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Approximated asymptoti law of Z-value and appliationsJ.-N. BaroINA PG, Dpt OMIP,U.M.R. INAPG/INRA16, rue Claude Bernard 75231 Paris edex 05, Frane.e-mail : baro�inapg.inra.frtel : (33) 1.44.08.72.71 - fax : (33) 1.44.08.16.66J.-P. CometLaMI,Universit�e d'Evry-Val d'Essone,Cours Monseigneur Rom�ero, 91025 Evry Cedex, Frane.e-mail : omet�lami.univ-evry.frtel : (33) 1.69.47.74.53 - fax : (33) 1.69.47.74.72Otober 2000Running title : Asymptoti law of Z-valuekeywords: Dynami programming sequene alignment, Signi�ane, Z-value, Asymptoti distribution, Gumbel distribution.AbstratThe Z-value is an attempt to estimate the statistial signi�ane of a Smith & Wa-terman dynami alignment sore (H-sore) through the use of a Monte-Carlo proedure.In this paper, we give an approximation for the Z-value law dedued from the Pois-son lumping heuristi developped by Waterman and Vingron (Waterman and Vingron,1994) in the ase of i.i.d. sequenes omparison. As for non-gapped alignment sores,our approximation is of Gumbel type but with parameters whih are sequene indepen-dent. This result makes lear the related experimental results mentionned by Comet etal. (Comet et al., 1999).Using \quasi-real" sequenes (i.e. randomly shu�ed sequenes of the same lengthand amino aid omposition as the real ones) we investigate the revelane of our ap-proximation result. Sine the Monte-Carlo approah we use generates a bias for theGumbel deay parameter estimation, a orretion proedure is proposed.Appliations to real sequenes are onsidered and we show how our results an beused to detet the potential biologial relationships between real sequenes.
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IntrodutionSequenes omparison has beome a entral notion in modern moleular biology. To eval-uate the similarity between two sequenes, a lot of indies are now available, allowingglobal alignments and gapped or ungapped loal alignments. The Smith and Watermanalgorithm (Smith and Waterman, 1981) answers exhaustivly to the question of the searhof the alignments with the best sore. Most of other approahes are based on heuristis.The Smith and Waterman algorithm �nds the best loal gapped alignments between twosequenes, leading to an alignment sore that an be used as a basis for determining apossible homology. The statistial signi�ane of suh a sore, however, is a ruial prob-lem. In this respet, two ways of researh have been explored in the last years and maybe briey summarized as follows : the �rst one is based on known results onerning non-gapped alignments (Altshul et al., 1990), looking for possible extensions that mimi theseresults (Waterman and Vingron, 1994) or exhibiting relevant sore approximation whoseproperties are related to the ungapped ase (Mott and Tribe, 1999); the seond one is basedon simulation results, using a shu�ing proedure and a partiular statistis alled Z-value(Lipman et al., 1984; Landes et al., 1992; Slonimski and Brouillet, 1993). In a reent paperComet et al. (Comet et al., 1999) proposed an experimental study of the Z-value statistis.In partiular, these authors surmised that the high Z-value distribution di�ers for ran-domly shu�ed sequenes and for real sequenes respetively. In the �rst ase, they showedthat a Gumbel law �ts well the data, but it seems that in the seond ase, the same law�ts poorly. As a onsequene the introdution of another extreme value distribution wassuggested leading to a biologial interpretation of the assoiated uto� value (see Cometand al. (1999) for details). The aim of the present paper is to preise and to highlightthese experimental results. For i.i.d random sequenes, using the Waterman and Vingronapproah (Waterman and Vingron, 1994), we �rst show that the asymptoti distribution ofthe Z-values an be approximated by a partiular Gumbel law, with �xed parameters. Forrandomly shu�ed sequenes, we haraterise the bias introdued by the shu�ing methodand we propose a orretion proedure allowing to interpret the assoiated Z-value on thebasis of the Waterman and Vingron approah. We show that the empirial data based onshu�ed sequenes �t well the proposed model.In the ase of real sequenes, the