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Abstract. We introduce a hybrid modelling framework for gene regu-
latory networks as an extension of the René Thomas' discrete modelling
framework. We handle temporal aspects through delays expressing the
time mandatory to pass from a qualitative state to another one. It per-
mits one to build, from a speci�cation expressed in terms of paths, the
constraints on the temporal parameters in order to assure the consistency
between the hybrid model and the speci�cation.
We illustrate this modelling framework on the simple system of mucus

production in the bacterium Pseudomonas aeruginosa. We show through
this example how to build the constraints on the delays parameters for
the speci�cation of a cycle in the dynamics.

1 Introduction

Modelling gene regulatory networks aims at deep understanding of their be-
haviours and thus at some non-obvious predictions [1�4]. Unfortunately, while
available data on the interaction graph between genes are more and more nu-
merous, the kinetic data allowing us to identify the sensible parameters are
di�cult to obtain experimentally. This parameter identi�cation problem consti-
tutes the cornerstone of the modelling activities. Whereas the quantitive models
(di�erential equations, stochastic models) need a good precision on the avail-
able information about the dynamics of the system, qualitative models which
focus only on the qualitative features of the dynamics, make easier the parame-
ter identi�cation problem. This comment motivates the development of di�erent
methods for which this identi�cation problem is tractable [5�7]. For example
René Thomas' discrete modelling [8] of gene regulatory networks (GRN) is a
well-known approach to study the dynamics resulting from a set of interacting
genes. It deals with some discrete parameters that re�ect the possible targets of
trajectories. Those parameters are a priori unknown, but they can generally be
deduced from a well-chosen set of biologically observed trajectories. Moreover



there exists a strong correspondence between modelling by piecewise linear dif-
ferential equations and such boolean or discrete modellings [9].
Unfortunately this framework neglects the time delay necessary for a gene to
pass from one level of expression to another one, whereas information on the
time necessary for the system to go from one state to another one is often ex-
perimentally available. For example, time spent by the system to cover a whole
turn of a periodic trajectory (e.g. circadian cycle) is often well known. Such kind
of information is not used to face up the parameter identi�cation problem in
the �standard� Thomas' framework without delays. This remark motivated sev-
eral researchers to develop mathematical frameworks [10] or formal frameworks
[11�15] where time is explicit. The e�ect of time delays on the robustness of
di�erential systems becomes also an interesting research perspective [16].

In this article, we propose a new modelling framework which extends the
discrete modelling framework of René Thomas by introducing temporal aspects.
This modelling framework inherits from the pure qualitative modelling frame-
work the computer aided methods for determination of suitable parameter val-
ues, but it introduces a continuous notion of time through the handling of delays.
Thus, we propose a hybrid modelling framework where discrete and (temporal)
continuous dynamics are mixed. Naturally, these delays are coded by new pa-
rameters, i.e. delays mandatory for a gene to go from a discrete abstract level to
another one, which are not deductible from previous qualitative models. When
this framework is viewed as an abstraction of piecewise linear di�erential equa-
tions, as discrete modelling is, some constraints on the delays of the hybrid model
can be built to ensure the consistency between the hybrid model and the un-
derlying system of piecewise linear di�erential equations. In particular, delays
of the hybrid models have to satisfy some constraints which can be deduced
from the piecewise linear di�erential equation systems. Nevertheless, kinetic pa-
rameters of the PLDE system are generally unknown and the key point of the
modelling process lies in identi�cation of these kinetic parameters. Adding de-
lays, the identi�cation problem is more di�cult because of the increased number
of parameters. Nonetheless much temporal data is available from experiments
and because hybrid modelling frameworks preserve powerful computer-aided rea-
soning capabilities, computer is able to reject a large class of parameter values.
To illustrate our hybrid modelling framework, we use as running example, an ex-
tremely simpli�ed model, representing the production of mucus of the bacterium
Pseudomonas aeruginosa [17, 18]. P. aeruginosa is an opportunistic pathogen,
often encountered in chronic lung diseases such as cystic �brosis. The main reg-
ulator for the mucus production, AlgU, supervises an operon which is made of 4
genes among which one codes for a protein that is an inhibitor of AlgU. More-
over AlgU favours its own synthesis. The mucus production regulatory network
can then be simpli�ed into a regulatory graph with two nodes: x represents
AlgU, and y its inhibitor [17]. x regulates positively y and also regulates itself,
whereas y regulates negatively x. From a biological point of view, it is crucial to
determine if the change of behaviours (passing from a state where mucus is not
produced to another one where it is) is mostly due to change of the regulations



