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Abstract

In this paper, we present a new specification framework called Parametric Transition

Systems (PTS) which represents a set of models as Kripke structures in a concise man-

ner, each model corresponding to an interpretation of the PTS parameters. In order to

determine models with a certain behaviour (described by an LTL temporal formula)

we propose a method based on symbolic execution and directly inspired by LTL model

checking technics involving Büchi automata. Our method determines constraints that

the PTS parameters must verify such that the associated Kripke structure satisfies the

considered formula. We then show that PTS are useful in the context of modelling

of genetic regulatory network, which are highly parametric biological interacting net-

works. Indeed, this framework allows us to simplify the first step of modelling process

which consists in determining the parameter interpretations leading to a behaviour

compatible with known temporal properties.

Keywords: Formal methods, Model checking, Symbolic execution, Linear Temporal
Logic, Presburger Arithmetic, Genetic regulatory networks

1 Introduction

To understand the functioning of Complex Systems, modelling and simulation are
often useful or even mandatory since the complexity of the interleaved interactions
between constituents of the system makes intuitive reasoning too difficult. In some
particular fields, the lack of reliable quantitative available data about a system leads to
a typical difficulty of the modelling approach. To overpass this limitation, qualitative
models have been developed: they abstract unuseful details of the system although
they preserve qualitative observations.

Unfortunately, modelling activity requires the determination of parameters which
play a major role for the set of possible behaviours. It has been proved that formal
methods like model checking can be useful for this task: after having formally specified
temporal properties (using a temporal logic), it is possible to verify if the constructed

∗This work is performed within the European project GENNETEC (STREP 34952).
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2 Parametric Transition Systems 2

model satisfies the specification. If one wants to know all models compatible with
the specification, this leads to generate all the possible models, and to select the ones
satisfying the temporal property [11].

In this paper, we present an approach inspired by classical model checking technics
developped for Linear Temporal Logic (LTL) [16, 17] but instead of checking a model
given as an usual Kripke structure, we check Parametric Transition Systems (PTS)
which represent a set of models (one for each parameter interpretation). The idea
is to use symbolic execution techniques [7] to generate all possible behaviours. Each
behaviour is associated with a path condition which represents the constraints on
parameters allowing this behaviour. Adapting model checking techniques, all paths
verifying a specified behaviour are selected and the associated path conditions are
reduced into a single constraint. Parameters verifying the resulting constraint are those
leading to a model which satisfies the specified behaviour. The different behaviours
are computed by the AGATHA tool which is also used for verification of industrial
specifications [2].

The paper is organised as follows. Section 2 presents the PTS which abstract sets
of models. Section 3 deals with Linear Temporal Logic whose atoms are built from
Presburger arithmetic. In particular, variables used to parameterize PTS can occur
in those formulas. For the purpose of model checking technics, a Büchi automation
can be associated to any LTL formula on Presburger terms. Section 4 explains our
method for the search of parameter interpretations defining models that verify the
specification: the Symbolic Execution Tree which represents behaviours of all possible
models, allows us to express the path conditions that a parameter interpretation must
verify to lead to the considered behaviour. Section 5 shows how PTS modelling has
been useful for the study of genetic regulatory networks. Finally, Section 6 contains
some concluding remarks.

2 Parametric Transition Systems

2.1 Preliminaries

Presburger Arithmetic. Presburger Arithmetic is a first-order theory interpreted in
the set Z of integers. T (V ) denotes the set of linear terms over the set V of variables.
They are of the form c+

Pn

i=1 aixi where ai and c are integer constants, and xi are
variables of V .

The set Pres(V ) of quantifier free Presburger formulas over V , is the set of formulas
recursively defined by usual Boolean connectives in {¬,∨,∧} and atomic formulas of
the form t1 ∼ t2 where t1 and t2 are linear terms over V and ∼ is an operator in
{=, <,≤, >,≥}.

Mappings, assignments and interpretations. We use the classical notation BA for
denoting the set of mappings from a set A to a set B. A mapping f in BA is also
denoted f : A→ B.

In the following, given a set A and a set V of variables including A, an assignment
is a mapping from A to T (V ) which assigns a term over V to elements of A. idA will
denote the identity assignment over A. An assignment α is usually represented by
giving only the elements of A for which α differs from the identity assignment. For
instance, α : a 7→ v represents the assignment for which α(a) = v and ∀a′ 6= a, α(a′) =
a′.

An interpretation is a mapping from a set A to Z and will be generically denoted νA.
Any interpretation νA can be canonically extended to terms over A as νA : T (A) → Z.
Given A and A′ two sets such that A ⊆ A′ and ϕ a formula of Pres(A′), then νA(ϕ)
is a formula of Pres(A′\A) obtained by replacing each variable of a ∈ A by νA(a).



2 Parametric Transition Systems 3

Satisfaction of formulas. For a Presburger formula ϕ over V , for an interpretation
νV : V → Z, we note νV |=V ϕ if the formula ϕ is interpreted as true by applying the
assignment νV and interpreting quantifiers, connectives and binary operators as usual.

The satisfiability problem1 is decidable for Presburger formulas [8] and we will use
the Omega library [6] as decision procedure to solve constraints expressed as Pres-
burger formulas.

A formula ϕ defined over V is valid iff ∀νV ∈ Z
V , νV |=V ϕ. Valid formulas can

be equivalently denoted by the truth symbol ⊤.

2.2 Syntax

2.2.1 Definition.

Parametric Transition Systems, PTS for short, are specifications defining a set of
models as Kripke structures. Given a set P of integer variables called parameters,
PTS are built over a set A of integer variables called attributes. A PTS is defined by
initial conditions on both attributes and parameters expressed by means of a quantifier
free Presburger formula over the set of variables2 P

‘

A, by a set of locations, by an
initial location and by a set of transitions. Each transition is defined by source and
target locations, by a guard expressed as a quantifier free Presburger formula over
P

‘

A and by an assignment of attributes.