Z-value asymptoti distribution appears to be of thesame type as that for shu�ed sequenes (Gumbel law) but with other parameters. In otherwords, the Poisson lumping heuristi does not explain ompletely the observed distributionof Z-value for real sequenes.This artile is organised as follows. The �rst setion de�nes the Z-value variable, fol-lowing Comet et al. (Comet et al., 1999). The seond setion is devoted to the asymptotiapproximation for the Z-values distribution under the hypothesis of random sequenes om-parison. The third setion fouses on testing the approximation law for shu�ed sequenes.A orretion proedure for the parameters estimation is proposed in order to take into a-ount the shu�ing indued bias. This proedure is then applied to real sequenes. Setionfourth gives an overview of the advantages related to the Z-value approah.1 The Z-value statistisLet X and Y be two sequenes and onsider the orresponding maximum loal alignmentsore H(X;Y) based on the Smith and Waterman algorithm (Smith and Waterman, 1981).We suppose here that the penality funtion for onseutive gaps has been well hosenin order to haraterize aligning subsequenes whih have more similarity than randomsequenes. Suh a kind of sore is usually refered as sore with parameters in the logarithmi3



region : for details see (Arratia and Waterman, 1994; Waterman and Vingron, 1994). Inorder to evaluate a p-value for the (X;Y) omparison, we onsider the orresponding Z-value variable : Z(X;Y) = H(X;Y)�E(H(X;Y))�H(X;Y)where E(H(X;Y)) and �H(X;Y) stand respetively for the expetation and the standarddeviation of H(X;Y).2 Asymptoti approximation for the Z-value distributionSuppose that X = X1 : : :Xn and Y = Y1 : : : Ym are two random sequenes where Xi andYj are independant and identially distributed. Waterman and Vingron (Waterman andVingron, 1994) proposed a pratial proedure to assign statistial signi�ane for the Xand Y omparison based on H , whih an be summarized as follows : an approximatedp-value for the X and Y omparison an be ahieved using 1� e�mnpH(X;Y) where  andp are two parameters to be estimated.The Waterman and Vingron result (Waterman and Vingron, 1994) is based on the approx-imation : P �H(X;Y)< t = lognmj logpj + � ' e�mnpt (1)whih extends the Poisson approximation presented by Karlin and Altshul for generalsoring sheme without indels (Karlin and Altshul, 1990).The approximation (1) has been obtained as a result of the following two stages :(a) A Poisson approximation for the optimal loal sore distribution using the Aldouslumping heuristi (Aldous, 1989) : for m and n suÆiently largeP �H(X;Y)< t = logmnj logpj + � ' e��pt (2)where � � �(X;Y) and p � p(X;Y) are two positive parameters (this orrespond tothe assumptions (A1) and (A2) of the Waterman and Vingron approah).(b) A normalization related to the di�erent lengths of the sequenes by setting � = mn.Now, from relation (2) we dedue that, for m and n suÆiently largeP �H(X;Y)� lognmj logpj < � ' exp � exp �j log pj + log �mn� �j log pj !!!whih states that the distribution of H(X;Y)� lognmj logpj an be approximated, for m and nsuÆiently large, by a Gumbel distribution with parameters � log �mn� �j log pj and 1j log pj , sayH(X;Y)� lognmj logpj D� G � log �mn� �j log pj ; 1j log pj! :4



Using well known results related to the Gumbel distribution we an dedue the two followingapproximations : E(H(X;Y))' K + log�j logpj (3)where K = 0; 57721.. denotes the Euler's onstant and�2H(X;Y) ' �26(log p)2 (4)It is then straightforward to obtain an approximation for the law of the Z(X;Y) variable :for m and n suÆiently large, and under assumption (a), we have :H(X;Y)�E(H(X;Y))�H(X;Y) D� p6j log pj� G(� Kj logpj ; 1j logpj) (5)whih an be stated as �p6Z(X;Y) D� G(�K; 1): (6)In other words our approximation is sequene independent : in (6), the approximationof the Z-value distribution does not depend on sequenes length and omposition. It iswell known that suh a property is not veri�ed when dealing with the H-sore (Comet,1998, and referenes therein). While the length dependeny of alignment sores has beenextensively disussed in the literature (Arratia and Waterman, 1989; Arratia et al., 1986;Arratia et al., 1989; Arratia