(mutation) or mostly due to a change of state. We show in this article that it
is possible to construct a hybrid model in which the behaviour which does not
produce mucus is represented by a limit cycle.

The paper is organized as follows. We �rst recall in section 2 the principles
of the modelling by a system of piecewise linear di�erential equations and of the
discrete modelling of René Thomas. Section 3 is devoted to the de�nition of the
considered hybrid models. In section 4, we sketch how to build a set of constraints
on the delays parameters in order to get a hybrid model whose dynamics present
a particular path. Finally section 5 is devoted to concluding remarks.

2 Continuous and discrete models

PLDE modelling. Modelling a gene regulatory network with a system of piece-
wise linear di�erential equations [19], PLDE for short, makes mandatory the
knowledge of regulations. In particular, for each regulation, which can involve
several regulators, one has to de�ne under which real concentration conditions
this regulation is e�ective. As usual, because regulations are often considered
as sigmoidal, we consider only the piecewise di�erential system, which is built
as an approximation of the di�erential system by replacing sigmoids by steps

functions: s+θ (x) =

{
1, x > θ

0, x < θ
and s−θ (x) = 1 − s+θ (x) where θ ∈ R+ is the

threshold of the sigmoid.

De�nition 1 (PLDE). Let us consider a �nite set of positive real variables
X = {x1, x2, . . . , xn} and let us denote x the vector (x1, x2, . . . , xn). A system
of piecewise linear di�erential equations (PLDE) on X is de�ned by:

ẋi = gi(x)− γixi with 0 ≤ xi and 1 ≤ i ≤ n

where γi is the degradation rate of variable xi and each gi is a function rep-
resenting the synthesis rate of variable xi which is supposed to be additive (the
synthesis rate is the sum of all e�ective regulations):

gi(x) = ki +
∑

j∈R(i)

kijrij(x) (1)

where

� ki ∈ R+ and kij ∈ R+∗ are kinetic parameters,
� The regulation functions rij are some combinations of step functions:

< r >::= s+θ |s
−
θ |1− < r > | < r > × < r >

� R(i) is the set of possible indices such that rij is a regulation function on i.

The dynamics of a PLDE system is intrinsically related to kinetic parameters.
In the rest of the paper, kinetic parameters are indexed by a set of resources.
Intuitively, the set of resources at a given continuous state is the set of the
regulations which are e�ective at this continuous state.



De�nition 2 (Resources). The set of resources of variable xi at continuous
state x, denoted Ωi(x), is the �nite set Ωi(x) = {j | rij(x) = 1}.

Because of the �nite number of possible sets of resources, the concentration
space of each variable xi can be partitioned in equivalence classes de�ned by the
same set of resources of variable xi: x

1
i and x

2
i are in the same equivalence class

i� Ωi(x1
i ) = Ωi(x2

i ). These equivalence classes split the concentration space of xi
into open intervals which can be classicaly numbered by 0, 1... : 0 is the name
of the �rst interval, 1 denotes the second interval and so on.

We extend this equivalence relation to the concentration space of n dimen-
sions. The principle of the partition is simple: we gather in the same domain
all the continuous states for which each concentration coordinate is in the same
interval. Because of the form of the regulation functions, all domains (i.e. equiv-
alence classes) are hyper-rectangular zones. Moreover, since all the continuous
states of the same domain are identically situated with regard to the thresholds,
they all have the same set of resources: ∀x ∈ d, Ωi(x) =constant. So we can
de�ne the set of resources of a domain:

De�nition 3 (Resources of a domain). The set of resources of variable xi
in domain d, denoted ωi(d) is the set of resources (see Def. 2) of variable xi at
any point x of d: ωi(d) = {j | ∀x ∈ d, rij(x) = 1}.

