Calcium to stay at level 0 (resp. 1) when
initialised at 0 (resp. 1).

Multiplexes An
v play a particular role inside this formalisation, because they do not

represent any particular aspect of the biological system: they do allow the ASTG to
simulate the existence of different stable values for the environment variables. In that
meaning, they are artefactual.

Parameters Controlling the Stability of Each Environment. For each environment
variable v ∈ EV , the set of parameters controlling its dynamics is (see Definition 2)

K(v) = {Kv,ω |ω is a subset of the predecessors of v}.

Since v is an environment variable, the only predecessors are the nv = vu−vl artefactual
multiplexes Ak

v , k ∈ �vl+1, vu�. Thus, there are 2nv parameters. Fortunately some of
them are structurally inoperable (not at all useful for determining dynamics) and have
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not to be instantiated: Indeed when v = k (k ∈ �vl, vu�), the only resources of v are
the multiplexes Ai

v with i � k. Thus parameters Kv,ω such that Ai
v ∈ ω and Aj

v �∈ ω
with j < i are inoperable. All in all, when v ∈ EV can take its value in �vl, vu�, there
exists exactly vu − vl + 1 operable parameters: Kv, K

v,{A
vl+1
v }, K

v,{A
vl+1
v ,A

vl+2
v }, . . . ,

K
v,{A

vl+1
v ,A

vl+2
v ...A

vu
v }.

Moreover the stability of environment variables are strong properties that impose
the values of previously defined operable parameters. Indeed, when environment vari-
able v is set to k (k ∈ �vl, vu�), it cannot change, leading to deduce that the value of the
effective parameter is k. Thus Kv = vl, K

v,{A
vl+1
v } = vl +1, K

v,{A
vl+1
v ,A

vl+2
v } = vl +2,

. . . , K
v,{A

vl+1
v ,A

vl+2
v ...A

vu
v } = vu.

This regulatory network, including auto-regulations of environment variables and
values of associated parameters that guarantee their stability, is denoted Nglobal in the
sequel.

3.2 Formula Summing Up all Behavioural Properties

Last but not the least, the different behavioural properties have to be expressed for
this regulatory network containing all environments. We consider here that the biolog-
ical knowledge has been summed up in a list of environmental properties [(ϕi, ei)]ni=1.
Obviously, the characterisation of the states corresponding to environment ei is given
by the formula: εi ≡ ∧

vk∈EV
(vk = ei

k) where ei
k represents the value of environment

variable vk in the environment ei. Naturally, the list of environmental properties can
be transcribed in CTL formula:

Φglobal ≡
∧

i∈�1,n�

(
εi ⇒ ϕi

)

where εi characterises initialisation of environment variables. The values of parameters
of environment variables used to build Nglobal guarantee the stability of theses variables.
Finally one can use the decision procedure of TotemBioNet using the modified influence
graph and Formula Φglobal: it enumerates all possible parameter settings, and selects
only those that are consistent with Φglobal.

3.3 Application to Pseudomonas æriginosa

We apply now this global approach for determining all parameter settings consistent
with known behavioural properties of the Pseudomonas æriginosa system. The auto-
regulation of Calcium variable (multiplex and parameters) governing the Calcium
environment variable is represented outside the grey frame in Fig. 1. Variable operon
can take 3 different levels (operon ∈ �0, 2�) and has 3 predecessors (itself, mucB and
Calcium) and thus 23 parameters. Variable mucB can take 2 different levels (mucB ∈
�0, 1�) and has a unique predecessor (operon) and thus 21 parameters. Finally, the
number of parameter settings to consider is: 32

3 × 22
1
= 26, 244.

Finally, the formula Φglobal is defined from ϕ0
bacteria and ϕ1

bacteria of Subsect. 2.3:

Φglobal ≡ ((Calcium = 0) ⇒ ϕ0
bacteria) ∧ ((Calcium = 1) ⇒ ϕ1

bacteria)
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4 Divide with Environments, Combine with Intersection

This “divide and conquer” approach works environment by environment. For each envi-
ronment, a smaller regulatory network is used, and only the environmental property
associated with the environment is checked. Afterwards, the models of the global sys-
tem are built by abstracting and then intersecting the models found in each specific
environment.

4.1 Regulatory Networks with Environments

Setting a value for an environment variable reduces the state space to the hyperplane
defined by this value. This has a major impact on the size of the search space: some
parameters of the targets of the environment variables become inoperable, leading to
a drastic reduction of the number of parameter settings to consider.

Definition 14 (State space for an environment). Given an influence graph with
environment variables IGEV = (V, EV, M, A) and an environment e ∈ E, the state
space of the system for e is Se =

∏
v /∈EV Dv × ∏

vk∈EV {ek}.

Definition 15 (Operable parameters for an environment). Given IGEV , and
an environment e ∈ E, a parameter Kv,ω is operable if there exists at least a state
s ∈ Se where Kv,ω is applicable.

Pseudomonas æriginosa’s Operable Parameters. For e0 environment, the operable
parameters are the original parameters in dashed rectangles in the blue frame of Fig. 1.
Since Calcium targets variable Operon, the parameters associated with Operon change
for e1 environment, they are K_Operon:ca, K_Operon:alg:ca, K_Operon:free:ca,
K_Operon:alg:free:ca listed in the grey frame.

