
Modeling Multi-Valued Genetic Regulatory
Networks Using High-Level Petri Nets

Jean-Paul Comet1, Hanna Klaudel1, and Stéphane Liauzu1

LaMI, UMR CNRS 8042, Université d’Evry-Val d’Essonne,
Boulevard François Mitterrand, 91025 Evry Cedex, France.

tel : (33) 1.60.87.39.17 - fax : (33) 1.60.87.37.89
comet@lami.univ-evry.fr

keywords: HLPN, modeling of regulatory networks, model checking.

Abstract. Regulatory networks are at the core of all biological functions
from bio-chemical pathways to gene regulation and cell communication
processes. Because of the complexity of the interweaving retroactions,
the overall behavior is difficult to grasp and the development of formal
methods is needed in order to confront the supposed properties of the
biological system to the model. We revisit here the tremendous work of
R. Thomas and show that its binary and also its multi-valued approach
can be expressed in a unified way with high-level Petri nets.
A compact modeling of genetic networks is proposed in which the tokens
represent gene’s expression levels and their dynamical behavior depends
on a certain number of biological parameters. This allows us to take
advantage of techniques and tools in the field of high-level Petri nets. A
developed prototype lets a biologist to verify systematically the coherence
of the system under various hypotheses. These hypotheses are translated
into temporal logic formulae and the model-checking techniques are used
to retain only the models whose behavior is coherent with the biological
knowledge.

1 Introduction

To elucidate the principles that govern biological complexity, computer mod-
eling has to overcome ad hoc explanations in order to make emerge novel and
abstract concepts[1]. Computational system biology [2] tries to establish methods
and techniques that enable us to understand biological systems as systems, in-
cluding their robustness, design and manipulation[3,4]. It means to understand:
the structure of the system, such as gene/metabolic/signal transduction net-
works, the dynamics of such systems, methods to control, design and modify
systems in order to cope with desired properties[5].

Biological regulatory networks place the discussion at a biological level in-
stead of a biochemical one, that allows one to study behaviors more abstractly.
They model interactions between biological entities, often macromolecules or
genes. They are statically represented by oriented graphs, where vertices ab-
stract the biological entities and arcs their interactions. Moreover, at a given

stage, each vertex has a numerical value to describe the level of concentration
of the corresponding entity. The dynamics correspond to the evolutions of these
concentration levels and can be represented, for instance, using differential equa-
tion systems.

R. Thomas introduced in the 70’s a boolean approach for regulatory networks
to capture the qualitative nature of the dynamics. He proved its usefulness in
the context of immunity in bacteriophages[6,7]. Later on, he generalized it to
multi-valued levels of concentration, so called “generalized logical” approach.
Moreover, the vertices of R. Thomas’ regulatory networks are abstracted into
“variables” allowing the cohabitation of heterogeneous information (e.g., adding
environmental variables to genetic ones).
The R. Thomas boolean approach has been justified as a discretization of the
continuous differential equation system[8], then has been confronted to the more
classical analysis in terms of differential equations[9]. Taking into account “sin-
gular states”, Thomas and Snoussi showed that all steady states can be found
via the discrete approach[10]. More recently Thomas and Kaufman have shown
that the discrete description provides a qualitative fit of the differential equations
with a small number of possible combinations of values for the parameters[11].
A direct or indirect influence of a gene on itself corresponds to a closed oriented
path which constitutes a feedback circuit. Feedback circuits are fundamental
because they decide the existence of steady states of the dynamics: it has been
stated then proved [12,13,14,15] that at least one positive regulatory circuit is
necessary to generate multistationarity whereas at least one negative circuit is
necessary to obtain a homeostasis or a stable oscillatory behavior[16].

These static properties (number of stationary states) can be reinforced by
introducing some properties on the dynamics of the system extracted from the
biological knowledge or hypotheses. It becomes necessary to construct models
which are coherent not only with the previous static conditions but also with
the dynamical ones. Formal methods from computer science should be able to
help modeler to automatically perform this verification. In [17,18] the machinery
of formal methods is used to revisit R. Thomas’ regulatory networks: all pos-
sible state graphs are generated and model checkers help to select those which
satisfy the temporal properties. All this approach is based on the semantics of
the regulatory graph, i.e., its dynamics, which has to be computed before. The
state explosion phenomenon in the transition graph limits the readability of
these modelings and the possible extensions like, for instance, the introduction
of delays for transitions. These observations motivated our interest for applying
in this context the Petri net theory.

In this article we present a modeling of the R. Thomas’ regulatory networks
in terms of high-level Petri nets. To ensure the adequation between both for-
malisms, we first present formally the biological regulatory graphs which de-
scribe the interactions between biological entities, the parameters which pilot
the behaviors of the system and the associated dynamics (section 2). Then, after
a brief introduction to the high-level Petri nets, a modeling of regulatory graphs
is introduced in section 3. In section 4 we show how model-checking can be used

to determine which models have to be considered. Sections 5 and 6 illustrate
our approach with the LTL model-checker Maria, and describe our prototype
for computer aided modeling in the context of genetic regulatory networks. The
last section 7 discusses the results and the possible extensions.

2 Genetic regulatory graphs and associated semantics

In this section we formally define the biological regulatory networks. We first
introduce the biological regulatory graph which represents interactions between
biological entities. A vertex represents a variable (which can abstract a gene or
its protein for instance). The interactions between genes are represented by arcs
and each arc is labelled with the sign of the interaction: “−” for an inhibition
and “+” for an activation.

