A formal model for gene regulatory networks with time delays

Jean-Paul Comet, Gilles Bernot, Jonathan Fromentin, Olivier Roux

Lab. I3S, Université de Nice-Sophia-Antipolis, France Lab. IRCCyN, Ecole Centrale de Nantes, France Lab. Labri, Université de Bordeaux, France

november, $4^{\rm th}$ 2010

Introduction

- Modelling of genetic regulatory network
 - $\Rightarrow\,$ deep understanding of how the components interact
 - $\Rightarrow\,$ non obvious predictions on possible behaviours
- information about interactions increases
 - \neq kinetic data not available
- Parameter identification problem is crucial
- ► Qualitative models : the problem is easier ⇒ good compromise
- Importance of time in the dynamics of a system
- Qualitative models with time : Hybrid models

Running example : mucus production of the bacterium *Pseudomonas aeruginosa*

- opportunistic pathogen, often encountered in chronic lung diseases such as cystic fibrosis.
- a supervises an operon : 4 genes among which one codes for an inhibitor of a.
- ► a favours its own synthesis.

Questions

- Is the change of behaviours (production / non production of mucus) due to change of the regulations (mutation)? Or is due to change of state?
- What is the shape of the attraction bassin associated to the behavior which does not produce mucus?

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Introduction

Continuous and discrete modeling

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Hybrid Modeling

Conclusion

→ < Ξ → <</p>

くロ と く 同 と く ヨ と 一

Differential Framework

• with each variable v is associated a value $x_v \in \mathbb{R}$

- (concentration)
- ODE: $\frac{dx_v}{dt} = F_v(x) \lambda_v x_v$ with $\begin{cases} \lambda_v \ge 0 & : \text{ degradation} \\ F_v(x) & : \text{ synthesis rate} \end{cases}$ Often, synthesis rate is additive :
 - $F_{v}(x) = \sum_{u \in G^{-}(v)} I(u, v) \qquad \text{contribution of } u \text{ to the synthesis rate of } v$ Sigmoid functions \Longrightarrow Discretization
- Analytical solution in a domain : $x_{\nu}(t) = \frac{\mu_{\nu}}{\lambda} (\frac{\mu_{\nu}}{\lambda} x_0^{\nu}) \cdot e^{-\lambda t}$
- The vector $(\frac{\mu_v}{\lambda_v})_v$ is the **focal point** of the domain
- Derivative : $x'_{\nu}(t) = (\frac{\mu_{\nu}}{\lambda} x_0^{\nu}) \cdot e^{-\lambda t}$

The sign of derivatives does not change \implies monotonous trajectories

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains

- a domain corresponds to a *qualitative* state
- frontiers are abstracted
- 2. Taking into account only qualitative behaviors

The focal point is in the current domain Trajectories do not go out of the domain. ⇒ no exit

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains

- a domain corresponds to a *qualitative* state
- frontiers are abstracted
- 2. Taking into account only qualitative behaviors

The focal point is in the domain D_3 All trajectories go out of the domain \Rightarrow in the north direction

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains

- a domain corresponds to a *qualitative* state
- frontiers are abstracted
- 2. Taking into account only qualitative behaviors

The focal point is in the domain D_2 All trajectories go out of the domain \Rightarrow in the east direction

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

Discrete Modelling (R. Thomas & E.H. Snoussi)

1. Taking into account only regular domains

- a domain corresponds to a *qualitative* state
- frontiers are abstracted
- 2. Taking into account only qualitative behaviors

The focal point is in the domain D_4 All trajectories go out of the domain \Rightarrow in the east direction \Rightarrow in the north direction

Differential Framework Discrete models in a nutshell A discrete Model of the Mucus Production System

A Discrete Model of the Mucus Production System

Describes only succession of events (threshold cross-over). Chronological – not chronometrical

This model can abstract several qualitatively different continuous models :

Image: A math a math

Introduction Notion of delays of activation/inhibition Continuous and discrete modeling Hybrid models inspired by Differential models Hybrid Modeling Building constraints on delays Conclusion Application to P. aeruginosa

Introduction

Continuous and discrete modeling

Hybrid Modeling

Notion of delays of activation/inhibition Hybrid models inspired by Differential models Building constraints on delays Application to P. aeruginosa