Definition 16 (Regulatory network with environment). A regulation network
for environment e ∈ E is the couple Ne = (IGEV , Ke) where Ke ⊂ K is the subset of
operable parameters for e. A parameter setting Pe assigns to each Kv ∈ Ke a value in
Dv.The set of all parameter settings is denoted PN e

Definition 17 (ASTG for a parameter setting Pe in environment e). Given
Ne = (IGEV , Ke) a regulatory network for environment e and Pe ∈ PN e a parameter
setting for Ne, the associated ASTGPe is defined as follow:

– Vertices are states s ∈ Se,
– Loops: there is an arc from s to itself if Pe(Kvi [s]) = si, ∀vi ∈ V \ EV .
– Arcs: there is an arc from sp = (sp

1, ..., s
p
n) to sq = (sq

1, ..., s
q
n) if there exists one

and only one index i s.t. vi ∈ V \ EV , and sp
i �= sq

i with either : sq
i = sp

i + 1 and
Pe(Kvi [s

p]) > sp
i or sq

i = sp
i − 1 and Pe(Kvi [s

p]) < sp
i .

4.2 Formulas and Abstraction of Models

In this approach, for each environmental property (ϕ, e), we successively search the
models of the formulas ϕ associated with e. From a regulatory network with environ-
ment Ne and a particular parameter setting Pe ∈ PN e, the associated transition graph
is built and the decision procedure for formula ϕ is launched on this reduced graph.
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Definition 18 (Decision procedure for properties on Ne). Given a regulatory
network Ne, a parameter setting for this network Pe ∈ PN e, the language LV \EV of
CTL formulas over systemic variables in V \ EV , checkNe is defined by:

checkNe : PN e × LV \EV → Bool
(Pe, ϕ) �→ true/false

such that checkNe(Pe, ϕ) = true iff ϕ is true on ASTGPe .

Definition 19 (Model of an environmental property). A model of an envi-
ronmental property (ϕ, e) is the set of parameter settings which validate ϕ in Ne:
Me(ϕ) = {Pe ∈ PN e | checkNe(Pe, ϕ) = true}.

To be able to combine the models Mei(ϕ
i) for several ei, which relate on different

operable parameter sets, one needs to abstract the set of operable parameter settings to
a common superset. Since Kei ⊂ K for all ei, each parameter setting Pei are abstracted
by a subset of parameter settings in PN .

Definition 20 (Abstraction of a parameter setting). Let PN be the set of param-
eter settings for the regulation network with environment variables N = (IGEV , K). Let
Ne = (IGEV , Ke) the regulation network for the particular environment e ∈ E, and
PN e its set of parameter settings.

An abstraction of a parameter setting Pe ∈ PN e to PN is the subset APe ⊂ PN such
that : ∀P ∈ APe, ∀Kv,ω ∈ Ke, P (Kv,ω) = Pe(Kv,ω), and ∀Kv,ω /∈ Ke, P (Kv,ω) ∈ Dv.

In other words, Pe is the projection of APe on parameters of Ke.

Definition 21 (Abstraction of a model). The abstraction of a model of an envi-
ronmental property (ϕ, e) is the union of abstractions of the parameter settings in
Me(ϕ): AMe(ϕ) = ∪

Pe∈Me(ϕ)
APe.

Given a list of environmental properties [(ϕi, ei)]ni=1, the parameter settings satisfying
all these properties is the intersection of the abstractions of the models of each (ϕi, ei).

Definition 22 (Model of environmental properties). Let Ψ = [(ϕi, ei)]ni=1 a list
of environmental properties. The model of Ψ is the set : M(Ψ) =

n∩
i=1

AMei(ϕ
i).

Example of abstraction. Let K = {K1, K2, K3, K4} be the parameters of N with
D1 = �0, 1�, D2 = �0, 2�, D3 = �0, 3� and D4 = �0, 1� the domains of their associ-
ated variables. Assume that Ke1 = {K1, K4} and Ke2 = {K1, K2} are the operable
parameters for environments e1 and e2.

Let Pe1 ∈ PN e1 be a parameter setting of Ne1 which assigns 0 to K1 and 1 to
K4 (denoted Pe1 = (0, −, −, 1)). Let Pe2 ∈ PN e2 , Pe2 = (0, 1, −, −) be a parameter
setting of Ne2 . Then AP = (0, 1, 3, 1) ∈ PN which assigns 0 to K1, 1 to K2, 3 to K3

and 1 to K4 belongs to APe1 and to APe2 . AP ′ = (0, 0, 2, 1) also belongs to APe1 .
Furthermore, if Pe1 is a model of ϕ1 and Pe2 is a model of ϕ2, then AP is a model of
the list of environmental properties [(ϕi, ei)]2i=1.
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4.3 Application to Pseudomonas æriginosa

We illustrate here the environment by environment approach on Pseudomonas ærigi-
nosa. According to the values the environment variable Calcium can take, two environ-
mental regulatory networks have to be constructed. Formula ϕ0

bacteria must be checked
on the first one, and ϕ1

bacteria on the second one.
Some parameters become inoperable for some environments (see Def. 15). For exam-

ple here, Operon, has three predecessors in the global approach. But in e0, the multiplex
ca is not a resource anymore, and all parameters containing ca are in that case inop-
erable. This divides by two ther numberof parameter of Operon.