Finally, to simulate a PLDE system, values of kinetic parameters (ki and kij
in eq. (1)) have to be given. Unfortunately, these parameters are not easy to
evaluate in vivo, and values obtained in vitro are not necessarily transposable
for the system in vivo. Valuating parameters thus becomes the cornerstone of
the modelling process.

Discrete modelling. To overcome these di�culties of parameters valuation, René
Thomas �rst introduced a boolean framework [7] then a discrete formalism [8]
which have been proven to be consistent with the PLDE modelling framework [9].
In this section, we sketch this qualitative framework which mimics qualitativelly
the continuous framework.

From a qualitative point of view, at a particular point of the concentration
space, the dynamics is controlled only by the set of the regulations which are
resources. Actually René Thomas did not propose such a rich way to describe
the regulations but this discrete modelling framework can be easely extended.
Let us �rst notice, that the regulations do not change inside a same domain
class, that is, the di�erential equation system is linear in each hyper-rectangular
zone which de�ne the domains. Then the solutions in each zone are analytically
deducible and converge towards a unique focal point. Then

� with each domain is associated a qualitative state,
� the coordinate i of the focal point associated to the domain d is given by

((ki +
∑
j∈R(i) kijrij(x))/λi)i∈V for any x ∈ d,

� because of the monotonicity of the solutions of the di�erential equations,
trajectories starting in the domain d go towards the associated focal point
until they reach the boundary of d.



� From a qualitative point of view, only the position of the focal point is
important. Then, for the domain d we call Ki,ωi(d) the number of the interval
in which stays the coordinate i of the focal point which depends only on the
set of resources ωi(d) of variable xi in domain d.

This idea leads to the de�nition of the discrete transition system.

De�nition 4 (Transition system). The discrete dynamics of a gene regula-
tory network with n variables is given by the transition system de�ned by:

� the set of vertices is the set of equivalence classes of the concentration space,
called a discrete states; each equivalence class is represented by a vector of
integer d = (di)i∈[1,n] where di is the number of the interval in which stays
the coordinate i of a particular point of the equivalence class,

� There exists a transition from the discrete state d to the discrete state d′ if

• ∃i ∈ [1, n] such that

{
d′i = di + 1 and Ki,ωi(d) > di
d′i = di − 1 and Ki,ωi(d) < di

• ∀j 6= i, d′j = dj.

A strategy for determining discrete parameters. Let us observe that the number
of di�erent parameters in the discrete modelling framework is �nite and that
each parameter can take a �nite number of values. Thus, by enumaration, all
the possible models can be simulated in order to keep only the valuations of pa-
rameters leading to a transition system which is consistent with all the available
speci�cations on the behaviour of the biological system. Generally, known be-
havioural properties can be expressed by a particular qualitative observation of
the following class: the saturation of the cell in a particular gene product (resp.
the knock-out of a gene) leads to a state where an other speci�c gene product is
present or absent.

This computer aided modelling approach has already been implemented us-
ing classical model-checking techniques [18] or symbolic model-checking tech-
niques [20], and then using constraint programming techniques [21]. The observa-
tion data are transcripted into temporal logic formulas, a formal representation
of a knowledge about the traces of a system which can be handled by com-
puters. In [18], for each possible valuation, the transition system is computed
and a procedure of model-checking is performed. This allows one to retain only
the valuations that lead to a transition system satisfying the formula. This ap-
proach, requiring enumeration of all parameter valuations, has been rephrased
for a temporal logic so that a single pass of model-checking gives a symbolic
representation of all the models validating the temporal property [20]. The ap-
proaches adopted in [21�23] use constraints programming. The temporal logic
formula is translated into constraints on the discrete parameters of the model.
These constraints also symbolically represent all the parameter valuations that
lead to transition systems satisfying the formula.