Conclusion

→ < ∃ →</p>

< ロ > < 同 > < 回 > < 回 >

Hybrid Modeling

- Notion of delays of activation/inhibition
 - 1. when an order of activation/inhibition arrives, the biological machinery starts to increase/decrease the corresponding protein concentration,
 - 2. but this action takes time. \Longrightarrow Clocks
 - ► d⁺_v(µ) is an approximation of the time necessary to variable v to cross the domain from left to right.
 - ▶ d⁻_v(µ) is an approximation of the time necessary to variable v to cross the domain from right to left.
- From differential models to hybrid models :
 - thresholds are given by the differential equations
 - discrete parameters are given by the discretization of focal points
 - delays are deducible :
 - ▶ in each domain, the differential model has an analytic solution
 - the time necessary to cross a domain is computable.

Introduction Continuous and discrete modeling Hybrid Modeling Conclusion Conclusion Hybrid models inspired by Differential models Building constraints on delays Application to P. aeruginosa

Hybrid models inspired by Diff. models : sketch (1)

Inside a domain : trajectories are approximated by polylines

▲ 同 ▶ ▲ 三

Introduction Continuous and discrete modeling Hybrid Modeling Conclusion Conclusion Conclusion

Hybrid models inspired by Diff. models : sketch (2)

• □ > • □ > • □ > ·

Building constraints on delays from known trajectories

- Is it possible to build constraints on delays in order to make possible a trajectory passing through a given sequence of domains?
- Principle : enumeration of constraints due to paths of length 2
- 12 situations
- example $\mu_0 \xrightarrow{i_0} \mu_1 \xrightarrow{i_1} \mu_2$:

Blue trajectory is possible :

$$(d^+_{i_1}(\mu_1) - \textit{clock}_{i_1}) < (d^+_{i_1'}(\mu_1) - \textit{clock}_{i_1'})$$

▲ 伊 ▶ ▲ 王 ▶

Introduction Notion of delays of activation/inhibition Continuous and discrete modeling Hybrid models inspired by Differential models Hybrid Modeling Conclusion Application to P. aeruginosa

Constraints on the Mucus Production system

Is it possible to have the discrete cycle $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (0,0)$?

- Different kinds of qualitative behaviours :
 - a convergent spiral
 - a set of cyclic temporal trajectories
 - a divergent spiral or
 - a limit cycle.

< □ > < 同 > < 三 >

Introduction Notion of delays of activation/inhibition Continuous and discrete modeling Hybrid models inspired by Differential models Hybrid Modeling Conclusion Application to P. aeruginosa

Constraints on the Mucus Production system

Is it possible to have the discrete cycle $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (0,0)$?

Different kinds of qualitative behaviours :

- a convergent spiral
- a set of cyclic temporal trajectories
- a divergent spiral or
- a limit cycle.

Introduction Notion of delays of activation/inhibition Continuous and discrete modeling Hybrid models inspired by Differential models Hybrid Modeling Conclusion Application to P. aeruginosa

Constraints on the Mucus Production system

Is it possible to have the discrete cycle $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (0,0)$?

Different kinds of qualitative behaviours :

- a convergent spiral
- a set of cyclic temporal trajectories
- a divergent spiral or
- a limit cycle.

• □ ▶ • □ ▶ • □ ▶

Introduction Notion of delays of activation/inhibition Continuous and discrete modeling Hybrid Modeling Conclusion Application to P. aeruginosa

Constraints on the Mucus Production system

Is it possible to have the discrete cycle $(0,0) \rightarrow (1,0) \rightarrow (1,1) \rightarrow (0,1) \rightarrow (0,0)$?

Different kinds of qualitative behaviours :

- a convergent spiral
- a set of cyclic temporal trajectories
- a divergent spiral or
- a limit cycle.

Conclusion

- Distinction of models mixed up in the discrete modeling framework
- Parameter identification problem
- Qualitative information about the behavior :
 - possible automation for discrete models
 - no automation for differential models
- Information about the elapsed time of a trajectory
 - Discrete models do not take into account elapsed time
 - Differential models do, but difficulty for model-checking
- Hybrid models can fill up the gap between discrete models and differential ones.

- Thanks for your attention -

Questions?

J.-P. Comet - J. Fromentin - G. Bernot - O. Roux

э

イロト イボト イヨト イヨト