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Abstract— In this article, we propose a formal method to
analyse gene regulatory networks (GRN). The dynamics of
such systems is often described by an ordinary differential
equation system, but has also been abstracted into a discrete
transition system. This modeling depends on parameters for
which different values are possible. Each instantiation of these
parameters defines a possible dynamics and verification tools
can be used to select the tuples of values which lead to dynamics
consistent with known behaviours. GRN are so complex that
their discrete modeling gives a number of possible dynamics
exponential in function of the GRN’s size (number of genes
and interactions). In this paper, we propose to use constraint
programming and CTL formal language to determine the set of
all dynamics consistent with the known behavioral properties
without enumerating all of them. This approach allows us
therefore to minimize the computation time necessary for the
research of these parameters.

I. INTRODUCTION

The Gene Regulatory Networks (GRN) and their for-
mal models [1] were designed to describe the interactions
between genes inside the cell. They attempt to foresee
the complex dynamics of relative concentrations of several
interacting proteins. Numerous examples of GRN [2], [3]
have been modeled by using a discrete modeling approach.
It has been shown that computer tools can be used to analyse
their structure and functional properties.

In [3], authors show that the modeling of R. Thomas [4]
may be completed with a model-checking method which
allows one to verify if a model satisfies a temporal property
expressing particular biological knowledge. In the modeling
of R. Thomas, the dynamics of the system is built from the
parameters of the model. To construct the set of all dynam-
ics consistent with the known biological properties, a first
approach [3] consists in enumerating all possible valuations
of the parameters of the model and in selecting those that
satisfy biological properties transcripted into formal logical
formulae.

Using constraint programming [5], [6], [7] allows one
to bypass the previous enumeration step, by generating
constraints on the parameters that oblige the dynamics of
the model to respect the specified properties. Therefore,
constraint programming seems to be a promising approach
to minimize the computation time necessary to the research

of the parameters of the model that lead to a dynamics
consistent with the biological observations. The goal of this
work is to design and implement a combined approach
(model-checking and constraint programming) to select the
valuations of the parameters of a GRN that lead to a
dynamics consistent with the biological specification.

Other works are close to our approach. The work of
F. Corblin et al. [8], which is based on the piece-wise
linear differential equation [9], also uses constraint logic
programming for analysis of biological networks but without
using temporal logic. The authors conclude on the difficulty
to put constraints on any length paths and, more generally,
constraints corresponding to property expressed in a par-
ticular temporal formal language: CTL. Another approach
consists in using symbolic execution [10] and LTL1 model-
checking technics [11] in order to build consistent model
parameterizations from a LTL formula and a symbolic model.

The paper is organized as follows. We recall in section II
the principles of discrete modeling for genetic regulatory
networks. Our specific approach combining model-checking
and constraint programming is explained in Section III and
its implementation is presented in section IV. We introduce
in section V examples on GRN of the mucus production
system in bacteria Pseudomonas aeruginosa [12], [13]. We
finally conclude in section VI.

II. GENE REGULATORY NETWORKS

A GRN is a labelled directed graph G = (VG,EG) where
each vertex i ∈ VG is provided with a boundary βi =
max(1,di) where di is the number of out-going edges of
i. Each edge (i → j) ∈ EG is labelled with a couple (εi j,τi j)
where εi j ∈ {+,−} is the sign of the interaction and τi j,
called threshold, is an integer between 1 and βi.

A qualitative state of the system is then defined as a vector
constituted by qualitative concentration levels.

Definition 1 (Qualitative state): A qualitative state of a
GRN is a tuple n = (n1,n2, . . . ,np), where p is the number
of genes and ni, the qualitative concentration level of gene
i, is an integer value between 0 and βi.

1Another temporal formal language.



The resources of a gene g at a given state are defined as
the set of genes which have a ”positive” influence on g at a
particular state.