In e0, Operon has 2 predecessors (so has 22 parameters) and can take its value in
DOperon = �0, 2�, thus it has 32

2
parameter settings. mucB is not directly regulated by a

environment variable, so the number of parameters which is 22
1
, does not change com-

pared to a not extended Thomas’ Framework. Thus, for environment e0, the formula
ϕ0

bacteria must be checked on 32
2 × 22

1
= 324 parameter settings. Similarly, there is

the same amount of parameter settings to handle for checking ϕ1
bacteria in e1. Finally,

there are 324 + 324 = 648 parameter settings to consider.

5 Comparing the Two Approaches

5.1 Theoretical Point of View

The question which naturally arises, is to know if the two approaches compute the same
models. The answer relies firstly on the link between the transition graph obtained for
an environment and the subgraph of the global ASTG induced by an environment, and
secondly on the link between the global formula and the environmental formulas.

Lemma 1 (Isomorphism between ASTGPe and a subgraph of ASTGP ). For
each environment e, each parameter setting Pe of PN e and each P ∈ APe, there exists
a canonical isomorphism between ASTGPe and the subgraph of ASTGP ∈ Nglobal

reduced to Se.

Proof of the lemma is given in Appendices. Following notations of Subsect. 2.2 and Def-
inition 22, we denote M(Φglobal) the set of models of Φglobal on the regulatory network
completed with auto-regulations on environment variables and associated parameters.

Theorem 1 (M(Ψ) = M(Φglobal)). Given a list Ψ ≡ [(ϕi, ei)]ni=1 of environmental
properties on an influence graph with environment variables IGEV = (V, EV, M, A),
the set M(Ψ) of models of Ψ (computed environment by environment) is equal to the
set of models of Φglobal on Nglobal.

Proof. (1) Let us consider a parameter setting P selected by the environment by
environment approach. P ∈ n∩

i=1
AMei(ϕ

i) (Def. 22). For all i ∈ �1, n�, ϕi is satisfied in

all states of ASTGP
ei

, then, by Lemma 1, ϕi is satisfied in states corresponding to ei

in ASTGP . The formula (εi ∧ AG(εi)) ⇒ ϕi is then satisfied in all states of ASTGP .
We conclude that Φglobal is satisfied (M(Ψ) ⊂ M(Φglobal)).

(2) Conversely, let us consider now a parameter setting P selected by the classical
approach: P ∈ M(Φglobal). Since Φglobal ≡ ∧n

i=1

(
(εi ∧ AG(εi)) ⇒ ϕi

)
, for all i ∈
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�1, n�, ϕi is satisfied in all states defining the environment ei. Thus, by Lemma 1,
P ∈ n∩

i=1
AMei(ϕ

i), in other words, M(Φglobal) ⊂ M(Ψ). �
Let us just remark that this proof does not suppose that all ei are different in the

list Ψ . Then, if two behaviours (ϕ1 and ϕ2) are known in a common environment e, one
can represent this information either by a unique environmental property (ϕ1 ∧ ϕ2, e)
or by the list of environmental properties [(ϕ1, e), (ϕ2, e)].

5.2 Practical Results

In this subsection, we illustrate the benefit of the environment by environment approach
in terms of efficiency. We first give a short description of the tools used to search the
models and to compute the intersection.

TotemBioNet : A Tool to Compute the Models of a Formula. The computation of the
models of a formula is implemented in our tool TotemBioNet [4,14], which is dedicated
to the identification of parameters in R. Thomas’ Modelling framework. Its inputs
are an influence graph with environment variables, an environment e, the values of
known parameters, and formalised behaviours, expressed either as Hoare triples for
trace properties or as CTL formulas for temporal properties. TotemBioNet enumerates
the parameter settings and for each Pe ∈ PN e builds the ASTGPe associated with Pe,
and calls the model-checker NuSMV [6] as a decision procedure for a CTL property ϕ.
The final TotemBioNet output is therefore Me(ϕ). Successive environments are treated
by calling TotemBioNet as many times as the number of environments, after having
set the environment variables to their specific values. The outputs are written in .csv
files which are the inputs of the intersection module.

MDDs to Compute the Intersection of Models. We choose to use Multi Valued
Decision Diagrams (MDDs) to compute the intersection of sets of models from different
environments. MDDs provide a compact representation for discrete data sets, with
efficient set operations: intersection, union and set complement. Furthermore, it is easy
(and efficient) to express that inside a common set of variables, certain variables can
take any value. In this way, it is very convenient to abstract and combine sets of
parameter settings which do not relate to the same variables because of inoperable
parameters. TotemBioNet calls the Colomoto mddlib library1 developed by A. Naldi
to compute the intersection of the models obtained in successive environments. This
library was designed for modelling biological systems, and notably to find stable states
and analyse circuits [17].

