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Abstract. The Computational Tree Logic allows us to express some
properties of genetic regulatory networks. These systems are studied us-
ing the feedback circuits evolved by René Thomas which constitute the
semantic of our formal approach. We illustrate this formal language with
the system of mucus production in pseudomonas aeruginosa, which is a
mucoid bacteria that plays an important role in the cystic fibrosis. With
the Thomas’ theory, we could wonder if the mucoid state could be a
steady state alternative to the non-mucoid state. We would like to know
whether it is possible to have a recurrent mucoid state. Model-checking
allows us to prove that the formula which expresses this property is sat-
isfied by certain models. Moreover, using this formal language we can
propose scenarii for confronting the model to experimentation.

1 Introduction

Biological experiments are motivated by hypotheses that biologists suggest.
These hypotheses are more and more complex and it would be useful to express
them in a form which can be handled by computer. All models which are planed
to be proposed possess some properties corresponding to hypotheses previously
mentioned [B02]. But a model which validates the hypotheses is not always the
true model, it may fail with biological experiments. We have to call into question
and to improve it. Thus, a model which agrees to biologists’ experiments, ties
up with the true model.

We present a formal language allowing to express in a modal logic [R00]
some properties of a genetic regulatory network. Firstly, we present a formal
description of the regulatory networks which are the semantic of this formal lan-
guage. Secondly, we explain how model-checking is used to eliminate a majority
of models. The model-checking is an automatic method to check if a model sat-
isfies a logical formula which correspond for example to a temporal behaviour.
To validate the retained models, a plan of experiment is proposed. Finally, we



illustrate this formal language using the system of mucus production in Pseu-
domonas aeruginosa, which is a mucoid bacteria that plays an important role in
the cystic fibrosis [GO1].

2 Formal description

Biological regulatory networks describe the interactions between genes and ad-
just production rate of system elements. Simulating them by a computer in order
to predict their behaviour requires a formal description. The logical analysis de-
velopped by Thomas [TTK95-1,TT95-2] allows to study this type of models. It
constitutes the basis of the purposed frame to study the regulatory networks,
represented by an oriented graph (graph of interactions) of which the vertices
represent the variables of the system (genes, proteins ...) and the edges represent
the interactions between the variables. When the interactions form an oriented
circuit, this constitutes a feedback loop. These loops regulate the production
of the system variables and the behaviour of a specific variable depends on the
possible paths.

Generally the interactions are described by differential equations and their so-
lutions are sigmoid functions in shape. These functions determine values called
thresholds, which correspond to the minimal concentration rate necessary for
interaction between two variables. One approximates the sigmoids with step
functions. In such a simplification, the number and location of steady states are
preserved [ST93]. The expression level of each variable is discretised according
to threshold values. But, there is no reason for all the thresholds of one variable
to be equal because a variable does not act on the others with the same con-
centration. The interactions are ordered using the associated thresholds and the
nt" threshold of a variable z is named s”.

For example, let us suppose that a variable x acts on two variables = and y.
The expression level of the different target variables in function of the expression
level of x are sigmoids (figure 1). This figure shows three behaviours of x. For
each of them, a specific discretised level of x is associated.

— =0 : x acts on no variable
— x=1: x acts only on y
— =2 :z acts on y and x.

Generally, each edge m — n of the interaction graph is labelled with one of
these thresholds and with the sign + if m has a positive influence on n and with
the sign — if m represses n (graph of thresholds). For the same example, if 2 has
a positive influence on y and on itself, the graph of interactions is presented in
figure 2.

2.1 Graphs of states

To describe the evolution of the system with r variables, one has to make explicit
the level reached by each variable depending on the presence (resp. absence) of
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Fig. 2. Graph of interactions

variables which activate it (resp. which repress it). These values are represented
by a function K. This function takes two arguments as input (a target variable
and the set of its activators) and returns the value towards which the target
variable tends in presence of activators. This function can be determined using
the same approach than Thomas [T'T95-2,ST93], who used the different feedback
loops and their functionality to find the parameters of the system. A positive
feedback loop is functional if it ensures multi-stationarity and a negative one
is functional if it ensures homeostasis. A loop is functional if the state located
at the thresholds of the loop (characteristic state) is steady. One looks for the
values of function K that make loops functional, obtains many contraints on the
function K and can deduce its values (several solutions are possible).