The interactions have almost always a sigmoid nature (see Fig. 1): for each
positive interaction of i on j, if variable i has a concentration below a certain
threshold (defined by the inflection point of the sigmoid), then the variable j
is not influenced by i, and above this threshold, j is controlled by i in a same
way for any concentration of i above the threshold. Figure 1 assumes that the
variable i acts positively on j and negatively on j′; each curve represents the
concentration of the target after a sufficient delay for the regulator i to act on it.
Three regions are relevant: the first one corresponds to the situation where i does
not act neither on j nor on j′, the second to the situation where i acts only on j,
and the last one corresponds to the situation where i acts on both targets j and
j′. This justifies the discretization of the concentration of i into three abstract
levels (0, 1 and 2) corresponding to the previous regions and constituting the
only relevant information from a qualitative point of view.

j′

j

i

i

i

210

Fig. 1. The discretization is supervised by the thresholds of actions on targets.

For a variable which has τ targets (itself possibly included), τ + 1 abstract
levels have to be considered if all thresholds are distinct, but possibly less in the
case where two or more thresholds are equal.

Definition 1. A biological regulatory graph is a labelled directed graph G =
(V, E) where each vertex i of V, called a variable, is provided with a boundary
βi ∈ IN less or equal to the out-degree of i except if the out-degree is 0 in which
case βi = 1. Each edge (i −→ j) is labelled with a pair (tij , εij) where tij,
called the threshold of the interaction, is a natural number between 1 and βi and
εij ∈ {−, +} is its sign.

The threshold tij of a positive interaction (i −→ j) determines the conditions
which allow the variable i to stimulate j: if variable i has an abstract level below
tij , the interaction is not active and j is not stimulated, otherwise, it is. For
negative interactions, the conditions are symmetrical.
At a given stage, each variable of a regulatory graph has a unique abstract
concentration level. So, the state of the system may be represented as a vector
of concentration levels ni of each variable i.

Definition 2. A state of a biological graph is a tuple n = (n1, n2, ..., np), where
p is the number of variables and ni is the abstract concentration level of the
variable i with ni ∈ IN and ni ≤ βi.

21(2,+)

(1,+)

(1,−)

Fig. 2. Regulatory graph for mucus production in pseudomonas aeruginosa.

Running example: We take as running example the mucus production in Pseu-
domonas aeruginosa. These bacteria are commonly present in the environment
and secrete mucus only in lungs affected by cystic fibrosis. As this mucus in-
creases the respiratory deficiency of the patient, it is the major cause of mor-
tality. The regulatory network which controls the mucus production has been
elucidated [19]. The main regulator for the mucus production, AlgU, supervises
an operon which is made of 4 genes among which one codes for a protein that
is a repressor of AlgU. Moreover AlgU favors its own synthesis. The regulatory
network can then be simplified into the regulatory graph of Fig. 2, where variable
1 represents AlgU, and variable 2 its repressor. The order of thresholds t12 and
t11 is not deductible from biological knowledge and in fact both orderings have
to be considered 1. Figure 2 assumes that t12 < t11. Variable 1 can take three
1 Two regulatory graphs should be considered; for simplicity we explain the concepts

on one of them.

different abstract concentration levels: 0,1 or 2. Similarly, variable 2 which is an
inhibitor of variable 1, can take two levels: 0 and 1. Consequently, there are 6
possible states (0, 0), (0, 1), (1, 0), (1, 1), (2, 0) and (2, 1).

Up to now, the discretization of continuous concentrations into the abstract
levels allows us to define when a regulator has an influence on its targets, but
we need to determine towards which abstract levels the targets are attracted.
To answer this question, one has to know for each state n which regulators
are actually effective on the considered target i, in other words, which are the
“resources” of i in the state n.

Definition 3. Given a biological regulatory graph G = (V,E) and a possible
abstract state n = (n1, n2, ..., np), the set of resources of a variable i is the set

Ri(n) ={
j ∈ V | (j

(tji,εji)−→ i) ∈ E, (((nj ≥ tji) ∧ (εji = +)) ∨ ((nj < tji) ∧ (εji = −)))
}

.

Ri(n) contains the activators of i whose abstract level is above the threshold
and the inhibitors of i whose abstract level is below the threshold. A resource is
either the presence of an activator or the absence of an inhibitor.

It remains to define towards which abstract level a variable i is attracted
when its resources are ω. We call this level the attractor of i for resources ω and
denote it by ki,ω.

Having the values of attractors, it is straightforward to define the synchronous
state graph of the biological network. For a state n = (n1, n2, ..., np) where p is
the number of variables, we take for each variable i, the attractor ki,Ri(n), where
Ri(n) is the set of resources of variable i when the system is in the state n. The
synchronous state graph is obtained by setting for the unique possible next state
the state towards which the system is attracted n′ = (k1,R1(n), k2,R2(n), ...kp,Rp(n)).
However, this definition has at least two drawbacks:

– first, it allows two or more variables to change simultaneously, while the
probability that several variables pass through their respective thresholds at
the same time is negligible in vivo. But we do not know which one will pass
through its threshold first;

– and second, it does not prevent that a variable passes directly two or more
thresholds, which is not realistic because an abstract concentration level
should evolve gradually.

Then, an improved semantics is defined in terms of an asynchronous state graph
which:

– replaces each diagonal transition of the synchronous state graph (transition
with 2 or more variables changing their concentration levels) by the collection
of transitions each of them modifying only one of the involved variables,

– replaces a transition of length greater or equal to 2 (which passes two or
more thresholds at once) by a transition of length 1 in the same direction.

We then introduce the evolution operator which allows us to define formally
the asynchronous state graph.

Definition 4. Let x, k ∈ IN. The evolution operator I is defined as follows:

x I k =

x− 1 iff x > k
x + 1 iff x < k

x otherwise.