Definition 1 (PTS)
Let A be a set of attributes and let P be a set of parameters. Let us note V = P

‘

A

the set of variables.
A parametric transition system S (P ) over A is a tuple (L, li, Ci,Tr) such that :

• L is a set of locations;

• li ∈ L is the initial location;

• Ci ∈ Pres(V ) represents the initial constraints;

• Tr is the set of transitions of the form (l, g, α, l′), also denoted l
(g)α
−→ l′, where

– l and l′ are elements of L, called resp. source and target locations

– g is a formula of Pres(V ) called the guard

– α is an assignement in T (V )A

Moreover, PTS are required to be complete: for each location l ∈ L, by denot-
ing Tr+

l = {(l, gi, αi, l
′
i) | (l, gi, αi, l

′
i) ∈ Tr} the set of outgoing transitions from l,

W

(l,gi,αi,l′
i
)∈Tr

+
l

gi is a valid formula.

2.2.2 Parameters and attributes.

The initial constraints define all the possible eligible combinations of initial values for
parameters and attributes. The assignment associated to each transition expresses the
modification of attribute values when a transition is passed over. Let us point out that
assignments are used to modify states and thus do not change parameter values. In a
manner of speaking, provided that initial constraints are satisfiable, parameters play
the role of global variables that influence expected behaviours associated to PTS by
means of initial constraints and guards but whose interpretation remains fixed.

In the sequel, the notations P and A denote disjoint sets of respectively parameters
and attributes.

1 That is the problem of the existence of at least an assignment interpreting as true a given
formula.

2 Recall that
‘

denotes the disjoint union.
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a b c

d

(k = K0)x 7→ 0

(k = K1)x 7→ 1

(k < x)k 7→ k + 1

(k > x)k 7→ k − 1

(k = x)

(⊤)x 7→ 0

(⊤)

(¬(k = K0 ∨ k = K1))

Fig. 1: S 0(P 0), an example of PTS

2.2.3 Completeness.

Any not complete PTS can be systematically complemented by applying a stutter
rule, that is, by adding for each location l for which the disjunction of all guards asso-
ciated to outgoing transitions from l would not be valid, a new transition of the form
(l,¬

W

(l,gi,αi,l′
i
)∈Tr

+
l
gi, idA, l). The stutter rule is commonly considered for ensuring

that any sequence of successive states can be extended in an infinite sequence [5].

Example 1 (PTS S
0(P 0) over A0)

Let us consider a set P 0 = {K0,K1} of parameters and a set A0 = {k, x} of attributes.
V 0 = P 0 ‘

A0 = {K0,K1}
‘

{k, x} = {K0, K1, k, x} is the set of corresponding vari-
ables.

Fig. 1 presents the PTS S
0(P 0) over A0 we will work on. S

0(P 0) is defined by
S

0(P 0) = (L0, li
0, Ci

0,Tr0) with

• L0 = {a, b, c, d} the set of locations;

• l0i = a the initial location (in gray in Fig. 1);

• C0
i ∈ Pres(V 0) the initial constraints defined by

C
0
i = (K0 = 0 ∨K0 = 1) ∧ (K1 = 0 ∨K1 = 1) ∧ (k = 0 ∨ k = 1) ∧ (x = 0)

• Tr0 the set of transitions defined in Fig. 1.

2.2.4 PTS paths.

A path of a PTS S (P ) = (L, li, Ci,Tr) is an infinite sequence λ = (trn)n∈N where
for each n ∈ N, trn is a transition of Tr of the form (ln, gn, αn, l

′
n) with l0 = li and

∀n ∈ N, l′n = ln+1. Such a path is also denoted: λ = l0
(g0)α0−→ l1

(g1)α1−→ ...
(gk−1)αk−1

−→

lk
(gk)αk−→ ...

2.3 Semantics

Variables in V = P
‘

A can be either attributes or parameters. So, two interpre-
tations νA and νP define a variable interpretation denoted3 (νP , νA) : V → Z by
∀a ∈ A, (νP , νA)(a) = νA(a) and ∀p ∈ P, (νP , νA)(p) = νP (p).

3 Let us remark that (νP , νA) can be viewed as element of Z
P or Z

A, and thus, by abuse
of notation, element of Z

P
× Z

A
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2.3.1 PTS Models

Intuitively, a parametric transition system S (P ) characterizes a set of models, one by
parameter interpretation. More precisely, a parameter interpretation defines a model if
the initial constraints are satisfiable taking into account the parameter interpretation.

Definition 2 (PTS models)
Let S (P ) = (L, li, Ci,Tr) be a PTS over A and let νP : P → Z be a parameter
interpretation such that νP (Ci) is satisfiable.

A model of S (P ) is a triple S(νP ,S (P )) = (Q,Qi, τ ) where

• Qi = {(li, νA)|νA ∈ Z
A, (νP , νA) |=V Ci} is the set of initial states;

• Q ⊂ L× Z
A is the set of states;

• τ ⊂ Q × Q is the set of transitions of the form ((l, νA), (l′, ν′A)), also denoted
(l, νA) → (l′, ν′A);

• Q and τ are mutually defined by:

– Qi ⊆ Q

– for all (l, νA) ∈ Q and for all (l, g, α, l′) ∈ Tr s.t. (νP , νA) |=V g, then

∗ (l′, (νP , νA) ◦ α) ∈ Q

∗ ((l, νA), (l′, (νP , νA) ◦ α) ∈ τ

S(νP ,S (P )) is often denoted S(νP ) by abuse of notation.

Definition 3 (Runs over (A,L), model runs)
Let L be a set of locations.