et al., 1990; Arratia and Waterman, 1994; Dembo and Karlin,1991a; Dembo and Karlin, 1991b; Karlin and Altshul, 1990; Karlin et al., 1990; Karlin andDembo, 1992; Goldstein and Waterman, 1992; Goldstein and Waterman, 1994; Waterman,1994b; Waterman, 1994a; Waterman and Vingron, 1994), there are no results yet availableonerning the sequene omposition dependeny. Note that the normalization desribedabove, eq. (b), whih is an attempt to take into aount the di�erent lengths of the onsid-ered sequenes, seems to be poorly �tted in most of the pratial situations (Waterman andVingron, 1994), leading to onservative p-values. From these di�erent fats, the Z-value islearly of interest. But the diÆulty now omes from a pratial point of view : how anwe obtain a diret evaluation of the Z-values ? The idea is to use a shu�ing proedure aspresented in Comet et al. (Comet et al., 1999) whih seems to be well adapted to simulaterandom sequenes with the same amino aid omposition than the initial ones. We omputetwo di�erent Z-values Z1(X;Y) and Z2(X;Y) by shu�ing the �rst and seond sequenesrespetively, and therefore hoose the minimum to estimate Z(X;Y), whih orreponds toa onservative approah.Remember that the basi assumption here is that X and Y are both i.i.d. randomsequenes. The most natural way to test our approximation law would be to generate a lotof i.i.d. random sequenes in order to work with. Sine our approximation is obtained asa partiular onsequene of the well-known Waterman and Vingron result (Waterman andVingron, (1994)), but under the only assumptions (A1) and (A2), it seems reasonable tothink that our result would be validate for i.i.d. sequenes omparison. From a pratialpoint of view, the i.i.d. assumption is learly unrealisti (and that is why only very small p-value are onsidered to haraterize signi�antH-sore values). But there are no theoritialresults allowing to appreiate how robust is the Waterman and Vingron approah or howrobust is our Gumbel approximation with regards to this i.i.d. assumption. Even if we5



know that a deviation from the Gumbel approximation is systemati for the Z-value whenworking on real sequenes, we also may hope that the deviation remains still slight inthe ase of sequenes whih do not exhibit partiular struture similarity, as for the i.i.d.ase. A lak of robustness for our approximation result regarding to the i.i.d. assumptionwould learly be a major drawbak for pratial appliations. In order to appreiate therobustness of our result we deide to test our approximation on shu�ing sequenes buildfrom real ones. Suh sequenes are not i.i.d. but do not exhibit any partiular struturee�et and do not represent any more any biologial phenomenon. In a ertain sense, suhtype of sequenes allows to mimi properties related to alignment sores for i.i.d. sequenes.For an easy implementation in pratie, it is fundamental that our approximation remainsstill valid in the ase of shu�ing sequenes omparisons beause it ensures a possibility tobuild, from our approximation, a disrimination test between real sequenes whih presentsigni�ant similarities from real sequenes whih do not have stronger similarities than i.i.d.ones. That is why we deide to test the validity of our approximation law on sequenesdedued from real ones by shu�ing. Sine no biologial links are present in these sequenes,we learly hope that our approximation �ts well with the related Z-value observations.In the sequel we onsider two sets of sequenes desribed in (Comet et al., 1999): the setof real sequenes and the set of \quasi-real" sequenes whih designate sequenes obtainedby shu�ing real ones. Appart from its amino-aid omposition whih orresponds to a realase, no partiular struture is introdued in \quasi-real" sequenes. \Quasi-real" sequeneswill be shu�ed many times to evaluate the Z-value leading to a set of results for quasi-real sequene alignments. We shall see �rst that for suh a set a diret appliation of ourapproximation leads to a bad �t. A orretion proedure taking aount the bias induedby the shu�ing approah, will be proposed. Having then a good �t for suh sequeneslosed to random sequenes, we will apply the whole proedure on the set of real sequenes.3 Testing