3 Hybrid Modelling

Because real time is ignored in the complete discrete modelling framework, some
qualitative behaviours are not distinguishable. For example, an inward spiral
is abstracted by the same discrete model than a outward spiral. This remark
motivated us to introduce a modelling framework that combines the discrete
modelling framework with temporal delays while preserving consistency with
PLDE systems.

Syntactical features of hybrid models. We associate with each domain a temporal
zone which measures the time elapsed in the domain. This zone is represented as
a n-dimensional hypercube (where n is the number of variables in the system)
whose edges have various lengths. Intuitively, the length of the hypercube in
the i-axis represents the mandatory delay for the system to entirely cross the
associated domain (in concentration) along the i-axis.

De�nition 5 (State graph with delays (sgd)). Let G = (gi(xi))xi∈X be the
regulation schema, which de�nes the synthesis rate of each variable according
to the e�ectiveness of each regulation (see equation 1). A State Graph with
Delays ( sgd for short) associated with the regulation schema G is a 4-tuple
N = (X,L,K,D) where:

� X = {x1, . . . , xn} is the set of variables,
� L = {(li(xi))xi∈X} is the �nite set of domains deduced from G by the equiv-

alence relation on the concentration space; for each x ∈ X, we de�ne the
integer bx as the number of di�erent thresholds describing the di�erent ac-
tions of x on its targets,

� K = {Kx,ω}x∈X,ω⊂R(x) is a family of integers such that Kx,ω ∈ [0, bx] for
any variable x and for any set ω of regulations on x.

� D = D+ ∪D− is a family of positive real numbers such that:
• D+ = {δ+x,i,ω}x∈X,i∈[0,bx],ω⊂R(x),i≤Kx,ω with δ+x,i,ω ∈ R+ ([0, bx] being an

interval of integers).
• D− = {δ−x,i,ω}x∈X,i∈[0,bx],ω⊂R(x),i≥Kx,ω with δ−x,i,ω ∈ R+ ([0, bx] being an

interval of integers).
The subfamily D+ is called the set of production delays of N and the sub-
family D− is called the set of degradation delays of N .

Intuitively, for a given domain d, the temporal zone is de�ned by the product
of intervals:

∏
x∈X [0, δ+x,l(x),ωx(d) + δ−x,l(x),ωx(d)]

Running example. Let us now consider the sgd P = (X,L,K,D) modelling the
system of mucus production of Pseudomonas Aeruginosa, de�ned by:

� X = {x, y},
� L = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (2, 1)},
� K = {Kx,∅=0,Kx,{x}=2,Kx,{y}=2,Kx,{x,y}=2,Ky,∅=0,Ky,{x}=1}
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Fig. 1. State graph with delays modelling the system of the mucus production by
Pseudomonas aeruginosa. Only non-zero delays are drawn.

� D = D+ ∪D− where
• D+ = {δ+x,2,{x}, δ

+
x,2,{x,y}, δ

+
x,1,{y}, δ

+
x,0,{y}, δ

+
y,1,{x}, δ

+
y,0,{x}} and

• D− = {δ−x,2,{x}, δ
−
x,2,{x,y}, δ

−
x,1,∅, δ

−
x,0,∅, δ

−
y,1,∅, δ

−
y,0,∅, δ

−
y,1,{x}}.

This state graph with delays is represented in Figure 1.

Semantics of hybrid models: the dynamics. Let us observe that to specify a
particular state of a sgd, one needs a couple of values: the �rst value is a domain,
and the second is a point in the associated temporal zone. More formally, for a
given sgd N = (X,L,K,D), a state of N is a couple η = (l, τ) where:

� l : X → N is a domain of N (i.e. l ∈ L).
� τ : X → R+ is a total function s.t. ∀v ∈ X, τ(v) ≤ δ+v,l(v),ωv(l) + δ−v,l(v),ωv(l)

The real number τ(v) is called the delay residue of v at the level l(v).