Definition 5. Let G = (V,E) a regulatory graph with p variables. Its asyn-
chronous state graph is defined as follows :

– the set of vertices is the set of states Πi∈V [0, βi] = {(n1, ..., np) ∈ INp | ∀i ∈
[1, p], ni ≤ βi}

– there is a transition from the state n = (n1, ..., np) to m = (m1, ..., mp) iff
{∃! i such that mi 6= ni

mi = (ni I ki,Ri(n))
or

{
m = n
∀i ∈ [1, p], ni = (ni I ki,Ri(n))

From the R. Thomas modeling towards a modeling with Petri nets. A natural
way to define an equivalent Petri net, i.e., whose dynamics is exactly the same
as the asynchronous approach of R. Thomas, consists in introducing inhibitor
arcs [20]. A place is associated to each gene, and a transition to each parameter.
The input places of the transition corresponding to ki,ω are all the predecessors
of i, with the places of ω connected to the transition by standard arcs and the
predecessors of i not included in ω connected to the transition by inhibitor arcs.

In such a modeling, there are as many transitions as parameters. For a non
trivial regulatory graph, it leads to a Petri net which is difficult to interpret
because of its size. Moreover, using inhibitor arcs changes the complexity of the
Petri net class and may lead to introduce difficulties in proofs of some properties.

3 Modeling with high-level Petri nets

3.1 Introduction to high-level Petri nets

Multiset notations. A multiset over a set E is a function µ : E → IN; µ is finite
if {e ∈ E | µ(e) > 0} is finite. We denote by Mf (E) the set of finite multisets
over E.

Definition 6. A (low-level) Petri net is a triple L = (S, T, W), where S is a
set of places, T is a set of transitions, such that S ∩ T = ∅ and W : (S × T) ∪
(T × S) → IN is a weight function.

A marking of a Petri net (S, T, W) is a mapping M : S → IN, which associates
to each place a natural number of tokens. The behavior of such a net, starting
from an arbitrary initial marking, is determined by the usual definitions for
place/transition Petri nets.

High-level nets that we consider can be viewed as simple abbreviations of the
low-level ones.

Let Val and Var be fixed but suitably large disjoint sets of values and vari-
ables, respectively. The set of all well-formed predicates built from the sets Val,
Var and a suitable set of operators is denoted by Pr.

Definition 7. A high-level Petri net, HLPN for short, is a triple (S, T, ι), where
S and T are disjoint sets of places and transitions, and ι is an inscription
function with domain S ∪ (S × T) ∪ (T × S) ∪ T such that:

– for every place s ∈ S, ι(s) ⊆ Val, is the type of s, i.e., the set of possible
values the place may carry;

– for every transition t ∈ T , ι(t) is the guard of t, i.e., a predicate from Pr;
– for every arc (s, t) ∈ (S × T) : ι((s, t)) ∈ Mf (Val ∪ Var) is a multi-set

of variables or values (analogously for arcs (t, s) ∈ (T × S)). The inscrip-
tions ι((s, t)) and ι((t, s)) will generally be abbreviated as ι(s, t) and ι(t, s),
respectively.

A marking of a high-level Petri net (S, T, ι) is a mapping M : S →Mf (Val)
which associates to each place s ∈ S a multi-set of values from its type ι(s). A
binding is a mapping σ:Var → Val and an evaluation of an entity η (which can
be a variable, a vector or a (multi-)set of variables, etc.) through σ is defined as
usual and denoted by η[σ].

The transition rule specifies the circumstances under which a marking M ′ is
reachable from a marking M . A transition t is activated at a marking M if there
is an enabling binding σ for variables in the inscription of t (making the guard
true) and in inscriptions of arcs around t such that ∀s ∈ S : ι(s, t)[σ] ≤ M(s),
i.e., there are enough tokens of each type to satisfy the required flow. The effect
of an occurrence of t, under an enabling binding σ, is to remove tokens from its
input places and to add tokens to its output places, according to the evaluation
of arcs’ annotations under σ.

P

Q

R

(a)

b

a

1

2, 3

{1}

a > b a
1

{1, 2, 3}

{1, 2, 3}
P

Q

R

(b)

b

a
3

{1}

a > b a
1, 2

{1, 2, 3}

{1, 2, 3}

Fig. 3. A simple marked high-level Petri net before (a) and after (b) the firing of the
transition.

For the example of Fig. 3-(a), the marking is given by: M(P) = {2, 3},
M(Q) = {1}, M(R) = {1}. Bindings are σ1 =

{
a → 1
b → 1 , σ2 =

{
a → 2
b → 1 and

σ3 =
{

a → 3
b → 1 . Only σ2 and σ3 are enabling (σ1 does not make the guard true).

At the marking M , the transition t is activated for both σ2 and σ3. Figure 3-(b)
shows the new marking if σ2 is chosen.

An important property of high-level nets is that they may be unfolded to
low-level ones, which may be helpful when using various verification tools. The
unfolding operation associates a low-level net U(N) with every high-level net N ,
as well as a marking U(M) of U(N) with every marking M of N .

Definition 8. Let N = (S, T, ι); then U(N) = (U(S),U(T), W) is defined as
follows:

– U(S) = {sv | s ∈ S and v ∈ ι(s)};
– U(T) = {tσ | t ∈ T and σ is an enabling binding of t};
– W (sv, tσ) =

∑

a ∈ ι(s, t)
a[σ] = v

ι(s, t)(a), where ι(s, t)(a) is the number of occurrences

of a in the multiset ι(s, t), and analogously for W (tσ, sv).