the approximation on quasi-real and real data sets3.1 Parameters estimation for the Gumbel lawThe distribution funtion of a Gumbel G(�; Æ) variable (say T ) is given by :P (T � x) = exp��exp���x� �Æ ��� ; x 2 RUsually the �rst parameter is alled the deay parameter and the seond one the harater-isti value.To evaluate the relevane of our Gumbel G(�Kp6=�;p6=�) approximation (eq. 6),we onsider three di�erents Z-value samples desribed below. Parameter estimations willbe performed using the maximum likelihood method (see e.g. Johnson and Kotz, 1970) ondi�erent samples.Data Desription : A �rst databank of 16 956 sequenes is built from �ve ompletelysequened genomes (see (Comet et al., 1999) for details). Then we build a \quasi-real"sequene databank ontaining the shu�ed versions of eah of the real sequenes. We om-pute the Z-value between the �rst sequene of this databank and the seond one, betweenthe seond one and the third one and so on. We obtain 16 955 Z-values. But in suh asample, there are some dependenies. To break them we divide this previous sample intotwo smaller samples :� The �rst sequene against the seond one, the third against the fourth and so on.This sample has 8 478 Z-values. 6



� The seond sequene against the third, the fourth against the �fth and so on. Thissample has 8 477 Z-values.The table 1 gives the values of the maximum likelihood estimators for these two samples.Another smaller sample is onsidered in order to appreiate the possible e�et of the samplesize. This one is built from Saharomyes erevisiae : we hose 1000 sequenes at randomand shu�ed eah of them. In the same way we omputed the Z-values between the �rstsequene and the seond one, between the third one and the fourth one and so on.Tab. 1 Results : The results seem to be slightly di�erent from those expeted, espeially for thedeay parameter �. Apart from the bias resulting from the maximum likelihood estimation,two possible explanations for these somewhat disappointing results may be explored : the�rst one deals with the quality of the Gumbel distribution approximation and the seondone onerns the diret evaluation of the Z-values, in other words the role of the shu�ingproess.Sine the approximation (5) is nothing more than a simple onsequene of the earlierWaterman and Vingron approah (Waterman and Vingron, 1994), there are no partiularreasons to all it into question. However, the shu�ing method may have a partiular e�eton the required estimations of E(H(X;Y)) and �2H(X;Y). A detailed study is presentedbelow.3.2 Shu�ing proess and estimation biasThe two parameters � � �(X;Y) and p � p(X;Y) onsidered in the Poisson approximation(eq. 1) are of di�erent nature. In the i.i.d. ase, the p parameter does depend on the letterpositions in eah sequene, whih is learly related to the sequene ompositions. At theopposite the � parameter seems to be dependent not only on the lengths but also on thestruture of the sequenes. Sine the shu�ing proedure breaks down the strutures butsaves the sequene ompositions, it seems natural to onsider that a possible e�et of theshu�ing proedure should partiularly a�et the � parameter. As a onsequene, if wesuppose that the shu�ing proess is applied to Y, for all omparisons (X;Yi)i=1::N , thep(X;Yi) parameters an be onsidered as a onstant p while the role of the �(X;Yi)parameters must be taken into aount.For a partiular sequene omparison (X;Yi), under (5), we then haveH(X;Yi) D� log�(X;Yi)j logpj + �j log pjwhere � is a Gumbel G(0; 1) variable.It follows that j logpj E(H2(X;Y))' K + 1N log NYi=1�(X;Yi)!where H2(X;Y) = 1N PNi=1H(X;Yi).Using (3), we obtainj logpj �E(H(X;Y))� E(H2(X;Y))�' log�(X;Y)� 1N log NYi=1 �(X;Yi)! (7)7