As we already mentioned, temporal zones allow one to measure the time elapsed
in a domain. Intuitivelly, the evolution in the model is twofold :

� inside a domain, the point in the temporal zone evolves in a linear way, it
measures the time spent in a domain along a given evolution direction.

� to pass from a domain l to another one, it is mandatory that the point in
the temporal zone reaches a border. If the point reaches the face for which
the delay residue τ(v) is null (resp. equal to δ+v,l(v),ωv(l) + δ−v,l(v),ωv(l)), the

system leaves the previous domain and enters into the new domain where
the concentration level l(v) is decremented (resp. incremented). The face of
the temporal zone that is reached de�nes the new (accessible) domain.

To go further in the formalization of these ideas, we introduce two kinds of
delays. The �rst one is the mandatory time for a variable to allow the system
to move from a domain to another one: it is the moving delay, see �gure 2.
Unfortunatelly, this de�nition is not su�cient to determine if the reached face
allows the exit from the domain. Thus, the cross delay is introduced.
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Fig. 2. Moving and cross delays. (a) When l(x) < Kx,ωl(x) the moving delay is
δ+x,l(x),ωl(x)−τ(x) in the x-direction (horizontal). (b)When l(x) > Kx,ωl(x) the moving
delay is τ(x) in the x-direction (horizontal). (c) When l(x) = Kx,ωl(x), x cannot be
responsible for the exit from the domain. Thus the moving delay is µη(x) = ∞. (d)
Illustration of cross delays when µη(y) 6=∞ and µ̄η(y) =∞ (y-axis is the vertical one).

De�nition 6 (moving & cross delays). Let η = (l, τ) be a state of a sgd N ,

� the moving delay of a variable v is given by the function µη : X → R+∪{∞}

de�ned by µη(v) =
{
∞ if Kv,ωv(l) = l(v)
|δ+v,l(v),ωv(l) − τ(v)| if Kv,ωv(l) 6= l(v) .

� the cross delay of a variable v is given by the function µ̄η : X → R+ ∪ {∞}
de�ned by:

• If (Kv,ωv(l) < l(v) and Kv,ωv(l−) > l(v)− 1) or
(Kv,ωv(l) > l(v) and Kv,ωv(l+) < l(v) + 1) then µ̄η(v) =∞,

• else µ̄η(v) = µη(v).
where domains l+ and l− are such that ∀u 6= v, l+(u) = l−(u) = l(u) and
l+(v)− 1 = l−(v) + 1 = l(v).

The moving delay of variable v is simply the time necessary for this variable
to allow the system to exit from the current domain. If variable v is not able to
reach the boundary of the temporal zone, the moving delay of variable v is ∞,
see Fig. 2-(c). When µ(v) 6= ∞, the cross delay of variable v can nevertheless
be equal to ∞ when v is attracted outside the current domain, but cannot
exit in that direction since, beyond the limit of the domain, this variable is
immediately attracted again inside the domain. This stands for the notion of
sliding modes [19]. Illustration of such a situation is given in Fig. 2-(d).

The temporal evolutions from a state within the temporal zone are linear:
directions of these evolutions are given by the following de�nition.

De�nition 7 (Discrete partial derivative). Given a domain l of a sgd N ,
for any state η = (l, τ) and for any variable v, the discrete partial derivative of
N at l with respect to v, κl(v), is de�ned by:



� if l(v) < Kv,ωl(v) and µ̄η(v) 6=∞ then κl(v) = 1
� if µ̄η(v) =∞ then κl(v) = 0
� if l(v) > Kv,ωl(v) and µ̄η(v) 6=∞ then κl(v) = −1

We can now de�ne the successor states of a state (see Fig 3) using the function
sign: sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0.