Let M be a marking of N . The unfolding of a marking U(M) is defined as
follows: for every place sv ∈ U(S), (U(M)) (sv) = (M(s)) (v) where (M(s)) (v) is
the number of occurrences of v in the marking M(s) of s. Thus, each elementary
place sv ∈ U(S) contains as many tokens as the number of occurrences of v in
the marking M(s). Figure 4 presents the Petri net obtained by unfolding of the
high-level Petri net of Fig. 3-(a).

P2

P1

P3

Q1

R1

R2

R3

tσ1

tσ2

Fig. 4. Unfolded Petri net of high-level Petri net of Fig. 3-(a).

3.2 Modeling of genetic regulatory networks

We can represent a regulatory network by a high-level Petri net which has a
unique transition and as many places as genes in the regulatory graph. Each place
corresponds to a gene i and carries one token: its abstract concentration level ni.
The marking of this net corresponds thus to an abstract state n = {n1, . . . , np}.

The transition can fire at a marking n leading to the marking n′ if its guard

asyn guard(n, n′) =

(
∃i ∈ [1, p], (ni 6= ki,Ri(n)) ∧ (n′i = ni I ki,Ri(n)) ∧ (∀j 6= i, n′j = nj)

)
∨

(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′i = ni)

)

is true. This guard translates directly the asynchronous semantics of R. Thomas.
Indeed, the marking represents a stable steady state for the asynchronous se-
mantics, when the attractors ki,Ri(n) equal the current concentrations ni for all
variables i ∈ V . The guard gives in this case the same marking for the next one.
If the marking does not correspond to any stable steady state, then some vari-
ables are not equal to their attractors. Following Thomas’ semantics, a possible
next marking is a marking for which the variables do not change unless one of
them which changes (plus or minus one) in the direction of its attractor.

Figure 5 represents the high-level Petri net for the running example. Let
us consider furthermore that the attractors of the running example are given:
k1,{} = 0, k1,{1} = 2, k1,{2} = 2, k1,{1,2} = 2, k2,{} = 0 and k2,{1} = 1.
Let us choose the state (1, 0) as the initial marking. The resources of variable
1 are R1((1, 0)) = {2} since both inhibitor and activator are absent, and the
resources of variable 2 are R2((1, 0)) = {1} since the activator is present. Both
variables are attracted towards values different from their current values. Two
possible new markings are possible: (2, 0) if the variable 1 evolves first, and (1, 1)
otherwise. Globally, the sequence of markings during an execution corresponds
to a particular possible path.

n2

b

b′a′

a

asyn guard((a, b), (a′, b′))n1

variable2variable1

Fig. 5. HLPN modeling a genetic regulatory network with 2 genes. Each place abstracts
a gene and carries one token: its abstract concentration level. The guard expresses
the relationship between the current marking (nvariable1

, nvariable2
) and the possible

updated marking (n′variable1
, n′variable2

).

Thus, for implementation reasons, we propose a more compact modeling
which is in fact a folding of the previous one. It consists in a unique place called
cell, which abstracts the cell in which each token represents a specific gene and
its expression level. A particular structured type gene is needed: it represents a
couple (gene, level) where level is the abstract level of the variable gene. The arc
inscriptions are also modified: the input one becomes {(1, a1), . . . , (p, ap)}, with

ai 6= aj for i 6= j, and the output one becomes {(1, a′1), . . . , (p, a′p)}, with a′i 6= a′j
for i 6= j. The state of the system is now represented by the set of tokens present
in the unique place. Let be ν = {(i, ni), i ∈ [1, p]} and ν′ = {(i, n′i), i ∈ [1, p]}.
The guard of the unique transition can then be written:

asyn guard(ν, ν′) =

(
∃i ∈ [1, p], (ni 6= ki,Ri(n)) ∧ (n′i = ni I ki,Ri(n)) ∧ (∀j 6= i, n′j = nj)

)
∨

(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′i = ni)

)

Then, for every biological/genetic regulatory network, the high-level Petri
net has a unique place and a unique transition. The only things that distinguish
different nets are the number and the type of tokens, and the parameters ki,Ri(n)

which are present in the guard. This property is very useful in practice because
it allows us to have a generic description (and so a generic source file) and to
generate automatically the high-level Petri net for an arbitrary genetic regulatory
network.

As an illustration, Fig. 6 presents the high-level Petri net for the regulatory
graph of our running example.

Cell (1, a′), (2, b′)

(1, a), (2, b)

(2, n2)
(1, n1)

asyn guard({(1, a), (2, b)} , {(1, a′), (2, b′)})

Fig. 6. Second HLPN modeling of a genetic regulatory network with 2 genes.

4 Determination of valuable models

Parameters {ki,ω, i ∈ V and ω ⊆ G−1(i)} play a major role on the dynamics
of the regulatory networks. In fact, they code entirely for their dynamics. For
this reason, a set of particular parameter values is called a model of the system.
Unfortunately, most often they cannot be deduced from experiments and the
modeler has to consider the different possible values of parameters. For a given
regulatory graph, the number of different sets of parameter values, i.e., the num-
ber of models, is exponential with the number of predecessors of each variable.
More precisely, this number is equal to

∏
i∈V 2|G

−1(i)|, where |G−1(i)| denotes
the number of predecessors of variable i in the regulatory graph. This enormous
number prevents us to construct all possible dynamics of the regulatory network
and to let biologist select only interesting ones. Some interesting results can

therefore be used for reducing the number of models to be considered. In [10]
the modeling of Thomas is seen as a discretization of a particular class of contin-
uous differential equation systems, and parameters ki,ω reflect a discretization
of sums of ratios of positive constants. In such a case, the parameters in the set
{ki,ω | i ∈ V and ω ⊆ G−1(i)} have to satisfy the following constraints

ki,∅ = 0 and ω ⊂ ω′ =⇒ ki,ω ≤ ki,ω′ .