A run over (A,L) is a sequence (ln, νAn)n∈N with for all n in N, ln ∈ L and
νAn ∈ Z

A. Such a run is also denoted: (l0, νA0) → (l1, νA1) → ...→ (lk, νAk) → ...

Let S(νP ) = (Q,Qi, τ ) be a model of a PTS S (P ) defined over A.
A model run σ(νP ) of S(νP ) is a run (ln, νAn)n∈N over (A,L) such that (l0, νA0) ∈

Qi and for all n ∈ N, (ln, νAn) → (ln+1, νAn+1) ∈ τ .

2.3.2 Semantics of PTS

It directly follows from the definition of PTS models that the semantics of a PTS
is the set of models built over parameter interpretations compatible with the initial
constraints of the PTS.

Definition 4 (Semantics of a PTS)
The semantics of a PTS S (P ) = (L, li, Ci,Tr) over A is the set JS (P )Kdefined by

JS (P )K = {S(νP ,S (P )) | νP ∈ Z
P
,∃νA ∈ Z

A
, (νP , νA) |=V Ci}

Example 2 (Models of S
0(P 0))

There are 4 different parameter interpretations compatible with the initial constraints
C0

i = (K0 = 0 ∨K0 = 1) ∧ (K1 = 0 ∨K1 = 1) ∧ (k = 0 ∨ k = 1) ∧ (x = 0):

νP 0 : (K0 7→ 0, K1 7→ 0) νP 1 : (K0 7→ 1,K1 7→ 0)
νP 2 : (K0 7→ 0, K1 7→ 1) νP 3 : (K0 7→ 1,K1 7→ 1)

For each parameter interpretation νP , there are 2 attribute interpretations νA such
that (νP , νA) |= C0

i : (k 7→ 0, x 7→ 0) and (k 7→ 1, x 7→ 0).
Thus, the semantics of S

0(P 0) contains four models depicted in Fig. 2.
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(a, (k 7→ 1, x 7→ 0)) (b, (k 7→ 0, x 7→ 1)) (c, (k 7→ 1, x 7→ 1))

(a, (k 7→ 0, x 7→ 0)) (b, (k 7→ 0, x 7→ 0)) (d, (k 7→ 0, x 7→ 0))

Model of S 0(P 0) for the interpretation νP 0 : (K0 7→ 0, K1 7→ 0)

(a, (k 7→ 0, x 7→ 0)) (b, (k 7→ 0, x 7→ 1)) (c, (k 7→ 1, x 7→ 1))

(a, (k 7→ 1, x 7→ 0)) (b, (k 7→ 1, x 7→ 0)) (c, (k 7→ 0, x 7→ 0))

Model of S 0(P 0) for the interpretation νP 1 : (K0 7→ 1, K1 7→ 0)

(a, (k 7→ 0, x 7→ 0)) (b, (k 7→ 0, x 7→ 0)) (d, (k 7→ 0, x 7→ 0))

(a, (k 7→ 1, x 7→ 0)) (b, (k 7→ 1, x 7→ 1)) (d, (k 7→ 1, x 7→ 1))

Model of S 0(P 0) for the interpretation νP 2 : (K0 7→ 0, K1 7→ 1)

(a, (k 7→ 1, x 7→ 0)) (b, (k 7→ 1, x 7→ 1)) (d, (k 7→ 1, x 7→ 1))

(a, (k 7→ 0, x 7→ 0)) (b, (k 7→ 1, x 7→ 0)) (c0, (k 7→ 0, x 7→ 0))

Model of S 0(P 0) for the interpretation νP 4 : (K0 7→ 1, K1 7→ 1)

Fig. 2: The four models of S 0(P 0)
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As a matter of fact, the semantics of a PTS is defined as a family of Kripke struc-
tures. Indeed, each state is defined by an attribute interpretation which, associated
to the underlying parameter interpretation defining the considered PTS model, allows
one to interprete as true or false any Presburger formula defined over V .

We will provide PTS with temporal logic. For that, we chose formulas based on
Linear Temporal Logic whose atomic formulas are quantifier free Presburger formulas
defined over the set of attributes. In particular, let us remark that these Presburger-
LTL formulas do not concern parameters since parameters no longer exist in PTS
models.

3 Presburger-LTL formulas

3.1 Syntax and Semantics

3.1.1 Syntax.

Presburger-LTL formulas are built from a set of atomic propositions using the usual
Boolean connectives and the temporal operators X (for neXt time) and U (for Until)
[16, 17]. In our settings, atomic formulas are quantifier free Presburger formulas
defined over A.

Definition 5 (Syntax of Presburger-LTL)
The set ΦA of Presburger-LTL formulas over A is defined as follows: for p ∈ Pres(A),

ΦA ::= p|¬ΦA|ΦA ∨ ΦA|XΦA|ΦAUΦA

3.1.2 Semantics.

Presburger-LTL formulas will be interpreted on runs.

Definition 6 (Semantics of Presburger-LTL)
Let L be a set of locations and let σ = (ln, νAn)n∈N be a run over (A,L). Let ϕ and
ψ be two Presburger-LTL formulas over A.

The satisfaction relation |= is defined as follows4 :

• if ϕ ∈ Pres(A), then σ |= ϕ iff νA0 |=A ϕ;

• σ |= ¬ϕ iff (σ 6|= ϕ);

• σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ;

• σ |= Xϕ iff σ1 |= ϕ;

• σ |= ϕUψ iff there exists i ∈ N such that σi |= ψ and for all j < i, σj |= ϕ.

To summarize, a formula without a temporal operator (X, U) as principal operator
refers to the current state, the formula Xϕ means that ϕ is verified for the run issued
from the next state, and ϕUψ means that ϕ is true until the condition ψ becomes true
which is required to happen.

3.1.3 Additional operators.

Connectives. We can introduce other usual Boolean connectives: ∧ (“and”), ⇒ (“im-
plies”) and truth symbols ⊤ (“true”) and ⊥ (“false”) by deriving them with the fol-
lowing definitions:

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) ⊤ ≡ ϕ ∨ ¬ϕ
ϕ⇒ ψ ≡ ¬ϕ ∨ ψ ⊥ ≡ ¬⊤

4 For a sequence σ = (σn)n∈N, σi is (σn+i)n∈N.
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Temporal operators. Many interesting properties can be simply expressed using F
(finally), G (globally) and R (Release) operators. These operators may be expressed
using the previous ones.