Pseudomonas æriginosa Execution Time. The 26, 244 parameter settings for the global
approach (see Sect. 3.3) are enumerated and checked against the global formula Φglobal

in 147.238 seconds on a personal computer.2

For the environment by environment approach, consistent parameter settings are
computed by TotemBioNet in about 700ms for each environment. Intersection of sets
of models (using MDD to find the final result) needs 9.61 ms and thus the total time to

1 https://github.com/colomoto/mddlib.
2 All the given execution times are means over 20 TotemBioNet runs on an Intel R©

Core
TM

i7-7700 CPU/3.60GHz × 8, RAM: 32 Go, under Linux. Interested readers
can get the input files and results for the examples presented in this paper: https://
gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021.

https://github.com/colomoto/mddlib
https://gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021
https://gitlab.com/totembionet/totembionet/-/tree/master/examples/CMSB2021
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compute the models compatible for the two environments is 1.41 s, which is 105 times
faster.

This example is a very small regulation network which involves only few variables.
It already shows that the second approach is less time consuming. With a bigger reg-
ulatory network involving many environment variables, the relevance of the second
approach is even more visible. The next section chooses a cell metabolism regulatory
network as case study to show the scaling of the approach.

6 Case Study: Cell Metabolism

Cellular metabolism is a set of chemical reactions that occur in living cells. It involves
intertwined biochemical reaction series, better known as metabolic pathways, which
are thinly regulated. These processes allow cells to grow, multiply and maintain their
structures [3]. Starting from classical biological knowledge of an healthy cell, we already
proposed a qualitative regulatory network of the metabolism regulation [8] based on a
precursor model [13]. Blue frame in Fig. 2 in Appendices represents the initial influence
graph when the cell is in a healthy context. Unfortunately, when the context changes
(nutrient lacks for example) some of these regulations are affected.

6.1 Metabolism Regulations According to Environments

Dependence of the metabolism on nutrient availability has been largely studied, and we
decided to incorporate these dependences at a coarse grained level by adding four kinds
of nutrients: sugar, amino acids, lipids and also oxygen. The level of their availability
affects the regulation: For example, with oxygen supply the cell uses the oxidative phos-
phorylation pathway while without oxygen supply it uses fermentative pathways [15].
Grey frame in Fig. 2 incorporates environment variables representing nutrient supplies
(GLC ∈ �0, 2� for sugar, AA ∈ �0, 2� for Amino Acids, exO2 ∈ �0, 1� for oxygen and
FA ∈ �0, 1� for Fatty Acids) and Table 1 (Appendices) lists all operable parameters of
this regulation network. The parameters of variables which do not depend on environ-
ment variables have been all determined from biological knowledge, only parameters
concerning NCD, O2 and GLYC remain to be identified (see below).

Globally, one has to consider 3×3×2×2 = 36 different environments, and for each
environment, some properties are associated. The list Ψ = [(ϕi, ei)]36i=1 of environmental
properties is represented in Tables 2 and 3 (Appendices).

6.2 All Environments Coexistence in Thomas’ Framework

In this approach, the time necessary for extracting all the models of Φglobal essentially
depends on the number of parameter settings which exponentially depends on the
number of unknown parameters. Thus, let us first count the number of unidentified
parameters.

Taking into account FA does not add new multiplex (FA participates to an already
present multiplex). So, it does not increase the number of parameters but the three
others do. GLC acts on GLYC through two distinct multiplexes: glc1 and gl2 which
respectively specify the external sugar at level 1 and 2. Thus, with the 2 previously
existing predecessors, the GLYC in-degree becomes 4 , leading to a number of param-
eters for GLYC equal to 24 = 16 (instead of 22 = 4). Among them, 4 parameters are
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structurally inoperable because when the formula of glc2 is true, the formula of glc1
is also true. Consequently, a parameter KGLY C,ω where glc2 ∈ ω and glc1 �∈ ω is not
operable. Finally, GLYC has 12 parameters.

The target of AA, called NCD, gains also 2 predecessors (because AA has three levels)
and has now 3 predecessors: |K(NCD)| = 23 = 8. Two parameters are also structurally
inoperable for NCD, because AA cannot reach level 2 without passing level 1, decreasing
the number of parameters to 6. Finally, the target of exO2, that is O2, has now 2
predecessors leading to |K(O2)| = 22 = 4 parameters.

The number of parameter settings is equal to the product of the numbers of values
that each of the parameters can take: the 12 (resp. 6, 4) parameters associated to
GLYC (resp. NCD, O2) can take 3 (resp. 3, 2) different values (DGLYC = DNCD = �0, 2� and
DO2 = �0, 1�). This gives rise to a number of parameter settings equal to: 312×36×24 =
6, 198, 727, 824.

Knowing that TotemBioNet performs 4.2 decisions checkN (P, Φglobal) per second
(for this regulatory network N , the formula Φglobal and any parameter setting P ∈
NP), enumeration of all parameter settings would take approximatively 49, 1 years.3

6.3 Divide with Environments, Combine with Intersection

The second option treats in an independent way each of the 36 environments on expo-
nentially smaller search spaces, drastically decreasing the number of calls to the decision
procedure.