Nevertheless, it is possible to enlarge the set of models which can be described
by this discrete formalism leading to slacken these previous constraints which
cannot be added arbitrarily.

Then, the modeling activity focuses on the determination of a suitable class
of models, i.e., parameter values that lead to a dynamics which is coherent
with the experimental knowledge. Biological knowledge about the behavior can
then be used as indirect criteria constraining the set of models. For instance,
multistationarity or homeostasis which are experimentally observable, are useful
to reduce the set of parameter values. This relies on notions of positive/negative
functional circuits and of their characteristic states [21].

But, it is possible to take into account not only such conditions as homeostasis
and multistationarity, but also particular temporal properties extracted from
biological knowledge or hypotheses[18]. These knowledge or hypotheses may be
translated into a formal temporal language as LTL (Linear Temporal Logic) or
CTL (Computational Tree Logic) in order to be manipulated automatically by
computer. The coherence of the model may then be verified automatically by
model checking.

For the running example, the presence of a positive circuit in the regulatory
graph of Pseudomonas aeruginosa makes possible a dynamics with two stable
steady states which would correspond, from a biological point of view, to an
epigenetic switch (stable change of phenotype without mutation) from the non-
mucoid state (the bacterium does not produce mucus) to the mucoid state (it
does). In other words, the question is to find at least one model of the bacteria,
which is compatible with the known biological results and which has a multi-
stationarity where one stable steady state produces mucus and the other one
does not. It turns out that the mucus production is triggered by a high level
of variable 1. Then, a recurrent production of mucus is equivalent to the fact
that the concentration level n1 of variable 1 is repeatedly equal to 2. So, the
stationarity of the mucoid state can be expressed as:

(n1 = 2) =⇒ XF (n1 = 2) (1)

where XFϕ means that ϕ will be satisfied in the future. Moreover, we know
that the bacteria never produce mucus by them-selves when starting from a
basal state (second stable steady state):

(n1 = 0) =⇒ G(¬(n1 = 2)). (2)

However, even if it may be easy to express in this way particular properties
of a given system, proposing a general method allowing to express formally a
biological hypothesis remains a difficult open problem.

Nevertheless the formal properties being given, it becomes possible to design
a general approach for selecting models of a given regulatory graph which lead
to a dynamics coherent with the considered temporal properties. The stages are
as follows (see Fig. 7):

1. Design the regulatory graph corresponding to the biological system. Because
of the partial information on the system, the biological regulatory network
can be represented by several regulatory graphs. For this step it is not nec-
essary to describe all details of the system but only the key concepts. In
particular, positive and negative circuits have to be present as well as their
intertwined interactions.

2. Design the temporal logic formulae which express formally dynamical knowl-
edge or hypotheses that biologist want to take into account. This step should
be performed with care in order not to forget important information.

3. Generate, from the regulatory graphs, all potential models (set of parameter
values).

4. Construct the high-level Petri net for each of them.
5. For each Petri net, call the model checker for verifying if the temporal prop-

erties are satisfied. Return only the models and associated state graphs which
satisfy the formulae.

Generation of
parameters

...

regulatory graph

model checking

1 3

5

4

Temporal logic formulae2

List of coherent models

HLPN

ka,∅ = 0

ϕ1, ϕ2, ..., ϕk

| {z }
Inputs

Outputs

�

ka,{a} = 1

Fig. 7. Computer aided modeling approach. The first step consists in designing the
regulatory graph (1) and the temporal logic formulae expressing temporal properties
of the underlying biological system (2). Generate a potential model (3), then construct
the HLPN (4). The model checker is then called for verifying the temporal properties
(5). If the model satisfies the properties, the model is stored. Back to (3) for generating
another potential model.

5 Implementation with Maria

For implementing, we chosen the model checker MARIA [22] (Modular Reach-
ability Analyzer for Algebraic System Nets) which takes as input a high-level
Petri net described in a particular language (see Fig. 13 in the appendix for an
example), a LTL formula and performs the checking.

The execution of regulatory networks depends on the initial state and the
checkings have to be done from each possible initial state unless the formulae
specify the opposite. Maria makes possible to specify a unique initial marking.
Then, it is necessary to include a mechanism allowing to take into account all
interesting initial markings. In order to do this, we add two places and a new
transition (see Fig. 8).

– The first place, Inits, contains all initial states that have to be considered
for the current checking. If no restriction has to be taken into consideration,
all states are added in this place.

– The second place, Bool1, contains only a boolean token initially set to false,
which means that the initial state has to be chosen. Then the token becomes
true.

– The transition G1 takes an initial marking from Inits and the value false
from Bool1 and generates the corresponding tokens in the place Cell, the
value true in Bool1 and gives back the initial marking to Inits.

G1 G2

(1
, n

1
),

...
, (

p, n
p
)

Bool1 Cell

Succ

btrue

s s g g

Inits

{(i, n′i)} {(i, ni)}

Fig. 8. Implementation in MARIA of the HLPN. The guard G1 = (b = false) ∧
(s = ((1, n1), (2, n2), ..., (p, np))) is fired only once for the initialization step. G2 is the
asynchronous guard completed with the number of the gene which evolves (see text).

At the beginning, the place Cell is empty. The transition G2 is not enabled but
the transition G1 can fire. It chooses a possible initial state and generates the
corresponding tokens in the place Cell. The token of the place Bool1 becomes
true and the transition G1 is disabled. The fact that G1 gives back to Inits the

chosen initial state prevents to generate supplementary states of the Petri net
which do not correspond to anything in the regulatory network.