De�nition 8 (Successor). A state η′ = (l′, τ ′) of a sgd N is a successor state
of the state η = (l, τ) if there exists a variable x ∈ X such that:

1. ∀y ∈ X, µ̄η(x) ≤ µ̄η(y),
2. l′(x) = l(x) + κl(x),
3. ∀y ∈ X, y 6= x⇒ l′(y) = l(y),
4. κl(x) = 1⇒ τ ′(x) = 0,
5. κl(x) = −1⇒ τ ′(x) = δ+x,l′(x),ωx(l′) + δ−x,l′(x),ωx(l′),

6. ∀y ∈ X such that y 6= x and κl(y) 6= 0,

κl(x) 6= 0⇒ τ ′(y) =

“
τ(y)+sign(δ+

y,l(y),ωy(l)−τ(y))×µη(x)
”
×

“
δ+
y,l′(y),ωy(l′)+δ

−
y,l′(y),ωy(l′)

”
δ+
y,l(y),ωy(l)+δ

−
y,l(y),ωy(l)

,

7. ∀y ∈ X such that y 6= x and κl(y) = 0,

κl(x) 6= 0⇒ τ ′(y) =

“
τ(y)+sign(δ+

y,l(y),ωy(l)−τ(y))×min(µη(x),µη(y))
”
×

“
δ+
y,l′(y),ωy(l′)+δ

−
y,l′(y),ωy(l′)

”
δ+
y,l(y),ωy(l)+δ

−
y,l(y),ωy(l)

,

8. κl(x) = 0⇒
(
∀y ∈ X, τ ′(y) = δ+y,l(y),ωy(l)

)
.

If κl(x) 6= 0, then the transition time from η to η′ is ζ(η, η′) = µη(x). If κl(x) =
0, then ζ(η, η′) is equal to minv∈X(µη(v)).

Note that in item 6 of the previous de�nition, the computation of new delay
residue for variable y depends on the sign of (δ+y,l(y),ωl(y) − τ(y)). Indeed, if
δ+y,l(y),ωl(y) < τ(y) (resp. δ+y,l(y),ωl(y) > τ(y)), the coordinate τ(y) decreases (resp.
increases) towards δ+y,l(y),ωl(y).

The previous de�nition covers both of the following cases.

1. Let us �rst focus on the case where a domain contains its focal point (see
Fig. 3-b). Temporal trajectories do not go out of this domain: all the cross
delays are equal to ∞, and each discrete partial derivative is null. Thus, we
can take for x any element of X (see item 1). Items 2 and 3 imply that l′ = l.
Finally item 8 gives the temporal coordinates of the focal point. Transition
time is then the time necessary for each variable y to reach the coordinate
fy of the focal point.

2. We now focus on a domain which does not contain its focal point (see Fig. 3-
a). Each temporal trajectory goes out of this domain passing a threshold
on one v-axis. This variable v is the one which has the smallest not-in�nite
cross delay (see item 1). Items 2 and 3 imply that l′ di�ers from l on only
one coordinate. Items 4 and 5 reset residue delay associated with v whereas
items 6 and 7 compute the new residue delays associated with the other
variables (these expressions come from the homothetic transformation). The
transition time is then the time to reach the face of the temporal zone, that
is the moving delay.
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Fig. 3. Illustration of De�nition 8. (a) the domain contains its focal point and all the
cross delays are in�nite. (b) the domain does not contain its focal point.

De�nition 9 (State space). The state space of a rnd N is the (in�nite)
directed �graph� SN the vertices of which are the states of N and the edges
of which are the couples (η, η′) such that η′ is a successor of η. Given a path
p = η0η2 · · · ηn, the crossing time of p is de�ned as τ(p) =

∑n
i=1 τ(ηi−1, ηi).

Transitions between domains are the transitions of the discrete dynamics in
the formalism of René Thomas.

4 Construction of the Delays Constraints

The parameter values of the hybrid model can be straightforwardly deduced from
a PLDE system with known parameters. For the discrete part, the parameters
correspond to the position of the steady states of the linear di�erential system
of the considered domain, whereas the parameters of family D correspond to
the time mandatory for the di�erential system to cross the domain. Let us just
mention that when the v-coordinate of the focal point f of the domain l is inside
l(v) then, neither the production delay nor the degradation delay is null: δ+v,k,ω(l)

(resp. δ+v,k,ω(l)) measures the duration between the time when a trajectory gets

into the domain by the face having the smaller (resp. the bigger) v-concentration
value and the time when the coordinate v of the focal point f is reached. Whereas
from the point of view of PLDE, this time is in�nite, for the hybrid model this
time is not in�nite.