So graphs of states are constructed :

— vertices are the r-uplets corresponding to each possible combination of values
of the r variables

— the oriented edges (n; — m1, n1 — ma, ...) give the possible futures of a
state ni.



The interactions are considered to be asynchronous : a variable does not act
simultaneously on the others. Thus, the future states mj, ma,... of n; changes
the value of one and only one variable in one step. The obtained level traces are
the possible paths of these graphs which shows the possible behaviours of the
system when time passes.

2.2 Model-checking

Biologists could frequently propose hypotheses when studying a real phenomenon.
These hypotheses often express a temporal property of the entire system. For
example, we could wonder in figure 2 : if at a given time z has a positive influence
on y (x = 1) then at the next time x has always a influence on y (x = 1). When
a set of models is proposed, it is necessary to keep those which validate the hy-
potheses. We want to check if a model fulfills the temporal properties associated
to the hypothesis.

In this aim a formal language is introduced, based on the temporal logic [E90]
which is adapted to this kind of models. It allows to express temporal properties
of the system. The temporal logic chosen here is CTL3|CE81,EH82]. It is a tree
structure which can define several futures. It can be applied to our model because
all the possible outcoming edges from a state of the graph define a different
future. The precedent hypothesis on figure 2 can be translated in CTL :

(x=1) = AX(z=1)
where

— = is the logical connective of implication
— AX is a temporal connective which means the next time in all possible fu-
tures.

The model-checking [R00| proves that a given system of finite states, satisfies
or does not satisfy a temporal formula. It allows to find out properties of the
system, for example the fact that the system tends to a given state. The algo-
rithm takes a model, here a specific graph of states, and a formula ¢ as input
and returns all the states which satisfy ¢. The algorithm describes in [R00] can
be summarized as follow :

1. Translate the fomula ¢ with the six chosen connectives (see Appendix).
2. For all sub-formula v of ¢, determine the states which are labelled with .
3. Return all the states which are labelled with ¢.

There are several implementations of the model-checking algorithm. At the mo-
ment, the regulatory subnetworks only contain few variables [MTA99,5T2001],
so a simple ad hoc checker is sufficient.

3 for Computation Tree Logic, see the connective definition in Appendix



A model satisfies a formula if all the states which belong to the model satisfy
the formula. So, if the algorithm returns all the states of the model, the model
satisfies the hypothesis. The next section shows how we have used this method to
select models of the bacteria pseudomonas aeruginosa which satisfy a temporal
hypothesis emitted by biologists.

3 Results

Pseudomonas aeruginosa is a bacteria which secretes mucus in lung affected by
cystic fibrosis. The mucus production increases the respiratory deficiency of the
patients. But in a healthy lung, there is no production of mucus. Moreover, if
one isolates a population of cells from a sick lung and if one puts it in a healthy
environment, the mucus production can persist or resume progressively its non-
mucoid phenotype after numerous generations. Biologists have shown that when
the production persists, mucoid strain is generated by mutation. But, this model
does not explain why it may happen that the mucus production stops.

The main regulator for the mucus production, AlgU, supervises an operon
which is made up of 4 genes among which one codes for a protein that is a
repressor of AlgU%. Moreover AlgU favors its own synthesis, which constitutes a
positive feedback loop. This simplified model takes into account only interactions
which are involved in feedback circuits (figure 3).

Promotor Algu mucA  mucB  mucC mucD

Fig. 3. Interactions of genes involved in the mucus production in P. aeruginosa

3.1 Hypothesis and modelisation of the bacteria

Thomas’ theory [TTK95-1,TT95-2] allows us to assert that a positive feedback
loop is a necessary condition for multi-stationarity. Moreover, epigenetic modifi-
cations could be a consequence of multi-stationarity [TKO01]. Epigenetic modifi-
cations are phenotypic changes (transmitted from a cell to its progeny) without
genetic or environmental modifications [GO1].