The high-level Petri net which models an asynchronous state graph contains
some non-determinism due to the fact that several successor states may be reach-
able from a given state. Representing this in Maria assumes the definition of a
supplementary place Succ initialized with all natural numbers from 0 to p where
p is the number of genes present in the regulatory graph. The transition G2 reads
the current state, chooses a particular token from the place Succ and generates
the next state according to the Succ’ token. For example, if the token 3 is chosen,
the next marking corresponds to the state where only gene 3 has changed. If 0
is chosen, it means that no gene evolves.
The guard of G2 is almost as asyn guard seen before, the only change concerns
the token g read from the place Succ. It can be written as follows:

G2(ν, ν′, g) =

(
(g 6= 0) ∧ (ng 6= kg,Rg(n)) ∧ (n′g = ng I kg,Rg(n)) ∧ (∀j 6= g, n′j = nj)

)
∨

(g = 0) ∧
(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′i = ni)

)

With this modeling it is possible to implement the global approach described
in section 4. In such an approach the majority of models are rejected. It could be
interesting to test directly a set of models which are considered as non suitable
in order to reject them in only one call to the model checker. We construct now
a new modeling which is able to manage a set of models.
Three supplementary places and a transition are added (see Fig. 9). The place
Models is initialized with all models considered as suitable, the place Model
is initially empty and carries the current model to check, and Bool2 contains
a boolean token which is false iff Model is empty. The transition G′3 takes a
possible model from Models and the value false from Bool2 and generates the
corresponding token in the place Model as well as the value true in Bool2. The
transition G′2 which simulates the evolution of the regulatory network reads now
the parameters from the place Model, and the guard is modified accordingly. The
size of this Petri net does not depend on the number of genes nor on the number
of models.

This modeling does not replace the previous one but completes it. It becomes
possible to verify the temporal properties on a set of models similarly as it was
possible to do it for a set of initial markings.

This approach could also be used for finding a first model that is compatible
with the temporal properties. Let us assume that we are looking for a model
that satisfies a set of formulae ϕ1, ϕ2, ..., ϕn. The model checker MARIA tries
to validate the formulae for all possible paths and for all possible models. If no
path contradicts the formulae, Maria answers that the Petri net satisfies them.
In our current modeling, it would mean that all possible models are coherent
with the biological temporal properties. If one path refutes the conjunction of
the formulae, then the computation stops.

(1
, n

1
),

...
, (

p, n
p
)

Bool1 Cell

Models Succ

p p

btrue

s s g g

Model

true b’
c

c

Bool2

p

p

p

{(i, n′i)} {(i, ni)}

Inits

G′1 G′2G′3

Fig. 9. Implementation a HLPN manipulating a set of models for a regulatory network.

Let us initialize the Petri net with all possible models and give to the model
checker the formula XX(¬(ϕ1∧ϕ2∧ ...∧ϕn)). The double X expresses that the
formulae are checked after the initialization of parameters and after the initial-
ization of markings. The model checker is looking for a model which contradicts
the negation of the conjunctions of formulae. If there exists such a path, Maria
stops and gives the associated parameters. This direct way does not allow us to
exhibit all models that we are looking for but only the “first” one.

Unfortunately, the used temporal logic limits this approach. Let us assume
that we are looking for models satisfying the temporal property ϕ. If we give the
model checker the negation of the formula, Maria tries to exhibit a path that
contradicts the negation, i.e., that satisfies the formula. This path corresponds
to a model, but for this parameterization, there could exist another path that
refutes the formula. In fact, in order to develop such an approach, one needs to
express in the formulae that something is possible or that something is true for
all possible choices, in other words, the suitable temporal logic would be rather
CTL. For example, if we have to check the formula on all paths and for all initial
markings, we are looking for a path that satisfies the formula EX AX ϕ. It
means that there exists a model for which all initial markings lead to a state
where ϕ is satisfied. The model checker is given the negation of the previous
formula, AX EX ¬ϕ, and it will answer, if any, a path that refutes the previous
formula, i.e., a model such that for all initial markings, we have ϕ.

As mentioned before this modeling permits the user to exhibit, if any, a
model which satisfies the temporal properties. The existence of such a model
proves the coherence between the regulatory graph and the temporal properties,
but it is not sure that the biological system works in the same way. From a
biological point of view it is more useful to exhibit all possible models which are
coherent with the temporal properties since it permits the biologist to explain
the behaviors by various models. It would be interesting to develop a model
checker which enumerate all counterexamples.

6 Prototype for computer aided modeling

We have designed a prototype for computer aided modeling which implements
our general approach described above. It contains principally 3 modules (see
Fig. 10):

– The first module permits the user to design the regulatory graph with a user
friendly interface (see Fig. 12 in the appendix). NetworkEditor is enable
to generate a XML file to represent the regulatory graph according to the
GINML document type definition [23].

– FormulaEditor helps the user to write the LTL formula which describes
the biological knowledge or hypothesis on the dynamics of the system. The
editor translates the LTL formula into the Maria LTL format.

– Marianne takes as input a GINML file or a text file representing a biological
regulatory graph and an LTL formula. Marianne computes then for each
model the corresponding HLPN. It selects the models which satisfy the LTL
formula using MARIA. It offers also the possibility to generate the corre-
sponding asynchronous state graph (see Fig. 11 in the appendix).

HLPN model checker

MARIA

another

HLPN model checker

MarianneNetworkEditor

jpeg image file XHTML file

HTML fileSVG image file

text file

(GINML)
XML file

FormulaEditortext file

Fig. 10. A prototype for computer aided modeling.