But in general, when modelling a biological regulatory network, we have only
a partial knowledge about the form of the regulatory functions (rij). Speci�cally,
kinetic parameters of the PLDE system are unknown and the key point of the
modelling process thus lies in identi�cation of these kinetic parameters. Para-
graph about strategies for determining discrete parameters of section 2 sketches,
in the context of purely discrete modelling, a computer aided method for helping



in this task. In our context of hybrid modelling, even if the qualitative parameters
(Kx,ω) are assumed to be known (or deduced from a computer aided approach),
it remains to determine which values of the time delays are actually consistent
with known properties of the studied system.

Once again, we start from some knowledge about the dynamics of the studied
biological system. This knowledge often comes from experimental observations
which are expressed as paths in the discrete transition system. These paths
constitute the speci�cations since it determines the set of models which have
to be considered. This section sketches how these speci�cations build up the
models, and more accurately a system of parameter constraints.

The principle of the construction of these constraints relies on the enumera-
tion of constraints due to paths of length 2: µ0→µ1→µ2. For a longer path, the
constraint is the conjunction of constraints due to each sub-path of length 2.

For sake of readability, we describe here only one situation among twelve1.
Let us consider the path µ0 → µ1 → µ2 where the �rst (resp. second) transition
is due to a qualitative increasing of variable i0 (resp. i1). Let us suppose moreover
that the vector (ci)i∈V represents the delays residue when entering into µ1 and
that there exists in µ1 a variable i′1 which can also increase. In order to allow
the global path µ0 → µ1 → µ2, the following relation has to be satis�ed:

(d+
i1

(µ1)− ci1) < (d+
i′1

(µ1)− ci′1)

Processing discrete cycle. The discrete cycles can abstract several di�erent be-
haviours: fully cyclic temporal trajectories, convergent spirals, divergent spirals,
limit cycle, etc. Thus, it is interesting to know more precisely their behaviours
in the hybrid modelling. For example, it can be proved that the discrete cy-
cle of Pseudomonas aeruginosa � (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0) �
can abstract di�erent kinds of qualitative behaviours of hybrid models. In other
words, from the same purely discrete model with a discrete cycle, it is possible
to construct a hybrid model which presents either: (1) a set of convergent spirals
or (2) a set of cyclic temporal trajectories which constitute a torus and that we
call fully cyclic temporal trajectories or (3) a set of divergent spirals or (4) a
limit cycle, that is, a torus of volume null (see Fig. 4).

5 Conclusion

We developed a new hybrid modelling framework for gene regulatory networks
which extends the discrete modelling framework of René Thomas by introduc-
ing temporal features through delays handling. These delays express the time
mandatory to pass from a qualitative state to another.

On the one hand, this modelling framework inherits from the di�erential
modelling framework, since it is possible to build an hybrid model consistent
with the underlying system of piecewise linear di�erential equations (PLDE).

1 The other cases are addressed in a similar enough way and the proof can be sent
upon request.



Fig. 4. A particular hybrid dynamics with a limit cycle (in thick black line) modelling
the system of the mucus production by Pseudomonas aeruginosa.

On the other hand, this modelling framework inherits also from the pure qual-
itative modelling framework, the computer aided methods for determination of
suitable parameter values, but it introduces a continuous notion of time through
delays handling. When kinetic parameters are not available, it is possible to
build some constraints on the new delays parameters in order to get a model
satisfying a speci�cation expressed in terms of paths. Finally, adding information
about delays in the qualitative framework allows one to distinguish qualitatively
di�erent behaviours which are abstracted into a common purely discrete model.