• The F operator expresses that a formula is true in one state of the path. Thus,
q |= Fϕ iff there exists i ∈ N such that qi |= ϕ.

• The G operator expresses that a formula is true in every states of the path.
Thus, q |= Gϕ iff for all i ∈ N, qi |= ϕ.

• The R operator expresses (for ϕRψ) that a formula ψ is true until the first state
in which ϕ is true (or whenever if such a state does not exist). Thus q |= ϕRψ
iff for all i ∈ N, (qi |= ψ or there exists j such that j < i and qj |= ϕ).

In other words:

Fϕ ≡ ⊤Uϕ Gϕ ≡ ¬F(¬ϕ) ϕRψ ≡ ¬(¬ϕU¬ψ)

Example 3 (Presburger-LTL formula over A0)
The Presburger-LTL formula ϕ0 = GF(x = 1) means that in every position of the
run, there exists a future position where x = 1 is true.

3.1.4 Normal form.

As usual LTL formulas, Presburger-LTL formulas can be translated into normal form
which does not contain the temporal operators F and G and such that all negation
connectives are adjacent to atomic formulas.

Let us remark that, in our case, the negation connectives will be included at the
level of Presburger formulas. Thus, any Presburger-LTL formula over A is equivalent5

to a formula belonging to the set ΨA defined by: for p ∈ Pres(A),

ΨA ::= p | ΨA ∨ ΨA | ΨA ∧ ΨA | XΨA | ΨAUΨA | ΨARΨA

To transform a Presburger-LTL formula over A into normal form, one can use the
following equivalences for temporal operators: ¬Xϕ ≡ X(¬ϕ), ¬(ϕUψ) ≡ (¬ϕ)R(¬ψ),
¬(ϕRψ) ≡ (¬ϕ)U(¬ψ).

Example 4 (Normal form of ϕ0)
Using G and F definitions, we find: ϕ0 = GF(x = 1) ≡ ⊥R(⊤U(x = 1))

3.2 Büchi Automaton

3.2.1 Definition.

Classical methods of LTL model checking [17] are based on the construction for an LTL
formula ϕ of a so-called Büchi Automaton, BA for short, recognizing all runs satisfying
ϕ and only them. We adapt the usual BA definition dedicated for propositional LTL by
labelling transitions with a Presburger-LTL formula instead of a propositional variable.

Definition 7 (Büchi automaton over Pres(A))
A Büchi automaton over Pres(A) is a tuple (LB , lBi,TrB ,Ac) where

• LB is the set of locations;

• lBi ∈ LB is the initial location;

• TrB ⊆ LB × Pres(A) × LB is the set of transitions of the form (lB , ρ, l
′
B), also

denoted lB
ρ
→ l′B;

5 Two formulas are said to be equivalent if they are satisfied by the same set of runs.
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init accept

(x = 1)

¬(x = 1)

¬(x = 1) (x = 1)

Fig. 3: The Büchi automaton B0

• Ac ⊆ is the set of accepting locations.

Example 5 (Büchi automaton B
0)

Fig. 3 describes the associated Büchi automaton B
0 over Pres(A0) where L0

B =
{init , accept} is the set of locations with init the initial location (in gray) and accept
the accepting location (with double line).

3.2.2 Paths of Büchi automaton.

A path of a Büchi automaton (LB , lBi,TrB,Ac) is a sequence µ = (trBn)n∈N where
for all n ∈ N, trBn is a transition of TrB which can be written (lBn, ρn, lBn+1) ∈ TrB

with lB0 = lBi. µ is also denoted: lB0
ρ0→ lB1

ρ1→ ...
ρk−1
→ lBk

ρk→ ...

We note inf (µ) the set of locations which occur infinitely often in µ.

3.2.3 Accepted runs.

Given a set L of locations, a run σ = (ln, νAn)n∈N over (A,L) is recognized or accepted
by a Büchi automaton B = (LB , lBi,TrB,Ac) over Pres(A) if there exists a path

µ = lB0
ρ0→ lB1

ρ1→ ...
ρk−1
→ lBk

ρk→ ... of B such that µ contains at least an accepting
state occurring infinitely often in it (i.e. inf (µ) ∩ Ac 6= ∅) and such that transition
labellings are satisfied at each step (i.e. for all k ∈ N, νAk |= ρk).

The set of runs accepted by B is called the language of B and denoted L (B).

Example 6 (Runs accepted by B
0)

The run of S(νP 1) whose initial state is (a, (k 7→ 0, x 7→ 0)) is accepted by B
0 consid-

ering the following path:

init init accept accept

initinitinit

¬(x = 1) (x = 1) (x = 1)

¬(x = 1)

¬(x = 1)¬(x = 1)

¬(x = 1)

S(νP 2) admits two infinite runs. The run starting at (a, (k 7→ 0, x 7→ 0)) has the
stationary state (d, (k 7→ 0, x 7→ 0)) and thus, is not accepted by B

0. On the contrary,
the other one is accepted by B

0.

3.2.4 Büchi automaton associated to a Presburger-LTL formula.

The result of the existence of BA recognising run satisfying LTL formulas can be
extended to Presburger-LTL.

Proposition 1 (BA for Presburger-LTL)
Let L be a set of locations. Let ϕ be a Presburger-LTL formula over A. A BA over
Pres(A), denoted B(ϕ) can be constructed such that L (B(ϕ)) is the set of runs over
(A,L) satisfying ϕ.
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Proof 1 For ϕ a Presburger-LTL formula in normal form, let us introduce PA(ϕ) the
set of all Presburger formulas p occurring in ϕ as the largest sub-formulas of ϕ without
temporal operators. We associate to PA(ϕ) a set PA∗(ϕ) = {p∗ | p ∈ PA(ϕ)} of usual
propositional atoms. We now consider ϕ∗ the propositional LTL formula derived from
ϕ by replacing elements of PA(ϕ) by elements of PA∗(ϕ).