Definition 2 (Resources): Given a GRN G = (VG,EG) and
a state n = (n1,n2, . . . ,np), the set of resources of i is ωi(n)=
 j ∈VG

∣∣∣∣∣∣
either ( j

(+,τ ji)−−−−→ i) ∈ EG and (n j ≥ τ ji)

or ( j
(−,τ ji)−−−−→ i) ∈ EG and (n j < τ ji)




A model of GRN is a couple of sets: a set of parameters
which gives the dynamics of the system and a set of
constraints on these parameters which enables one to con-
struct the specification of the system. Intuitively, parameters
abstract the direction for the future concentration of each i.

Definition 3 (Model of a GRN): Let G = (VG,EG) be a
GRN. The model of G is M(G) = (Var,Const) with:

• K ⊆Var is a set of parameters such that Ki,ωi(n) ∈ K de-
notes the level toward which the abstract concentration
of i ∈VG evolves when the resources are ωi(n).

• Const is a set of constraints on the parameters of Var.
The system goes from a state to another one provided that

they are linked together by the neighbourhood relation.
Definition 4 (Neighbourhood): Given two states, n =

(n1,n2, . . . ,np) and n′ = (n′1,n
′
2, . . . ,n

′
p), n and n′ are neigh-

bours (denoted by n ↔ n′) iff |n−n′|= ∑ j∈[1,p] |n j −n′j|= 1.
Notation 1 (Transition and path): Let n and n′ be two

states. If n and n′ are neighbours then the passage of the
system from the state n to the state n′ is denoted n → n′ and
we say that there is a transition from n to n′. Therefore, n
is called a predecessor of n′ and n′ a successor of n. The
existence of a sequence of transitions going from n to n′ is
called a path from n to n′.

III. APPROACH OF CONSTRAINT PROGRAMMING

Constraint programming is a programming paradigm
where relations among variables are constraints. The con-
straint programming approach consists in searching the val-
ues for the variables in building a search tree and using a
backtracking method.

A. Domains and Basic Constraints

The parameters of the model are variables of the problem
which are defined in a domain.

Definition 5 (Domain): The domain of a parameter
Ki,ωi(n) is [0,βi] for all states n.

Definition 6 (Transition constraint): Let n and n′ be two
neighbour states. We introduce Cnn′ ∈ Const the transition
constraint for the transition n → n′. The rank, constraint Cnn′
and sign of the transition n → n′ are defined by:

rank(n → n′) = i such that |ni −n′i| = 1;

sign(n → n′) =
{

+ if n′i = ni + 1;
− otherwise.

Cnn′ =
{

Ki,ωi(n) > ni if sign(n → n′) = +;
Ki,ωi(n) < ni otherwise.

This definition for Cnn′ is the translation of the modeling of
R. Thomas in terms of constraints on parameters Ki,ωi(n). The
constraints Cnn′ are built on the neighbourhood relation, but

by abuse of notation we say that Cnn are the constraints guar-
anteeing the stability of the state n. The stability constraints
Cnn are defined by:

∧
i

(
Ki,ωi(n) = ni

)
.

B. CTL Formal Language

Dynamical properties of a system can often be translated
into computational tree logic (CTL) formulae [14], [15]. The
set of atomic propositions which depends on the GRN G =
(VG,EG) is denoted AP. The subset of AP of formulae which
are true in a state n, is given by the labeling function L (n)=
{vi = ni | i ∈ VG, ni ∈ [1,βi]} where vi = ni means that the
gene i has the concentration level ni. We consider in the
sequel the formulae containing only the CTL operators: ¬, ∧,
EX , EU and AU . It is well known that any CTL formula can
be transformed into a semantically equivalent CTL formula
containing only these operators.

Definition 7: (semantics of CTL) Let {si | i∈N} be states.
The semantics of CTL is defined inductively by:

• s0 |= �,
• ∀p ∈ AP, s0 |= p iff p ∈ L (s0),
• s0 |= ¬φ iff s0 
|= φ ,
• s0 |= φ1 ∧φ2 iff s0 |= φ1 and s0 |= φ2,
• s0 |= EX(φ) iff for a particular s1 such that s0 → s1, we

have s1 |= φ ,
• s0 |= E[φ1Uφ2] iff there exists a particular path s0 →

s1 →···→ s j →··· such that s j |= φ2 and ∀i < j si |= φ1.
• s0 |= A[φ1Uφ2] iff for all paths s0 → s1 → ···→ s j →···

there exists a s j such that s j |= φ2 and ∀i < j we have
si |= φ1.