Indeed, for each environment where ex02= 0 (resp. = 1), the number of oper-
able parameters associated with O2 in only two: K02,∅, K02,{PHOX} (resp. K02,{ex02},
K02,{ex02,PHOX}). It is the same for the other targets of environment variables. For
each environment where AA= 0 (resp. = 1, = 2), the number of operable param-
eters associated with NCD in only two: KNCD,∅ and KNCD,{KREBS} (resp. KNCD,{AA1} and
KNCD,{AA1,KREBS}, KNCD,{AA1,AA2} and KNCD,{AA1,AA2,KREBS}). In a similar manner, for each envi-
ronment where GLC= 0 (resp. = 1, = 2), the number of operable parameters associated
with GLYC in only 4. All in all, in each environment, TotemBioNet has to consider is
34 × 32 × 22 = 2916 parameter settings.

For each environment, the 2916 decisions are computed by TotemBioNet in approx-
imately 74,365 s. For the 36 environments, TotemBioNet needs 2677.142 s. Adding
789ms for the computation of the intersection between all sets of models, the total exe-
cution time for extracting the exhaustive set of models is (2677.142+0.789)/60 = 44.6
min.

This proves the usefulness of the second approach when modelling larger influence
graphs for which the first approach is unable to compute the models in an acceptable
time. This second option is 579,103 times faster.

7 Conclusion

Our “divide and conquer” approach allows to reduce the time necessary for searching
all models of a list of environmental properties in an unthinkable way. In fact, for a
given influence graph, the global execution time quasi-linearly depends on the number
of parameter settings which exponentially depends on the number of unknown param-
eters. The environment by environment approach seeks to reduce as much as possible

3 49.1 = 6, 198, 727, 824/(4.2 × 3600 × 24 × 365.25), where 365.25 is for leap years.
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the number of parameters to be identified by taking advantage of the fact that each
environment (and by the way each environmental property) does not involve the whole
set of parameters. This allows us to process large examples that were not yet accessible.

To process even more complex networks, it becomes manifest to parallelise the
whole process: A coarse-grained parallelization is very easy because the searches of the
models for each environment are completely independent.

From a modelling point of view, the environment variables are very powerful,
because they constitute a good tool for exploring hypotheses. In particular, the con-
sequences of Knock-Outs can be studied via such variables: If a Knock-Out leads to
stopping a metabolic pathway, one can add an environment variable regulating this
metabolic pathway, and impose via parameters of its target the decrease in the activ-
ity of its target.

In a longer term perspective, these environment variables constitute a first step
towards a coupling of several sub-systems: Before embarking on the coupling, we can
consider each of the studied subsystems with environment variables which control them
differently in different part of the global phase space.

Appendices

Proof of the lemma. Each state of ASTGPe is trivially unequivocally associated to
a state of ASTGP (see Definitions 6 and 14). Let us show that transitions are the
same. Let us consider a common state s. For determining the applicable parameters
at s in ASTGPe , one has to evaluate the formulas of multiplexes controlling each
non environment variable. Atoms concerning either environment or non environment
variables are evaluated in the same way in ASTGPe and ASTGP (the tuple representing
s in ASTGPe equals the one representing s in ASTGP ). Thus applicable parameters
of non-environment variables at s are the same, leading to the same transitions that
do not change the environment variables.

Moreover, because of our choice of parameter values for controling the evolution of
environment variables, there does not exist any transition in ASTGP that change the
values of environment variables.

Thus, when all environment variables are fixed, the subgraph of ASTGP reduced
to the states corresponding to environment e, and ASTGPe are isomorphic. �
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Table 1. Operable Parameters associated with the metabolism regulation Influence
Graph. The majority of parameters have been identified from biological knowledge,
only parameters concerning NCD, O2 and GLYC remain to be identified.

# Parameters for ATP # Parameters for O2 # Parameters for NADH
KATP = 0 KO2 KNADH = 0
KATP, LBP = 0 KO2, PHOX KNADH, FERM = 0
KATP, nLBP = 0 KO2, exO2 KNADH, PHOX = 0
KATP, LBP nLBP = 0 KO2, exO2 PHOX KNADH, AAS = 0
KATP, PHOX = 1 KNADH, FERM PHOX = 0
KATP, nLBP PHOX = 1 # Parameters for GLYC KNADH, FERM AAS = 0
KATP, LBP nLBP PHOX = 2 KGLYC KNADH, AAS PHOX = 0
KATP, GLYC1 = 0 KGLYC, GR KNADH, FERM AAS PHOX = 0
KATP, GLYC1 nLBP = 0 KGLYC, GLC1 KNADH, FERM KREBS AAS = 0
KATP, GLYC1 LBP nLBP = 2 KGLYC, GLC1 GR KNADH, GLYC AAS PHOX = 0
KATP, GLYC1 GLYC2 = 1 KGLYC, GLC1 GLC2 KNADH, GLYC FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 nLBP = 1 KGLYC, GLC1 GLC2 GR KNADH, KREBS FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 LBP nLBP = 2 KGLYC, COF KNADH, GLYC KREBS FERM AAS PHOX = 1
KATP, GLYC1 PHOX = 1 KGLYC, COF GR KNADH, GLYC KREBS AAS = 0
KATP, GLYC1 nLBP PHOX = 1 KGLYC, COF GLC1 KNADH, FERM GLYC AAS = 0
KATP, GLYC1 LBP nLBP PHOX = 2 KGLYC, COF GLC1 GR KNADH, GLYC KREBS = 0
KATP, GLYC1 GLYC2 PHOX = 1 KGLYC, COF GLC1 GLC2 KNADH, FERM KREBS = 0
KATP, GLYC1 GLYC2 nLBP PHOX = 1 KGLYC, COF GLC1 GLC2 GR KNADH, KREBS AAS = 0
KATP, GLYC1 GLYC2 LBP nLBP PHOX = 2 KNADH, GLYC AAS = 0