Let B
∗(ϕ∗) be the BA recognizing the propositional runs s∗ = (s∗n)n∈N satisfying

ϕ∗ and only them: s∗n are sets of propositional atoms in PA∗(ϕ). We consider B(ϕ)
the BA over A deduced from B

∗(ϕ∗) by replacing propositional labelling in PA∗(ϕ) by
labelling in PA(ϕ) ⊂ Pres(A).

For any attribute interpretation νA, let us consider the state s(νA,PA∗(ϕ)) =
{p∗|p∗ ∈ PA∗(ϕ), νA |=A p}.

For a run σ = (ln, νAn), let us consider σ∗ = (s∗n)n∈N the propositional run defined
by s∗n = s(νAn,PA∗(ϕ)). Then by construction, σ is recognised by B(ϕ) iff σ∗ is
recognised by B

∗(ϕ∗).

Example 7 (BA associated to ϕ0)
B

0 is an example of BA associated to ϕ0.

3.2.5 Product between PTS and BA.

In order to unify PTS and BA, let us introduce the notion of Accepting PTS, APTS for
short,which are PTS equipped with a set Ac ⊆ L of accepting locations and denoted
by (L, li, Ci,Tr ,Ac). Thus, both PTS and BA can be viewed as Accepting PTS: PTS
are APTS where all locations are accepting, BA are APTS with no parameters and
where all the assignments are the identity function, and the initial constraint is true.
These completion mechanisms will be left implicit in the sequel and all notions and
notations concerning either PTS or BA still hold for APTS.

To characterise paths of PTS verifying a given Presburger-LTL formula ϕ, we
consider, as usual, the product between the PTS and B(ϕ).

Definition 8 (Product)
Let S (P ) = (L, li, Ci,Tr) be a PTS over A. Let B(ϕ) = (LB, lBi,TrB ,Ac) be a BA
over Pres(A).

The product Sϕ(P ) = S (P )⊗A (ϕ) is an APTS (L×LB , (li, lBi), Ci,Trϕ, L×Ac)
over A such that

Trϕ = {((l, lB), g ∧ ρ,α, (l′, l′B))|(l, g, α, l′) ∈ Tr , (lB, ρ, l
′
B) ∈ TrB}

Example 8 (product between S
0(P 0) and B

0(ϕ0))
Fig. 4 presents S

0
ϕ0(P 0), the APTS resulting from the product between S

0(P 0) and

B
0. The initial location is in gray, and the accepting ones are in double line.

As it is well known that product characterises language intersection, the resulting
APTS Sϕ(P ) holds the interesting property that accepted runs of Sϕ(P ) define paths
of S (P ) satisfying ϕ. The question to find PTS models S (P ) which admit paths
verifying a Presburger-LTL formula is reduced to find models that allow the existence
of infinite paths in the product. In the next section we will use symbolic execution to
analyse paths of the product, in order to find parameter interpretations νP defining
these models.

4 Searching parameters based on symbolic execution

Symbolic execution was first introduced for program analysis and test generation ([7]).
The basic idea of symbolic execution is to associate to each variable of a system a sym-
bol which represents its initial value and to express all the computations performed
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Fig. 4: P0, the product between S 0(P 0) and B0(ϕ0)
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during the program execution using these symbols. An infinite symbolic execution tree
can be built to represent all possible behaviours of the program: a path condition
on the symbols expresses on which conditions on the initial values the computation
denoted by the path can be executed. This technique has been previously used for
symbolic transition systems [2]. In the case of PTS, we are interested in finding param-
eters which allow a certain behaviour, then parameters will be handled by symbolic
execution techniques while attributes will be computed. Thus, as symbolic execu-
tion will hold on symbols denoting parameters, resulting path conditions will express
constraints on parameters.

To make the computation on attributes possible, we restrict PTS assignments
under the form A→ T (A) (instead of T (P

‘

A)). To be able to enumerate all states
of PTS models, we assume that values of attributes are bounded, that is for any
attribute a, νA(a) ∈ [mina,maxa]. We denote by B the set of possible values for
attributes.

4.1 Symbolic Execution Tree (SET)

A Symbolic Execution Tree, SET for short, is an infinite tree whose nodes are called
symbolic states and edges symbolic transitions.

4.1.1 Symbolic states.

Given S (P ) = (L, li, Ci,Tr ,Ac) an APTS over A, a symbolic state is a triple (l, pc, νA)
such that:

• l ∈ L is a location;

• pc ∈ Pres(P ) is the path condition;

• νA : A→ B is the attribute interpretation.

(l, pc, νA) is said accepting if l ∈ Ac.
The semantics of (l, pc, νA) is the set J(l, pc, νA)K defined by:

J(l, pc, νA)K =
[

νP ∈ZP

{(l, (νP , νA)) ∈ L× (ZP × B
A)|νP |=V pc}

In other words, (l, (νp, νA)) ∈ J(l, pc, νA)K represents the state (l, νA) in the model
S(νp). Thus, a symbolic state (l, pc, νA) represents the same model state (l, νA) in sev-
eral PTS models S(νP ), these models being the ones whose parameter interpretation
νP satisfies the path condition pc of the symbolic state.

Example 9 (Symbolic state s0)
Let us consider S

0
ϕ0(P

0) the APTS introduced in Example 8. Let s0 = (l0, pc0, ν0
A)

be a symbolic state of S
0
ϕ0(P 0) with:

• l0 = (b, init);

• pc0 = (K0 = 0 ∨K0 = 1) ∧ (K1 = 0);

• ν0
A : k 7→ 0, x 7→ 0.