* see for details [GO1]



This is a reason why biologists researchers [GO1] wonder whether the mucoid
state is a steady state alternative to the non-mucoid state, which is activated by
an external signal and self-maintained by a high concentration rate of AlgU. In
other words, they wonder if the mucus production is an epigenetic phenomenon.

The model is represented by an oriented graph with two vertices x and y
(Figure 4). = represents gene AlgU, y represents the inhibitor genes of gene
AlgU. The edges depict :

— x — x : self-maintenance of variable AlgU,
— y — x : inhibitor effect on gene AlgU,

— x — y : influence of AlgU on its own inhibitors.

a) 1+ b) -
1- 1-
Fig. 4. Two possible graphs of thresholds

y acts on one variable, so the edge y — = is labelled with 1. For biological
reasons, one knows that the mucus production occurs when z is over its second
threshold value (z=2). But we do not know if x acts on y at a lower threshold
than it acts on z or at a upper one. So there are two possible graphs of thresholds
(Figures 4a & 4b).

The state table of figure 4a is deduced. (X,Y) is the state towards which (x,y)
tends. K. {y} is the future value of  when y does not repress z in other word y
is considered as an activator.

State table of figure 4a : State table of figure 4b :
x y|X Y x y|X Y
00[Ka{yr K, {} 00|K.{y} Ky}
014} Ky{} 01KA} Ky}
10|K{y} Ky{z} 1O\, {x, y} Ky}
11K} Ky{z} L1 {z}  Ky{}

2 0|, {z,y} K,{z} 20K {z,y} Ky{z}
21K {z} K,{z} 21K {z}  Ky{z}




3.2 Models fulfilling the formula

The values of K are calculated with the Thomas’ theory. Several solutions are
possible. The figure 5 is a possible state graph of figure 4a 5. For 2 = 1 and
y=0,X =K;{y} =0and Y = K,{z} = 1. Because the state 10 tends to
01, we write in the state 10 the values 01. As the interactions are asynchronous,
only one variable can change at a given moment. So the possible future states of
10 are 00 and 11.

s(1) s(2) X

s(1)

1| 00 0 1 | [2 1]

y

Fig. 5. Possible state graph of figure 4a

27 possible functions K are found, with the hypothesis that there is a func-
tional positive feedbak loop in the system which is a necessary condition for
multi-stationarity. So 27 state graphs can be constructed.

Two different cycles cohabit in the system : one positive feedback loop which
imposes two steady states and a negative feedback loop which makes the system
switch to one of the steady states according to the values of K.

The aim is to show that the mucoid state can be reached without mutation,
in other words that the loop x — x can be functional in the presence of y and
so that it is possible, with the previous model, to obtain a recurrent state where
x = 2. The following formula expresses the previous property :

(r =2) = AX AF(z =2)

where AX AF(¢) means that for all possible futures (excluding the present) ¢
will be satisfied at a given time. The formula means that if the bacteria products
mucus at a given time, then in a future time it will again product mucus. We
want to show that for certain values of K which can be computed, z = 2 is a
recurrent property.

We implemented a program which takes a function IC, a graph of interactions
and a temporal formula (written in CTL) and returns true if the model satisfies
the formula and false if not. The formula tested on the 27 models highlights 14
models which satisfy the hypothesis.

% One could construct the state graph of the figure 4b using the same method.



For example, the model which is represented in the figure 5 fulfills the formula
which expresses the mucus production as an epigenetic modification.

The fact that these 14 models don’t reject the epigenetic hypothesis can open
new therapeutics in prospects. We have two classes of models : 14 models fulfill
the hypothesis and 13 don’t fulfill it. From this language, we can propose scenarii
for confronting the models to experimentation. After experiment, we hope to be
able to reject a class of models.