C. Intuitive Semantics of Constraints for CTL formula

Translating CTL formulae into constraints is difficult be-
cause the operators EU and AU can represent a large number
of possible paths. Before giving the semantic of constraints
for CTL formula in subsection III-D, we give the intuitive
interpretation of constraints for the operators. We introduce
the notation Cn

φ : we say that the constraint Cn
φ is satisfied iff

the state n validates the formula φ . For the operators EU and
AU , we introduce the notion of φ -path: we say that a path
is a φ -path if each state of the path validates φ .

• If φ is an atomic proposition, then Cn
φ is satisfied iff

φ ∈ L (n).
• If φ = φ1 ∧ φ2, Cn

φ is equivalent to the conjunction of
constraints Cn

φ1
and Cn

φ2
.

• If φ = ¬φ1 then Cn
φ = ¬Cn

φ1
.

• If φ is EX(φ1) then a state n validates the formula φ
iff there exists a neighbour state n′ such that Cnn′ ∧Cn′

φ1
is satisfied.

• If φ is E[φ1Uφ2], for treating the formula at the state n
we use the additional boolean variables Bn′

φ for defining

the E[φ1Uφ2]-paths. The semantics of variables Bn′
φ is:

Bn′
φ is true iff the state n′ belongs to a E[φ1Uφ2]-path. A

E[φ1Uφ2]-path is a non-cyclic (φ1∨φ2)-path such that at
least an of its states satisfy φ2. The states of a E[φ1Uφ2]-
path can be defined inductively: Bn′

φ is true iff



– either Cn′
φ2

is satisfied,

– or Cn′
φ1

is satisfied and that there exists a neighbour

n′′ of n′ such that Bn′′
φ is true and Cn′n′′ is satisfied.

• If φ is A[φ1Uφ2], for treating the formula at the state n
we use the additional boolean variables Dn′

φ for defining
the A[φ1Uφ2]-paths. A A[φ1Uφ2]-path is a path where
at least one of its states satisfy φ2, and, where all
the successors of its states preceding the first state
satisfying φ2, belong to a A[φ1Uφ2]-path. The semantics
of variables Dn′

φ is: Dn′
φ is true iff the state n′ belongs to

a A[φ1Uφ2]-path. The states of a A[φ1Uφ2]-path can be
defined inductively: Dn′

φ is true iff

– either Cn′
φ2

is satisfied,

– or Cn′
φ1

is satisfied, and there exists at least one
neighbour n′′ of n′ such that Cn′n′′ is satisfied and,
for all n′′ neighbour of n′ such that Cn′n′′ is satisfied
we have Dn′′

φ true.

However, with the inductive definition of E[φ1Uφ2]-path,
it is possible to have only the cyclic (φ1)-paths where no state
validates φ2 (also called cyclic (φ1 ∧¬φ2)-paths). In fact, if
the semantics of E[φ1Uφ2] is respected then there exists at
least one path such that at least one state of this path validates
φ2. The topological sort of the graph containing only the
(φ1 ∨φ2)-path is introduced to translate the satisfiability of
E[φ1Uφ2] into constraints. For this purpose, we introduce
the variable V n′

φ for each state n′ which has a value between
1 and the number of states. These variables rank the states
belonging to (φ1 ∨φ2)-paths. We manage variables together
with an order on these variables such that V n′

φ < V n′′
φ iff

• the state n′ belongs to the (φ1 ∨φ2)-path,
• the state n′′ belongs to the (φ1 ∨φ2)-path and
• Cn′n′′ is satisfied.

The topological sort is possible iff the graph containing only
the (φ1 ∨ φ2)-paths is non-cyclic. Therefore, with this new
constraint, it is possible to get rid of the (φ1 ∧¬φ2)-paths.
This topological sort must also be done for A[φ1Uφ2] and
we use for that the variables W n′

φ .