# Parameters for nLBP KNADH, GLYC PHOX = 0
# Parameters for LBP KnLBP = 0 KNADH, FERM GLYC = 0
KLBP = 0 KnLBP, PPP = 1 KNADH, KREBS = 0
KLBP, LS = 1 KnLBP, AAS = 1 KNADH, GLYC = 0
KLBP, BOX = 0 KnLBP, AAS PPP = 1 KNADH, FERM GLYC KREBS AAS = 1
KLBP, LS BOX = 1 KNADH, KREBS PHOX = 1

# Parameters for KREBS KNADH, KREBS FERM PHOX = 1
# Parameters for NCD KKREBS = 0 KNADH, KREBS AAS PHOX = 1
KNCD KKREBS, AnO = 1 KNADH, GLYC KREBS PHOX = 1
KNCD, KREBS KKREBS, AnO aKG = 2 KNADH, FERM GLYC KREBS PHOX = 1
KNCD, AA1 KKREBS, BOX = 1 KNADH, GLYC KREBS AAS PHOX = 1
KNCD, AA1 KREBS
KNCD, AA1 AA2 # Parameters for PHOX # Parameters for FERM
KNCD, AA1 AA2 KREBS KPHOX = 0 KFERM = 0

KPHOX, PC = 1 KFERM, EP = 1
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Fig. 2. Influence Graph with environment variables. Blue frame: initial influence
graph. Grey frame: interaction graph with environment variables. Outside: artefactual
regulations guaranteeing the stability of environment variables. Little squares with a
number s inside are compact descriptions of multiplexes: a positive (resp. negative)
number represents an activation (resp. inhibition) at level s. (Color figure online)
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Table 2. CTL formulas for the first 18 environments of the metabolism regulation
influence graph. For each environment, several properties have to be checked. Thus, ϕi

is in fact the conjunction of all formulas in the cell of the table. Note that, formulas are
written in fair-CTL (in which the properties are checked only on fair pathes, that is on
pathes which do not cross an infinite number of times a given state without firetaking
all possible transitions from this state) but fair-CTL formulas are easy to translate into
CTL formulas [18].

#1 (FA=0, exO2=0, GLC=0, AA=0) #2 (FA=0, exO2=0, GLC=0, AA=1) #3 (FA=0, exO2=0, GLC=0, AA=2) #4 (FA=0, exO2=0, GLC=1, AA=0) #5 (FA=0, exO2=0, GLC=1, AA=1) #6 (FA=0, exO2=0, GLC=1, AA=2)

f111=(AF(AG(ATP=0))) f211=(AF(AG(ATP=0))) f311=(AF(AG(ATP=0))) f411=(!(AF(AG(ATP=0))))
f511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f121=(AF(AG(O2=0))) f221=(AF(AG(O2=0))) f321=(AF(AG(O2=0))) f421=(AF(AG(O2=0))) f521=(AF(AG(O2=0))) f621=(AF(AG(O2=0)))

f131=(AF(AG(GLYC=0))) f231=(AF(AG(GLYC=0))) f331=(AF(AG(GLYC=0))) f431=(AG(AF(GLYC=0)&AF(GLYC=1))) f531=(AG(AF(GLYC=0)&AF(GLYC=1)))
f631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f141=(AF(AG(nLBP=0))) f241=(AF(AG(nLBP=0) f341=(AF(AG(nLBP=0))) f461=(!(AF(AG(FERM=0)))) f541=(!(AF(AG(nLBP=0)))) f641=(!(AF(AG(nLBP=0))))
f151=(AF(AG(LBP=0))) f251=(AF(AG(LBP=0))) f351=(AF(AG(LBP=0))) f471=(AF(AG(PHOX=0))) f561=(!(AF(AG(FERM=0)))) f651=(!(AF(AG(LBP=0))))

f161=(AF(AG(FERM=0))) f261=(AF(AG(FERM=0))) f361=(AF(AG(FERM=0)))
f481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f571=(AF(AG(PHOX=0))) f661=(!(AF(AG(FERM=0))))

f171=(AF(AG(PHOX=0))) f271=(AF(AG(PHOX=0))) f371=(AF(AG(PHOX=0)))
f581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f671=(AF(AG(PHOX=0)))

f181=(AF(AG(NADH=0)))
f681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

#7 (FA=0, exO2=0, GLC=2, AA=0) #8 (FA=0, exO2=0, GLC=2, AA=1) #9 (FA=0, exO2=0, GLC=2, AA=2) #10 (FA=0, exO2=1, GLC=0, AA=0) #11 (FA=0, exO2=1, GLC=0, AA=1) #12 (FA=0, exO2=1, GLC=0, AA=2)

f711=(!(AF(AG(ATP=0))))
f811=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f911=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1011=(AF(AG(ATP=0))) f1111=(AF(AG(ATP=0))) f1211=(AF(AG(ATP=0)))