whih haraterises the bias estimation for the mean when shu�ing Y.Sine p6� j logpj �H(X;Y)�H2(X;Y)� = p6� j log pj (H(X;Y)�E(H(X;Y)))+p6� j log pj �E(H(X;Y))�H2(X;Y)� (8)we dedue from (7) that for N large enoughZ2 � Z + p6� log �(X;Y)�QNi=1 �(X;Yi)�1=N � Z + a2 (9)where a2 designates a onstant value. Note that if 8i �(X;Yi) � �(X;Y), then a2 = 0.When shu�ing the sequene X, the same type of result holds and we �nally have :bZ = min(Z1;Z2) � Z + a (10)where a = p6� min�log �(X;Y)�QNi=1 �(X;Yi)�1=N ; log �(X;Y)�QNi=1 �(Xi;Y)�1=N �:Clearly the observed lak of �t between our Gumbel model and the results of ourapproximation may be simply related to the shu�ing proess. This problem is analyzed inthe following and a bias redution proedure is proposed.3.3 Bias redutionConsider the probability integral transform:U = exp(�exp(�Z � �0Æ0 )) (11)where �0 = �Kp6=� and Æ0 = p6=�. U is then uniformly distributed on [0; 1℄.Quasi-real sequenes : From data on \quasi-real" sequenes the probability integraltransform allows us to estimate the bias on deay parameter �0 using a QQ-plot approah.Ordering all probability integral transformed points U(1) � U(2) � � � � � U(N), we haveE(U(i)) = i=N + 1. Let us onsider the � iN+1 ; U(i)� points. These points should be a-umulated lose to the �rst biseting line. To inrease the resolution we use the log logtransformation, and we onsider �Æ0 log�� log� iN + 1��+ �0; bZ(i)! (12)If our approximation is orret, all points are expeted to be lose to the line y = x. Ifthe slope of the QQ-plot is near 1, the interept of linear regression gives an approximationa0 for the bias a. If the slope is far from 1, our approximation (5) should be alled intoquestion.We present below the QQ-plot for only the �rst sample omposed of 8478 alignments (see�g. 1-A). Similar graphis are observed with the seond and third samples.8



Fig. 1 In order to test our G(�0; Æ0) we then onsider the eZ-value de�ned by a orretion onthe shu�ing estimations : eZ = bZ � a0. As shown in �gure 1-B, the Gumbel distributionG(�0; Æ0) seems graphially to be a good approximation of the law of the Z-value.Table 2 gives the maximum likelihood estimation results when using the orreted Z-value estimations.Tab. 2 The results now obtained are lose to the expeted values, whih supports the validityof our asymptoti approximation.Real sequenes : The Gumbel approximation onerns the omparisons between i.i.d.random sequenes, that is, without an intrinsi struture. As already noted when onsider-ing real sequenes, this underlying hypothesis will never be stritly satis�ed, and in pratialsituations, deviations from the Gumbel law may be observed even for real sequenes thathave no biologial relationships. As a onsequene the same approah as the one used forquasi-real sequenes should be irrelevant.� A �rst way is to onsider that the bias value a0 obtained from quasi-real sequenesan be used for real sequenes omparisons. In suh a ase there are two possibilities :one an use an "universal" value for a estimated on a very large set of quasi-realsequenes or one an implement for the real sequenes under onsideration the wholeproedure whih �rst build the assoiated quasi-real databank on whih a0 will beomputed. In both ases the variable will be : eZ = bZ � a0.� A seond way may be to onsider that the bias value a annot be orretly estimated :the only information we have is given by the bZ-values. But if the shu�ing number islarge enough, we have a0 � 0. The reason is that the �(X;Y)-funtion dereases asa funtion of the X and Y similarity : under the null hypothesis of iid sequenes, theloser X and Y are, the lower is the P-value. Using Poisson approximation (2) oneexpets that �(X;Yi) � �(X;Y) for eah i. In suh a ase our approximation leadsto onservative onlusions.In the sequel we will onsider that the bias a is well approximated and we will omputeeZ with the value a = a0.Databank sanning : Several new hallenges arise when a query sequene is used to sana databank. All general databanks are build up of sequenes that are widely di�erent inlength. These databanks inlude some sequenes of the same family, and even dupliatedsequenes. Certainly, the iid model for real sequenes fails. To remove the e�ets of duplia-tion of sequenes we onstruted a protein database whih inluded only one representativesequene from eah protein family. The input data were taken from the databank desribedin Park and Teihman (Park and Teihmann, 1998)1 retaining only one sequene from eahluster built from E. Coli. This bank ontains 618 non-redondant sequenes.We hoose now one of these sequenes (EC1003) and ompare it against all other se-quenes omputing all eZ-values. The QQ-plot of these data is shown in �gure 2. The model�ts well with the empirial data on real sequenes although the eZ-values for a databanksanning does not onstitute a sample sine the query sequene is shared by all alignments.This sequene represents the link between eah alignment.Fig. 2 1http://www.mr-lmb.am.a.uk:80/genomes/ 9