By definition the semantics of s0 is:

J((b, init), pc0, γ0)K = { ((b, init), (K0 7→ 0,K1 7→ 0, k 7→ 0, x 7→ 0)),
((b, init), (K0 7→ 1,K1 7→ 0, k 7→ 0, x 7→ 0))}

Thus, the semantics of s0 corresponds to the state ((b, init), (k 7→ 0, x 7→ 0)) in the two
models S(K0 7→ 0,K1 7→ 0) and S(K0 7→ 1, K1 7→ 0) that is the two models S(νP0)
and S(νP1).
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4.1.2 Symbolic Execution Tree.

Nodes and edges of a SET are inductively defined, starting with the root. The root is
the initial symbolic state, that is a symbolic state composed of the initial location of
the PTS, the initial constraint, and an initial attribute interpretation.

Definition 9 (Symbolic Execution Tree)
Let S (P ) = (L, li, Ci,Tr ,Ac) be an APTS over A and let νAi : A → B be an initial
attribute interpretation s.t. νAi(Ci) is satisfiable.

The symbolic execution tree associated to S (P ) and νAi is the tree T (S (P ), νAi) =
(N, r,E) where:

• N ⊆ L× Pres(P ) × B
A is a set of symbolic states for S (P ) called nodes;

• r = (li, νAi(Ci), νAi) is the root node;

• E ⊆ N ×N is the set of edges.

• N and E are inductively defined by:

– r ∈ N

– for all (l, pc, νA) ∈ N , for all (l, g, α, l′) ∈ Tr s.t. pc ∧ νA(g) is satisfiable
then

∗ (l′, pc ∧ νA(g), νA ◦ α) ∈ N

∗ ((l, pc, νA), (l′, pc ∧ νA(g), νA ◦ α)) ∈ E

Let us remark that, for a given PTS, we can build as many SETs as ways to initially
interpret attributes, considering that the PTS initial constraints remain satisfiable once
the attributes have been instanciated.

Semantically, a SET for a given νAi represents the set of runs of all PTS models
S(νP ) starting at the initial state (li, νAi), i.e. s.t. νP |=P νAi(Ci).

Note that, by construction of the SET, if there exists a path from s = (l, pc, νA)
to s′ = (l′, pc′, ν′A), then there is a Presburger constraint pc∗ such that pc′ = pc ∧ pc∗,
and then every parameter interpretation which satisfies pc′ also satisfies pc. And so,
Js′K ⊆ JsK.

4.2 Folding of Symbolic Execution Tree

4.2.1 Return nodes.

Any SET of a PTS verify the two following properties: firstly, due to the completeness
property of PTS, every node of a SET has a successor, and thus SET paths are infinite.
Secondly, by hypothesis, the set of states of a PTS model is finite, and so each infinite
path contains at least two nodes s = (l, pc, νA) and s′ = (l′, pc′, ν′A) s.t. l = l′ and
νA = ν′A. For each path of a SET, we focus on such nodes, more particularly on the
nearest ones of the root node.

Definition 10 (Return and copy nodes of a SET)
Let T (S (P ), νAi) be a SET. For any infinite path (sk)k∈N of T (S (P ), νAi) with
sk = (lk, pck, νAk) for all k, we call return node the symbolic state sn = (ln, pcn, νAn)
s.t. n is the least integer verifying there exists p < n s.t. sp = (ln, pcp, νAn). sp is
called the copy node of sn.

Return nodes (l, pc, νA) hold the interesting property that parameter interpreta-
tions νP satisfying pc ensure that the model S(νP ) admits at least a run containing
infinitely often the state (l, νA). Intuitively, it suffices to consider a run built by re-
peating the states of the path between copy and return nodes, with the same successive
values of locations and attributes.
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Lemma 1 (Run associated to a return node)
Let S (P ) be an APTS over A and let (sk)k∈N be a path of a SET of S (P ) with
sn = (ln, pcn, νAn) its return node, and sp its copy node.

If νP : P → Z is a parameter interpretation such that νP |=V pcn, then σ(sn) =
(σk)k∈N is a run of S(νP ,S (P )) with for all k ≤ n, σk = (lk, νAk) and for all k > n,
σk = (lηp,n(k), νAηp,n(k)) where6

ηp,n(k) = p+ 1 + ((k − (n+ 1))[n− p])

Proof 2 Let νP : P → Z be a parameter interpretation such that νP |=V pcn, and let
σ(sn) = (σk)k∈N be defined as above. Then, (σk)k≤n is a partial run of S(νP ) since pcn

is satisfied. As successors of σn are included in the successors of σp by construction,
then σ(sn) is a run of S(νP ).

4.2.2 Folding the SET.

Lemme 1 expresses that a return node characterises runs as soon as its path condition
is satisfiable. In fact, the loop defined by the copy and return nodes allows us to
consider runs following a minimal construction. Moreover, because the semantics of a
return node is included in the semantics of the associated copy node, then necessarily,
the set of return node’s successors is included in the set of copy node’s successors.
Thus, any SET infinite path may be viewed as a sequence of several finite paths from
a copy node to a return node.

We can fold the SET by cutting it at the level of return nodes, and considerind
a kind of backtrack edges from the return nodes to the successors of their copy node.
In other words, a path issued from the symbolic execution process can be seen either
as an infinite path of the whole SET or a path on the folded structure. Let us remark
that by construction, the path condition of an infinite path of the SET is equivalent
to the conjunction of the path condition of all return nodes crossed in the traversal of
the associated folded structure.

Example 10 (SETs for S
0
ϕ0(P

0))

Fig. 5 and Fig. 6 show the two folded SETs of S
0
ϕ0(P

0) for the initial attribute
interpretations (k 7→ 0, x 7→ 0) and (k 7→ 1, x 7→ 0). The corresponding initial path
condition is then C = (K0 = 0 ∨K0 = 1) ∧ (K1 = 0 ∨K1 = 1).