3.3 Experimentation

The experiment plan is deduced from the formula written in temporal logic. The
following scenario allows one to test the property of the recurrent mucoid state :
pulsing x to the value 2 by using an external signal, waiting a period of time in
order to pass the transitory phase due to the pulse, and measuring whether x is
above its second threshold. If, for a period of time, the state of the bacteria is
mucoid, then the 14 models are considered as right and the others are rejected.
But, if the experiment fails we cannot reject any class of model. If the experiment
fails, it means that the mucus production has not been observed but it does not
mean that the mucus production will never occur.

3.4 Limitations

The formal language does not take into account the external elements of the
graph of figure 3 which is a subgraph of the graph with all the variables of the
organism. Having neglected the edges outgoing from the subgraph has no serious
consequences on our study since one is only interested on the subsystem super-
vising the mucus production. On the other hand, neglecting all the incoming
edges could lead to an excessive simplification. If there are some edges regulat-
ing x and y whose influence does not change in the future, the only consequence
of having extracted a subgraph is to shift the different thresholds associated to
variables x and y. The system will have some other values for these thresholds,
possibly some other values for IC, the steady states will not necessarily be the
same, but the formula to be proved will remain identical. Only one case is a real
problem : if there are some external regulators of « and y that have an influence
which depends on time, the language will not allow one to translate the real
behaviour of the system. The current study makes the hypothesis that these
influences are negligible.

4 Conclusion

The presented method highlights the exixtence of models which are consistent
with biologists’ hypothesis. Thomas’ theory is used to construct all the models
and the temporal logic CTL is used to express a temporal property we want
the system to have. Model-checking, a classical method in computer science,
eliminates the models which do not fulfill the wished behaviours.



This method is applied to the production of mucus in pseudomonas aerugi-
nosa. Thomas’ theory on feedback loops is used to model some gene interactions
of this bacteria. This theory says that a positive feedback loop is a necessary
condition to have multi-stationarity. So to explain the phenomenon as an epige-
netic shift, we only consider models that contain a functional positive feedback
loop.

The hypothesis expressing the mucus production as an epigenetic modifica-
tion would be in CTL : (x = 2) = AX AF(x = 2). 27 models are found by
Thomas’ theory, and 14 are kept by model-checking. But these models have to
be validated by biological experiments. Thus, according to the CTL formula we
propose a plan of experiment for confronting the model.

1. pulsing x to the value 2 by using an external signal

2. waiting a period of time in order to pass the transitory phase due to the
pulse

3. measuring whether x is above its second threshold.

We do not have the result of the experiment yet, but if the experiment says
the 14 models as right, we could have new points of view on the mucus produc-
tion of this bacteria and on the therapeutic treatments. For example, instead of
killing the bacteria, it would become possible to prevent a phenotypic shift to
pathogeny [GO1].
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Appendix : Note on Computation Tree Logic

Definition 1. CTL formula is defined inductively with :

a finite state of propositional variables : {p; }.

— logical connectives : L, T, = AV, =.

temporal connectives : AX, EX, AG, EG, AU, EU, AF, EF.

— rules of formation :

e p;, L and T are formulas.

o if ¢ and ¢ are formulas, then (—¢), (OAY), (6VY), (¢ = V), AX ¢, EX ¢,
AloU), E[¢Uy], AGp, EGo, AF$, EF¢ are formulas.

The logical connectives are the classical ones : false, true, not, and, or, im-
plication. All the temporal connectives are pairs of symbols. The first element of
the pair is A or E. The second one is X, F, G or U.
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Meaning of the connectives :

: along All paths

: along at least one path (there Exist)
: neXt state

: some Future state

: all future states (Globally)

: Until

|
SENRSICES

All the CTL connectives are equivalent to a combination of a set of six of
them, for example {L,—, A, AF, EU, EX}. So, all the formulas can be written
with this set of connectives using the following equivalences.

Equivalences between CTL formulas [R00] :

1. ~AF$ = EG—-¢

2. ~EF¢ = AG—¢

3. “AX¢ = EX—¢

4. AF¢ = A[TU|

5. EF¢ = E[TU¢)

6. A[pUq] = ~(E[~qU(-p A =q)] V EG—q)
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