f721=(AF(AG(O2=0))) f821=(AF(AG(O2=0))) f921=(AF(AG(O2=0))) f1021=(!(AF(AG(O2=0)))) f1121=(!(AF(AG(O2=0)))) f1221=(!(AF(AG(O2=0))))
f731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f831=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f931=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1031=(AF(AG(GLYC=0))) f1141=(AF(AG(nLBP=0))) f1241=(AF(AG(nLBP=0)))

f761=(!(AF(AG(FERM=0)))) f841=(!(AF(AG(nLBP=0)))) f941=(!(AF(AG(nLBP=0)))) f1041=(AF(AG(nLBP=0))) f1151=(AF(AG(LBP=0))) f1251=(AF(AG(LBP=0)))
f771=(AF(AG(PHOX=0))) f861=(!(AF(AG(FERM=0)))) f951=(!(AF(AG(LBP=0)))) f1051=(AF(AG(LBP=0)))
f781=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f871=(AF(AG(PHOX=0)))
F981=(AG(AF(NADH=1)&AF(NADH=2)))

f961=(!(AF(AG(FERM=0)))) f1071=(AF(AG(PHOX=0)))

f881=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f971=(AF(AG(PHOX=0))) f1081=(AF(AG(NADH=0)))

#13 (FA=0, exO2=1, GLC=1, AA=0) #14 (FA=0, exO2=1, GLC=1, AA=1) #15 (FA=0, exO2=1, GLC=1, AA=2) #16 (FA=0, exO2=1, GLC=2, AA=0) #17 (FA=0, exO2=1, GLC=2, AA=1) #18 (FA=0, exO2=1, GLC=2, AA=2)
f1311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1711=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1811=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1321=(AG(AF(O2>=0)&AF(O2>=1))) f1421=(AG(AF(O2>=0)&AF(O2>=1))) f1521=(AG(AF(O2>=0)&AF(O2>=1))) f1621=(!(AF(AG(O2=0)))) f1721=(!(AF(AG(O2=0)))) f1821=(!(AF(AG(O2=0))))
f1331=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1831=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1361=(AF(AG(FERM=0))) f1441=(!(AF(AG(nLBP=0)))) f1541=(!(AF(AG(nLBP=0)))) f1641=(AF(AG(nLBP=0))) f1741=(!(AF(AG(nLBP=0)))) f1841=(!(AF(AG(nLBP=0))))
f1371=(!(AF(AG(PHOX=0)))) f1461=(AF(AG(FERM=0))) f1551=(!(AF(AG(LBP=0)))) f1651=(!(AF(AG(LBP=0)))) f1751=(!(AF(AG(LBP=0)))) f1851=(!(AF(AG(LBP=0))))
f1381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1471=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f1561=(AF(AG(FERM=0))) f1661=(!(AF(AG(FERM=0)))) f1761=(!(AF(AG(FERM=0)))) f1861=(!(AF(AG(FERM=0))))

f1481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1571=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f1671=(!(AF(AG(PHOX=1)))) f1771=(!(AF(AG(PHOX=1)))) f1871=(!(AF(AG(PHOX=1))))

f1581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1781=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f1881=(AG(AF(NADH=1)&AF(NADH=2)))

Table 3. CTL formulas for the last 18 environments of the metabolism regulation
influence graph.

#19 (FA=1, exO2=0, GLC=0, AA=0) #20 (FA=1, exO2=0, GLC=0, AA=1) #21 (FA=1, exO2=0, GLC=0, AA=2) #22 (FA=1, exO2=0, GLC=1, AA=0) #23 (FA=1, exO2=0, GLC=1, AA=1) #24 (FA=1, exO2=0, GLC=1, AA=2)

f1911=(AF(AG(ATP=0))) f2011=(AF(AG(ATP=0))) f2111=(AF(AG(ATP=0))) f2211=(!(AF(AG(ATP=0))))
f2311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f1921=(AF(AG(O2=0))) f2021=(AF(AG(O2=0))) f2121=(AF(AG(O2=0))) f2221=(AF(AG(O2=0))) f2321=(AF(AG(O2=0))) f2421=(AF(AG(O2=0)))

f1931=(AF(AG(GLYC=0))) f2031=(AF(AG(GLYC=0))) f2131=(AF(AG(GLYC=0))) f2231=(AG(AF(GLYC=0)&AF(GLYC=1))) f2331=(AG(AF(GLYC=0)&AF(GLYC=1)))
f2431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f1941=(AF(AG(nLBP=0))) f2041=(AF(AG(nLBP=0))) f2141=(AF(AG(nLBP=0))) f2261=(!(AF(AG(FERM=0)))) f2341=(!(AF(AG(nLBP=0)))) f2441=(!(AF(AG(nLBP=0))))
f1951=(AF(AG(LBP=0))) f2051=(AF(AG(LBP=0))) f2151=(AF(AG(LBP=0))) f2271=(AF(AG(PHOX=0))) f2351=(!(AF(AG(LBP=0)))) f2451=(!(AF(AG(LBP=0))))

f1961=(AF(AG(FERM=0))) f2061=(AF(AG(FERM=0))) f2161=(AF(AG(FERM=0)))
f2281=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2361=(!(AF(AG(FERM=0)))) f2461=(!(AF(AG(FERM=0))))

f1971=(AF(AG(PHOX=0))) f2071=(AF(AG(PHOX=0))) f2171=(AF(AG(PHOX=0))) f2371=(AF(AG(PHOX=0))) f2471=(AF(AG(PHOX=0)))

f1981=(AF(AG(NADH=0)))
f2381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