Dashed transitions indicate that a return node has been reached, and precise the
copy node. Accepting return nodes (see 4.3) are underlined.

4.3 Parametric model checking

4.3.1 Accepting return nodes.

In the context of APTS, we have to focus on accepting nodes; a return node will be
considered as accepting if there is an accepting node in the loop defined by the copy
and return nodes. Indeed, all nodes in this loop have the same role to make the runs
accepted.

Definition 11 (Accepting return nodes)
Let Sϕ(P ) be an APTS and let T (Sϕ(P ), νAi) be a SET. A return node s of
T (Sϕ(P ), νAi) is said to be accepting iff at least one symbolic state between the copy
node of s and s itself is accepting. The path condition of s is then called accepting
path condition.

6 n[k], also called n modulo k, is the remainder after numerical division of n by k.
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((a, init), C, (k 7→ 0, x 7→ 0))

((b, init), C ∧ (K0 = 0), (k 7→ 0, x 7→ 0))

((a, init), C ∧ (K0 = 1) ∧ (K1 = 1), (k 7→ 0, x 7→ 0))

((b, init), C ∧ (K1 = 0), (k 7→ 0, x 7→ 1))

((d, init), C ∧ (K0 = 0), (k 7→ 0, x 7→ 0)) ((c, accept), C ∧ (K1 = 0), (k 7→ 1, x 7→ 1))

((d, init), C ∧ (K0 = 0), (k 7→ 0, x 7→ 0)) ((a, accept), C ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

((b, init), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 1, x 7→ 0)) ((a, init), C ∧ (K0 = 0) ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

((c, init), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 0, x 7→ 0)) ((a, init), C ∧ (K0 = 0) ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

((a, init), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 0, x 7→ 0))

Fig. 5: SET of S 0
ϕ0(P 0) for the initial attribute interpretation (k 7→ 0, x 7→ 0)

((a, init), C, (k 7→ 1, x 7→ 0))

((b, init), C ∧ (K1 = 1), (k 7→ 1, x 7→ 1))

((a, init), C ∧ (K0 = 0) ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

((b, init), C ∧ (K0 = 1), (k 7→ 1, x 7→ 0))

((d, accept), C ∧ (K1 = 1), (k 7→ 1, x 7→ 1)) ((c, init), C ∧ (K0 = 1), (k 7→ 0, x 7→ 0))

((d, accept), C ∧ (K1 = 1), (k 7→ 1, x 7→ 1)) ((a, init), C ∧ (K0 = 1), (k 7→ 0, x 7→ 0))

((b, init), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 0, x 7→ 1)) ((a, init), C ∧ (K0 = 1) ∧ (K1 = 1), (k 7→ 0, x 7→ 0))

((c, accept), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 1, x 7→ 1))

((a, accept), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

((b, init), C ∧ (K0 = 1) ∧ (K1 = 0), (k 7→ 1, x 7→ 0))

Fig. 6: SET of S 0
ϕ0(P 0) for the initial attribute interpretation (k 7→ 1, x 7→ 0)
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Example 11 (Accepting return nodes of P
0 SETs)

Accepting return nodes of the two SETs of S
0
ϕ0(P 0) are the underlined return nodes

from Fig. 5 and Fig. 6

Let s = (l, pc, νA) be an accepting return node. Then, if νP ∈ Z
P is a parameter

interpretation such that νP |=V pc, then the run σ(s) as built in Lemma 1 is an
accepted run of S(νP ).

4.3.2 Condition for an accepted path.

The following theorem expresses a necessary and sufficient condition on parameter and
accepting path conditions of a SET to ensure that one path of the model associated
to the parameter interpretation is accepted.

Theorem 1 (Disjonction of path conditions)
Let S (P ) = (L, li, Ci,Tr) be a PTS, let ϕ be a Presburger-LTL formula, and let
Sϕ(P ) be the APTS associated to S (P ) and ϕ.

Let T (Sϕ(P ), νAi) be a SET with pc1, ..., pcm be all its accepting path conditions.
Let νP be a parameter interpretation, then there is a path in the model S(νP ) starting
at (li, νAi) and satisfying ϕ iff νP |=P

W

1≤i≤m pci.

Proof 3 We have already established that any νP satisfying an accepting path condi-
tion defined a model with at least an accepting run.

Let σ be an accepted path in the model S(νP ). Then it exists an accepting state
s = (l, νA) of the model which appears infinitely often in σ. The folded SET being
finite, there is a finite number of occurrences of s with different path conditions, and
the SET path corresponding to σ passes infinitely often through at least one of these
occurrences. Let sj be such an occurrence, and let r1, ..., rm the return nodes which are
under sj. At least one of the return nodes has a copy node which is over sj (otherwise,
the path cannot pass infinitely often through sj) and at least one of these particular
return nodes is passed infinitely often. Let rm be such a node. Then, sj is part of the
loop between rm and its copy node, and rm is an accepting return node whose path
condition is satisfied by νP .

4.3.3 Considering all the SETs.

A SET is associated to an initial attribute interpretation and describes the paths of
all models, starting in the initial state defined by the initial interpretation. Then to
verify all the paths of a model, we have to consider the accepting path conditions of
all the SETs. There exists a model with (at least) one path verifying an LTL formula
iff there exists a parameter interpretation which satisfies one accepting path condition
of one SET. By contraposition: there exists a model with all paths verifying an LTL
formula iff there exists a parameter interpretation which satisfies the conjunction of
the negation of all non accepting path conditions for all the SETs.

In other words, by denoting R(νAi) the set of return nodes of T (S (P ), νAi),
AR(νAi) the set of accepting return nodes of T (S (P ), νAi) and IνA

the set of possible
initial attribute interpretations, we have:

• S(νp,S (P )) admits (at least) one run verifying ϕ iff

νP |=V

_

νAi∈IνA

_

(l,pc,νA)∈AR(νAi)

pc

• All the runs of S(νp,S (P )) verify ϕ iff

νP |=V

^

νAi∈IνA

^

(l,pc,νA)∈R(νAi)\AR(νAi)

¬pc
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In section 5 we will focus on these conditions to model biological constraints.