D. Constraints Obliging a State to Satisfy a CTL Formula

Let n be a state. Let Cn
φ ∈Const be a constraint associated

with φ and state n. Let Nn be the set of neighbours: Nn =
{n′ | n ↔ n′}. Let q be the number of states of GRN. The
constraints Cn

φ ∈Const are defined inductively as follows:

• if φ = � then Cn
φ = true.

• if φ ∈ AP then Cn
φ = true iff φ ∈ L (n).

• if φ = ¬φ1 then Cn
φ = ¬Cn

φ1
.

• if φ = φ1 ∧φ2 then Cn
φ = Cn

φ1
∧Cn

φ2
.

• if φ = EX(φ1) then Cn
φ =

∨
n′∈Nn∪{n}

(
Cnn′ ∧Cn′

φ1

)
.

• if φ = E[φ1Uφ2], then there exists boolean variables
Bn′

φ ∈ Var and variables V n′
φ ∈ Var defined in the do-

main [1,q] such that Cn
φ = Bn

φ and the relation between
variables is given by the constraints of Const defined
below:

∧
n′

(
Bn′

φ ⇔Cn′
φ2
∨Cn′

φ1
∧

∨
n′′∈Nn′

(
Bn′′

φ ∧Cn′n′′
))

(1)

∧
n′

(
Bn′

φ ⇒Cn′
φ2
∨Cn′

φ1
∧

∨
n′′∈Nn′

(
Bn′′

φ ∧Cn′n′′ ∧V n′
φ < V n′′

φ

))
(2)

• if φ = A[φ1Uφ2], then there exists boolean variables
Dn′

φ ∈Var and variables W n′
φ ∈Var defined in the domain

[1,q] such that Cn
φ = Dn

φ and the relation between
variables is given by the constraints of Const defined
below:

∧
n′

(
Dn′

φ ⇔Cn′
φ2
∨Cn′

φ1
∧

∨
n′′∈Nn′

(
Cn′n′′

)
∧

∧
n′′∈Nn′

(
Cn′n′′ ⇒ Dn′′

φ

))

(3)∧
n′

(
Dn′

φ ⇒Cn′
φ2
∨Cn′

φ1
∧

∨
n′′∈Nn′

(
Dn′′

φ ∧Cn′n′′ ∧W n′
φ < W n′′

φ

))

(4)

IV. IMPLEMENTATION

A first implementation of this approach is made in the
language Java with the library JaCoP (http://jacop.cs.lth.se/)
for constraint programming. This software is ”SeMoCo-
GRN” (Selecting Models by Constraints for GRN). For more
efficiency in the resolving of the constraint (3), we use a
property linked to the modeling of R. Thomas: there exists
a transition n → n iff there does not exist any transition
n → n′ such that n′ 
= n. This property allows simplifying
the constraint

∨
n′′∈Nn′

(
Cn′n′′

)
into ¬Cnn. It is also possible to

simplify the constraints (2) by removing the constraint Cn′
φ1

because the constraints (1) oblige the state n′ to validate φ1 or
φ2 if Bn′

φ is true. Thus according to (1), if Bn′
φ is true and if n′

does not validate φ2, then n′ validates φ1. This simplification
is also true for the constraint (4).

V. EXAMPLES

We present in this section some examples based on two
different dynamics (fig. 2 and 3) of the mucus produc-
tion system in bacteria Pseudomonas aeruginosa (fig. 1).
Pseudomonas aeruginosa are bacteria that secrete mucus
(alginate) in lungs of patients affected by cystic fibrosis,
but not in common environment. As this mucus increases
respiratory deficiency, this phenomenon is a major cause of
mortality.

x y

+2
+1

−1

Fig. 1. GRN of mucus production in Pseudomonas aeruginosa. The gene
x synthesizes a protein which activates the expression of gene y (when its
concentration level exceeds the abstract threshold 1) and itself (when it
exceeds 2) by binding the promoters. In turn, the protein of y inhibits the
expression of x when its concentration level exceeds 1.