Global genome analysis : Now that many omplete genomes have been sequened, oneextensive researh domain deals with the lassi�ation of sequenes from the same or fromdi�erent genomes.In suh ases we are looking for biologial links whih are due to the dupliation phe-nomenom. The hypothesis of independent sequenes annot be veri�ed. To build lustersof sequenes the �rst stage is to ompute all the pairewise omparison indies, and to in-due a dissimilarity matrix. Sine the number of sequenes is too large to simply applylassial lassi�ation methods, one often separate sequenes in a �rst level of lusters bysingle linkage lustering. In eah luster a hierarhial analysis an be performed.For suh a goal the most important point is to have a global index whih does not dependon individual sequenes, espeially on individual sequene length. In this problematis theZ-value an be useful.From the omplete genome from Saharomyes erevisiae we randomly hose 1000sequenes. This database has been shu�ed to build a quasi-real sequenes databank. Onboth sets of sequenes (quasi-real and real) all pairewise omparisons have been performedand all pairewise bZ-values omputed and orreted. Figure 3 shows the probability integraltransform for both sets of non independent eZ-values.Fig. 3 Despite the dependeny between the H(X;Y) sores, the Gumbel distribution �ts wellin the ase of quasi-real sequene omparisons. In the ase of real sequenes one notie atotally di�erent behavior : the observed eZ-values signi�atively deviate from the Gumbellaw as earlier notied in (Comet et al., 1999). For smaller values the Gumbel model seemsto be valid. The ut-o� value v may be related to the 0:9999 quantile of the G��Kp6� ; p6� �distribution whih is about 6:7. Note that this threshold supports the empirial thresholdused by biologists : in pratie the value 8 allows them to determine if an alignment isbiologially signi�ant or not.4 ConlusionThis artile gives a frame to justify the use of simulations to evaluate the signi�ane ofgapped alignments. It is well known that the Smith-Waterman sore law depends on lengthand amino aid omposition of sequenes. This study shows that the asymptoti law ofthe Z-value is sequene independent, whih is fundamental partiularly when analyzingomplete genomes.In pratial appliations, one an observe a deviation of the Z-values from the initialGumbel distribution. This divergene from the asymptoti approximation law highlightsthe biologial links : if an empirial Z-value is greater than a uto� 2, the null hypothesisof random sequenes is rejeted, whih means that we may onlude to the existene of abiologial link.In other words all onlusions based on simulations are interpretable, sine the asymptotilaw of Z-value is independent of sequenes. Only the shu�ing proess an introdue a bias,whih is evaluated by the exposed method. This frame gives a new view on the 20 yearsold method for ahieving the signi�ane of gapped alignment.2For details, see (Comet et al., 1999) 10
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� Æ8478 Z-values �0:549 0:7896778477 Z-values �0:527 0:789987500 Z-values �0:535 0:796190Gumbel model �Kp6=� = �0:45 p6=� = 0:7797Table 1: Gumbel maximum likelihood estimations. � and Æ are the deay pa-rameter and the harateristi value of the Gumbel law.� Æ8478 Z-values �0:454 0:7896688477 Z-values �0:432 0:789974500 Z-values �0:441 0:796196Gumbel model �Kp6=� = �0:45 p6=� = 0:7797Table 2: Gumbel maximum likelihood estimations - orreted bZ-values. � andÆ are the deay parameter and the harateristi value of the Gumbel law.
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Figure 1: QQ-plot on quasi-real sequenes (�rst sample : 8478 alignments) :Figure A : QQ-plot of bZ-valuesFigure B : QQ-plot of the orreted bZ-values : eZ = bZ � a0The graphi A allows to approximate the orretion a0 indued by the shu�ingproedure (see text). 14
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