7 Conclusion and future work

We have defined a modeling of regulatory networks in terms of high-level Petri
nets. Applied to the Pseudomonas aeruginosa, this modeling approach selected 4
models leading to 4 different asynchronous state graphs for each regulatory graph
corresponding to two possible orderings of t11 and t12 (see footnote 1). These 8
models prove that the proposed regulatory graphs of Pseudomonas aeruginosa
are coherent with the hypothesis of epigenesis. Figure 13 presents one model
which satisfies the temporal specifications and Fig. 11 the corresponding state

graph obtained directly from Maria. If Pseudomonas aeruginosa is actually com-
patible with one of these models (no matter which model, because there are ob-
servationally equivalent), it could open new therapeutics in prospects. Since the
formula 2 is known to be satisfied, one has just to confirm in vivo the formula 1.
An experiment schema may be suggested by the structure of the formula: it con-
sists in pulsing variable1 up to saturation by an external signal, and in checking,
after a transitory phase due to the pulse, if the mucus production persists [19].

Besides this biological case study, the contribution of the paper is also on a
more abstract level. Indeed, our approach overpasses the pure application con-
text and allows a computer aided manipulation of the semantics of the discrete
modeling of R. Thomas. It consists in defining an automatic translation from reg-
ulatory graphs to high-level Petri nets and to provide the means to express and
check some behavioral properties. In particular, temporal properties expressed
in temporal logics can be checked in order to confirm or refute some biological
hypotheses. These analyzes may be performed using various existent Petri net
methods and tools.

Our compact and generic representation through high-level Petri nets opens
up some extensions. First, recent extensions [24] taking into account non sigmoid
character of the interaction function may easily be handled. Second, resources,
like time or energy, may be introduced in the net model, for instance, using high-
level buffers, as in [25,26]. Moreover, Petri net representation naturally leads to
various kinds of semantics. In particular, one may consider non sequential ones,
which allow on one hand combating the state explosion and on the other hand
using more efficient verification techniques [27,28].

The paper presents also a user friendly environment we developed, helping
biologists in modeling and analyzing regulatory networks and to express desired
properties. Our experiments showed that it would be interesting to extend the
model checker MARIA with CTL logics. Also, since Maria allows the user to un-
fold the model into the native input formats of PEP [28], LoLA [29] or Prod [30],
it gives a possibility to use different analyze techniques offered by these tools. In
particular, the problem of using a CTL model checker may be resolved with Prod.

This approach has been compared in terms of efficiency with another envi-
ronment for regulatory networks, which uses the classical CTL model checker
NuSMV [31] and the execution times were similar. It was not surprising be-
cause the semantics was explicitly sequential. We hope that for some extensions
accepting truly concurrent behaviors, the verification could be more efficient if
partial order representation and dedicated tools are used.

Acknowledgement. The authors thank genopole r©-research in Evry (H. Pol-
lard and P. Tambourin) for constant supports. We gratefully acknowledge the
members of the genopole r© working groups observability and G3 for stimulating
interactions.

References

1. Huang, S.: Genomics, complexity and drug discovery: insights from boolean net-
work models of cellular regulation. Pharmacogenomics. 2 (2001) 203–22

2. Wolkenhauer, O.: Systems biology: the reincarnation of systems theory applied in
biology? Brief Bioinform. 2 (2001) 258–70

3. Kitano, H.: Computational systems biology. Nature 420 (2002) 206–10

4. Hasty, J., McMillen, D., Collins, J.: Engineered gene circuits. Nature 420 (2002)
224–30

5. Kitano, H.: Looking beyond the details: a rise in system-oriented approaches in
genetics and molecular biology. Curr. Genet. 41 (2002) 1–10

6. Thomas, R., Gathoye, A., Lambert, L.: A complex control circuit. regulation of
immunity in temperate bacteriophages. Eur. J. Biochem. 71 (1976) 211–27

7. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol.
73 (1978) 631–56

8. Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations : a
discrete mapping approach. Dynamics and stability of Systems 4 (1989) 189–207

9. Kaufman, M., Thomas, R.: Model analysis of the bases of multistationarity in the
humoral immune response. J. Theor. Biol. 129 (1987) 141–62

10. Snoussi, E., Thomas, R.: Logical identification of all steady states : the concept of
feedback loop caracteristic states. Bull. Math. Biol. 55 (1993) 973–991

11. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and
memory. I. & II. Chaos 11 (2001) 170–195

12. Plathe, E., Mestl, T., Omholt, S.: Feedback loops, stability and multistationarity
in dynamical systems. J. Biol. Syst. 3 (1995) 569–577

13. Snoussi, E.: Necessary conditions for multistationarity and stable periodicity. J.
Biol. Syst. 6 (1998) 3–9

14. Cinquin, O., Demongeot, J.: Positive and negative feedback: striking a balance
between necessary antagonists. J. Theor. Biol. 216 (2002) 229–41

15. Soulé, C.: Graphical requirements for multistationarity. ComPlexUs 1 (2003)
123–133

16. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regu-
latory networks - I. Bull. Math. Biol. 57 (1995) 247–76

17. Pérès, S., Comet, J.P.: Contribution of computational tree logic to biological reg-
ulatory networks: example from pseudomonas aeruginosa. In: CMSB’03. Volume
2602 of LNCS. (2003) 47–56

18. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of for-
mal methods to biological regulatory networks: Extending Thomas’ asynchronous
logical approach with temporal logic. J. Theor. Biol. 229 (2004) 339–347

19. Guespin-Michel, J., Kaufman, M.: Positive feedback circuits and adaptive regula-
tions in bacteria. Acta Biotheor. 49 (2001) 207–18

20. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic
networks: From logical regulatory graphs to standard petri nets. In: ICATPN 2004.
LNCS 3099, Springer-Verlag (2004) 137–156

21. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regula-
tory networks - I. biological role of feedback loops an practical use of the concept
of the loop-characteristic state. Bull. Math. Biol. 57 (1995) 247–76