It is known that the mucus production occurs when ab-
stract concentration level of x (alginate) is greater or equal
to 2. If we add the following properties:

• the state (2,1) (x = 2 and y = 1) is a stable state
(translated by (x = 2∧ y = 1) ⇒ AG(x = 2∧ y = 1)).

• a bacteria producing mucus will always produce mucus
(translated by (x = 2) ⇒ AG(x = 2)).

• a bacteria being in the state (0,0) can produce mucus in
the future (translated by (x = 0∧y = 0)⇒ E[�Ux = 2]).

then we have a set of six possible dynamics, among which
the one in fig 3. On the other hand, the dynamics of the fig. 2
presents two different behaviours (production of mucus and
non-production of mucus) since there are two non-connected
subgraphs. Thus, fig. 2 presents a dynamics where it is not
possible to reach level 2 of x from level 0 without external
signal (epigenitic switch) although fig. 3 presents a dynamics
where level 2 is reached from all initial states.

x
0 1 2

y

0

1

x
0 1 2

y

0

1

Fig. 2. Fig. 3.

From fig. 2 and 3, we show two examples with the
property (x = 0 ∧ y = 0) ⇒ E[�Ux = 2] allowing better
understanding of the use of additional variables. In the
examples, φ denotes E[�Ux = 2].

For the dynamics of fig. 2, we begin with C(0,0)
φ = (B(0,0)

φ =
1). As the states (2,0) and (2,1) satisfy the atomic propo-
sition x = 2, we have by equations (1) and (2): B(2,0)

φ = 1,

B(2,1)
φ = 1 and later by these equations and these two results,

• either B(1,0)
φ = B(1,1)

φ = B(0,0)
φ = B(0,1)

φ = 0 leads us to the

contradiction B(0,0)
φ = 1∧B(0,0)

φ = 0.

• or B(1,0)
φ = B(1,1)

φ = B(0,0)
φ = B(0,1)

φ = 1 leads us to the

contradictions V (1,0)
φ 
= V (1,0)

φ , V (1,1)
φ 
= V (1,1)

φ , V (0,0)
φ 
=

V (0,0)
φ and V (0,1)

φ 
= V (0,1)
φ .

This example shows that the constraints corresponding to the
formula CTL are not consistent. It is therefore normal that
this solution does not appear in the six previously obtained
dynamics. We notice that without equation (2) this example
would have been consistent with equation (1).

For the dynamics of the fig. 3, we begin also with C(0,0)
φ =

(B(0,0)
φ = 1) and for the same reasons as previously, we have:

• B(2,0)
φ = 1 and B(2,1)

φ = 1 and arbitrary we put also

• V (2,0)
φ = 6 and V (2,1)

φ = 6.
• Later, by these equations and these results, we have

successively:

1) B(1,0)
φ = 1, V (1,0)

φ = 5, B(1,1)
φ = 1 and V (1,1)

φ = 5.

2) B(0,0)
φ = 1, V (0,0)

φ = 4, B(0,1)
φ = 1 and V (0,1)

φ = 4.

This example shows that the constraints corresponding to the
formula CTL are consistent.

VI. CONCLUSION

We have designed and implemented a combined approach
using CTL and constraint programming, in order to perform
model-checking of gene regulatory networks. This approach
translates temporal properties of the biological system into
constraints on the parameters of the discrete model. Among
other things, this allows us to have all consistent dynamics
with the temporal properties of the biological system without
having to construct the inconsistent dynamics. The advantage
of this approach meets again in the practice. For example, for
the GRN of immunity control in bacteriophage lambda [16],
which is bigger than the one of the mucus production in
Pseudomonas aeruginosa, there are 32 interesting dynamics
among the possible 3 millions . Our prototype SeMoCo-GRN
finds these interesting dynamics in 800 milliseconds whereas
the enumerating approach [3] finds them in 8 minutes and
30 seconds. Our future work will be to optimize the relations
between the variables and to reduce the number of additional
variables, in order to be able to treat bigger GRN.
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