With such hybrid frameworks, systems biology should take advantage of the
whole corpus of formal methods from computer science which opens a large
horizon of research perspectives. It will be necessary to develop for example al-
gorithms that compute the set of parameter valuations that are compatible with
reachability properties. Indeed, hybrid modellings are not the ultimate aim, they
are only a guideline for predictions that suggest biological experiments, whose
success will be in �ne the discriminent criterion. In such a perspective, hybrid ap-
proaches could constitute a trade-o� between expressiveness and computational
tractability.

References

1. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology.
Annual Rev. Genomics Hum. Genet. 2 (2001) 343�372

2. Oltvai, Z., Barabási, A.: Systems biology. Life's complexity pyramid. Science
298(5594) (2002) 763�764

3. Kitano, H.: Computational systems biology. Nature 420(6912) (2002) 206�210
4. Conti, F., Valerio, M., Zbilut, J., Giuliani, A.: Will systems biology o�er new

holistic paradigms to life sciences? Syst Synth. Biol. 1(4) (2007) 161�165
5. Rashevsky, N.: Mathematical Biophysics: Physico-Mathematical Foundations of

Biology. University of Chicago Press (1948)
6. Sugita, M.: Functional analysis of chemical systems in vivo using a logical circuit

equivalent. Journal of Theoretical Biology 1 (1961) 415�430
7. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoret-

ical Biology 42 (1973) 563�585



8. Thomas, R.: Regulatory networks seen as asynchronous automata : A logical
description. Journal of Theoretical Biology 153 (1991) 1�23

9. Snoussi, E.: Qualitative dynamics of a piecewise-linear di�erential equations : a
discrete mapping approach. Dynamics and stability of Systems 4 (1989) 189�207

10. Farcot, E., Gouzé, J.L.: Limit cycles in piecewise-a�ne gene network models with
multiple interaction loops. International Journal of Systems Science 41(1) (2010)
119�130

11. Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of
gene regulatory networks. In: CMSB. Volume 4210 of LNCS. (2006) 169�183

12. Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and
dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4)
(2007) 231�251

13. Batt, G., Ben Salah, R., Maler, O.: On timed models of gene networks. In:
FORMATS. Volume 4763 of LNCS., Springer (2007) 38�52

14. Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed au-
tomata. In: in Proc. CHARME'95, LNCS 987, Springer (1995) 189�205

15. Comet, J.P., Bernot, G.: Introducing continuous time in discrete models of gene
regulatory networks. In: Proc. of the Nice Spring school on Modelling and sim-
ulation of biological processes in the context of genomics. EDP Sciences, ISBN :
978-2-7598-0545-7 (2010) 61�94

16. Radde, N.: The impact of time-delays on the robustness of biological oscillators
and the e�ect of bifurcations on the inverse problem. Eurasip J. Bioinf. Syst. Biol.
(2009)

17. Guespin-Michel, J., Kaufman, M.: Positive feedback circuits and adaptive regula-
tions in bacteria. Acta. Biotheor. 49 (2001) 207�218

18. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: Extending Thomas' asynchronous logical approach
with temporal logic. Journal of Theoretical Biology 229(3) (2004) 339�347

19. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-
itative simulation of genetic regulatory networks using piecewise-linear models.
Bull. Math. Biol. 66(2) (2004) 301�40

20. Mateus, D., Gallois, J.P., Comet, J.P., Le Gall, P.: Symbolic modeling of genetic
regulatory networks. J. of Bioinformatics and Comput. Biol. 5(2B) (2007) 627�640

21. Fromentin, J., Comet, J.P., Le Gall, P., Roux, O.: Analysing gene regulatory
networks by both constraint programming and model-checking. In: EMBC07, 29th
IEEE EMBS Annual Intern. Conf., IEEE Press (2007) 4595�4598

22. Fanchon, E., Corblin, F., Trilling, L., Hermant, B., Gulino, D.: Modeling the
molecular network controlling adhesion between human endothelial cells: Inference
and simulation using constraint logic programming. In: CMSB, Springer (2004)
104�118

23. Corblin, F., Fanchon, E., Trilling, L.: Modélisation de réseaux biologiques discrets
en programmation logique par contraintes. Technique et Science Informatiques
26(1-2) (2007) 73�98