22. Mäkelä, M.: Maria: Modular reachability analyser for algebraic system nets. In:
ICATPN 2002. Number 2360 in LNCS, Springer-Verlag (2002) 434–444

23. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: GINML: towards a GXL based for-
mat for logical regulatory networks and dynamical graphs. http://www.esil.univ-
evry.fr/∼chaouiya/GINsim/ginml.html (2003)

24. Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, Roux, O., Roux, O.:
Semantics of biological regulatory networks. In: Biology BioConcur’2003. (2003)

25. Pommereau, F.: Modèles composables et concurrents pour le temps-réel. PhD
thesis, Université Paris 12 (2002)

26. Klaudel, H., Pommereau, F.: Asynchronous links in the pbc and m-nets. In:
ACSC’99. Volume 1742 of LNCS., Springer-Verlag (1999) 190 – 200

27. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of petri net unfoldings.
Acta Informatica 40 (2003) 95–118

28. Grahlman, B.: The state of PEP. In: AMAST’98. Number 1548 in LNCS, Springer-
Verlag (1999) 522–526

29. Schmidt, K.: LoLA: a low level analyser. In Nielsen, M., Simpson, D., eds.: ICTPN
2000. Volume 1825 of LNCS., Springer-Verlag (2000) 465–474

30. Varpaaniemi, K., Halme, J., Hiekkanen, K., Pyssysalo, T.: Prod: reference manual.
Technical Report B13, Helsinki University of Technology, Finland (1995)

31. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a reimplementation
of smv. In: STTT’98. BRICS Notes Series, NS-98-4 (1998) 25–31

Appendix

@0

6

boolean1:false
initial_states:{0,0},{1,0},...,{2,1}
succ:0,1,2

@1

2(1)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{1,0},{2,0}
succ:0,1,2

g1
f:false
e:{0,0}

@2

2(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,0},{1,1}
succ:0,1,2

g1
f:false
e:{1,0}

@3

1(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,0},{1,2}
succ:0,1,2

g1
f:false
e:{2,0}

@4

1(3)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{1,0},{2,1}
succ:0,1,2

g1
f:false
e:{0,1}

@5

1(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{1,1},{2,1}
succ:0,1,2

g1
f:false
e:{1,1}

@6

1(4)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,1},{1,2}
succ:0,1,2

g1
f:false
e:{2,1}

g2
n1:0
n2:0
g:1

g2
n1:0
n2:0
g:2

g2
n1:1
n2:0
g:1

g2
n1:1
n2:0
g:2

g2
n1:2
n2:0
g:2

g2
n1:0
n2:1
g:0

g2
n1:1
n2:1
g:1

g2
n1:2
n2:1
g:0

Fig. 11. State graph obtained directly from Maria.

Fig. 12. The interface allows the user to specify the regulatory network in term of
regulatory graph. The thresholds and the sign of the interactions are added on vertices.

//////////////////////////
// DEFINITION OF TYPES //
//////////////////////////
typedef unsigned (1..2) numero_of_gene;
typedef unsigned (0..2) level;
typedef struct{ numero_of_gene g;

level n; } gene;
typedef unsigned (0..2) level_gene1;
typedef unsigned (0..1) level_gene2;
typedef struct{ level_gene1 n1;

level_gene2 n2; } state;
typedef unsigned (0..2) succt;
typedef bool flag;

//////////////////////////////
// DEFINITION OF FUNCTIONS //
//////////////////////////////
state vector(gene g1,gene g2)

is state({is level_gene1 g1.n,
is level_gene2 g2.n});

state synchronous(state e) is state(e?
{2,1}: // attractor for the state {2,1}
{2,1}: // attractor for the state {1,1}
{0,1}: // attractor for the state {0,1}
{2,1}: // attractor for the state {2,0}
{2,1}: // attractor for the state {1,0}
{2,1} // attractor for the state {0,0});

state step1(state e) is state(
(e.n1<synchronous(e).n1) ?{+e.n1,e.n2}:
((e.n1>synchronous(e).n1)?{|e.n1,e.n2}:e));

state step2(state e) is state(
(e.n2<synchronous(e).n2) ?{e.n1,+e.n2}:
((e.n2>synchronous(e).n2)?{e.n1,|e.n2}:e));

gene gene1(state e) is gene({1,e.n1});
gene gene2(state e) is gene({2,e.n2});

//////////////////////////
// DEFINITION OF PLACES //
//////////////////////////
place boolean1 flag: false;
place initial_states state: state e : e;
place cell gene;
place succ succt: succt g: g;

////////////////////////////////
// DEFINITION OF TRANSITIONS //
////////////////////////////////

trans g1
in { place boolean1: f;

place initial_states : e; }
out { place boolean1: true;

place initial_states : e;
place cell : (gene1(e),gene2(e)); }

gate (f==false);

trans g2
{ state v=vector({1,n1},{2,n2});

state v1=step1(v);
state v2=step2(v); }

in { place succ : g;
place cell : {1,n1},{2,n2}; }

out { place succ : g;
place cell : (b ?

(gene1(v2),gene2(v2)): // b==2
(gene1(v1),gene2(v1)): // b==1
({1,n1},{2,n2})); // b==0

}
gate (

(g==0 && v1.n1==v.n1 && v2.n2==v.n2) ||
(g==1 && v1.n1!=v.n1) ||
(g==2 && v2.n2!=v.n2));

deadlock fatal;

Fig. 13. File describing the high-level Petri net corresponding to the regulatory network
of Fig. 12 for model checker Maria. The attractors are deduced from the following
parameters: k1,∅ = 0, k1,{1} = 2, k1,{2} = 2, k1,{1,2} = 2, k2,∅ = 1 and k2,{1} = 1.