#25 (FA=1, exO2=0, GLC=2, AA=0) #26 (FA=1, exO2=0, GLC=2, AA=1) #27 (FA=1, exO2=0, GLC=2, AA=2) #28 (FA=1, exO2=1, GLC=0, AA=0) #29 (FA=1, exO2=1, GLC=0, AA=1) #30 (FA=1, exO2=1, GLC=0, AA=2)

f2511=(!(AF(AG(ATP=0))))
f2611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2711=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f2811=(AF(AG(ATP=0))) f2911=(AF(AG(ATP=0))) f3011=(AF(AG(ATP=0)))

f2521=(AF(AG(O2=0))) f2621=(AF(AG(O2=0))) f2721=(AF(AG(O2=0))) f2821=(!(AF(AG(O2=0)))) f2921=(!(AF(AG(O2=0)))) f3021=(!(AF(AG(O2=0))))
f2531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2731=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f2831=(AF(AG(GLYC=0))) f2941=(AF(AG(nLBP=0))) f3041=(AF(AG(nLBP=0)))

f2561=(!(AF(AG(FERM=0)))) f2641=(!(AF(AG(nLBP=0)))) f2741=(!(AF(AG(nLBP=0)))) f2841=(AF(AG(nLBP=0))) f2951=(AF(AG(LBP=0))) f3051=(AF(AG(LBP=0)))
f2571=(AF(AG(PHOX=0))) f2651=(!(AF(AG(LBP=0)))) f2751=(!(AF(AG(LBP=0)))) f2851=(AF(AG(LBP=0)))
f2581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2661=(!(AF(AG(FERM=0)))) f2761=(!(AF(AG(FERM=0)))) f2871=(AF(AG(PHOX=0)))

f2671=(AF(AG(PHOX=0))) f2771=(AF(AG(PHOX=0))) f2881=(AF(AG(NADH=0)))
f2681=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f2781=(AG(AF(NADH=1)&AF(NADH=2)))

#31 (FA=1, exO2=1, GLC=1, AA=0) #32 (FA=1, exO2=1, GLC=1, AA=1) #33 (FA=1, exO2=1, GLC=1, AA=2) #34 (FA=1, exO2=1, GLC=2, AA=0) #35 (FA=1, exO2=1, GLC=2, AA=1) #36 (FA=1, exO2=1, GLC=2, AA=2)
f3111=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3211=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3311=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3411=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3511=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3611=(AG(AF(ATP>=0)&AF(ATP>=1))|
AG(AF(ATP>=0)&AF(ATP>=2))|
AG(AF(ATP>=2)&AF(ATP>=1)))

f3121=(AG(AF(O2>=0)&AF(O2>=1))) f3221=(AG(AF(O2>=0)&AF(O2>=1))) f3321=(AG(AF(O2>=0)&AF(O2>=1))) f3421=(!(AF(AG(O2=0)))) f3521=(!(AF(AG(O2=0)))) f3621=(!(AF(AG(O2=0))))
f3131=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3231=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3331=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3431=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3531=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3631=(AG(AF(GLYC>=0)&AF(GLYC>=1))|
AG(AF(GLYC>=0)&AF(GLYC>=2))|
AG(AF(GLYC>=2)&AF(GLYC>=1)))

f3161=(AF(AG(FERM=0))) f3241=(!(AF(AG(nLBP=0)))) f3341=(!(AF(AG(nLBP=0)))) f3441=(AF(AG(nLBP=0))) f3541=(!(AF(AG(nLBP=0)))) f3641=(!(AF(AG(nLBP=0))))
f3171=(!(AF(AG(PHOX=0)))) f3251=(!(AF(AG(LBP=0)))) f3351=(!(AF(AG(LBP=0)))) f3451=(!(AF(AG(LBP=0)))) f3551=(!(AF(AG(LBP=0)))) f3651=(!(AF(AG(LBP=0))))
f3181=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3261=(AF(AG(FERM=0))) f3361=(AF(AG(FERM=0))) f3461=(AG(AF(FERM>=0)&AF(FERM>=1))) f3561=(AG(AF(FERM>=0)&AF(FERM>=1))) f3661=(AG(AF(FERM>=0)&AF(FERM>=1)))

f3271=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f3371=(AG(AF(PHOX>=0)&AF(PHOX>=1))) f3471=(!(AF(AG(PHOX=1)))) f3571=(!(AF(AG(PHOX=1)))) f3671=(!(AF(AG(PHOX=1))))
f3281=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3381=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3481=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3581=(AG(AF(NADH>=0)&AF(NADH>=1))|
AG(AF(NADH>=0)&AF(NADH>=2))|
AG(AF(NADH>=2)&AF(NADH>=1)))

f3681=(AG(AF(NADH=1)&AF(NADH=2)))
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