Example 12 (Conditions on parameters of S
0(P 0))

A model S(νP ) of S
0(P 0) admits (at least) one run verifying ϕ0 iff

νP |=V (C ∧ (K0 = 1) ∧ (K1 = 0)) ∨ (C ∧ (K1 = 1)) ∨ (C ∧ (K0 = 1) ∧ (K1 = 0))

Thus, νP 1 : (k 7→ 1, x 7→ 0), νP 2 : (k 7→ 0, x 7→ 1) and νP 3 : (k 7→ 1, x 7→ 1) lead to
models with one run verifying ϕ0.

A model S(νP ) of S
0(P 0) is such that all its runs verify ϕ iff

νP |=V ¬(C ∧ (K0 = 1)) ∧ ¬(C ∧ (K0 = 0) ∧ (K1 = 0)) ∧ ¬(C ∧ (K0 = 1) ∧ (K1 = 1))

And thus, νP 1 : (k 7→ 1, x 7→ 0) is the only parameter interpretation leading to a
model with all paths verifying ϕ0.

5 PTS for biological systems

In this section we focus on modelling of complex biological systems, more precisely
on genetic regulatory networks. Generally, genetic regulatory networks are modelled
by continuous differential systems in which parameters have to be inferred from a set
of biological experiments. Unfortunately these parameters are rarely measurable and
modelling process has to focus on the search of parameters values which lead to a
dynamics which is coherent with experiments.

In order to address this kind of questions, we first focus on a discrete modelling
of genetic regulatory network [14, 15]. The biological system is represented by an
oriented graph (see Fig.7) where nodes abstract the proteins which play a role in the
system and edges abstract the known interactions inside the considered system. With
each node is associated a discrete concentration level which abstract its continuous
concentration. Interaction (a → b) can be activation (the increase of a leads to an
increase of b, the edge is labelled by the sign + and a is an activator of b) or an
inhibition (the increase of a leads to a decrease of b, the edge is labelled by the sign
− and a is an inhibitor of b). Moreover, when a regulator a acts on several targets,
on b and c for exemple, it is often known that the level of a mandatory for an action
on c is higher than the level necessary for the action of a on b. Thus edges are also
labelled with a threshold below which the action is not effective. But such information
is not sufficient to construct the complete dynamics of the systems since its dynamics
is governed by a set of discrete parameters which express the directions of evolution
of each concentration according to the current state.

Modeling framework. Several dynamics can be built from an interaction graph. The
set of dynamic states are deduced from the labels of out-going edges. In fact, the
set of the thresholds of edges out-going from a node x constitutes a set of the form
{1, 2, ..., n} and thus concentration of x can take n+ 1 values : 0, 1, ...n.

The evolution of the concentration of a node x depends on the value of a parameter
depending of the state: K(x, state). If the concentration of x is below K(x, state), x
can increase, if the concentration of x is above K(x, state), x can decrease, otherwise
x does not change. Actually parameters (K(x, state))x,state depend only on the set
of present regulators (predecessors whose concentration is above the corresponding
threshold).
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1,−
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Fig. 7: Interaction graph for the mucus production system in P. aeruginosa

Model checking for determining suitable models. To go further, it can be useful to
take into account known properties of the system. For example it can be known that if
a particular protein is not expressed (its discrete level is equal to 0) then an event is not
possible. Such a property can be translated into LTL formulas: (a = 0) ⇒ ¬F (event).
The main activity of modelling, consisting in searching parameters values which lead
to behaviours coherent with observed properties, can so be aided by model-ckecking
of parametric transition systems presented hereinbefore.

We then present the use of PTS through the example of mucus production in
Pseudomonas aeruginosa. We give the main results for the classical epigenetic switch
in bacteriophage lambda.

5.1 Mucus production system in P. aeruginosa

Pseudomonas aeruginosa are bacteria that secrete mucus (alginate) in lungs affected
by cystic fibrosis, but not in common environment. As this mucus increases respiratory
defficiency, this phenomenon is a major cause of mortality. Details of the regulatory
network associated with the mucus production by Pseudomas aeruginosa are described
by Govan and Deretic [3] but a simplified genetic regulatory network has been proposed
by Guespin and Kaufman [4], see Fig.7.

It has been observed that mucoid P. aeruginosa can continue to produce mucus
isolated from infected lungs. It is commonly thought that the mucoid state of P.
aeruginosa is due to a mutation which cancels the inhibition of gene x. An alternative
hypothesis has been made: this mucoid state can occur by reason of an epigenetic
modification, i.e. without mutation [4]. The models compatible with this hypothesis
are constructed in [1]. We show here that PTS are useful for extracting such set of
models.

5.1.1 Parametric Transition System.

The PTS associated with the interaction graph is defined as follows.

• The set of attributes is constituted by the concentrations associated with nodes
x and y, which are also noted x and y by abuse.

• The set of locations is {T, S}. The location S specifies the stable steady states
where no concentration evolves and so the condition for entering into S is that
neither x nor y can evolve.

• The set of parameters is {K(x, {}), K(x, {x}), K(x, {y}), K(x, {x, y}), K(y, {}),
K(y, {x})}, since x has two predecessors and y only one.

• The initial location is “T” and the initial constraints are:

0 ≤ K(x, {}) ≤ 2 ∧ 0 ≤ K(x, {x}) ≤ 2
∧ 0 ≤ K(x, {y}) ≤ 2 ∧ 0 ≤ K(x, {x, y}) ≤ 2
∧ 0 ≤ K(y, {}) ≤ 1 ∧ 0 ≤ K(y, {x}) ≤ 1

• Finally transitions are represented in Fig. 8 where guards are expressed using
the notation K(x, state) which denotes the parameter in the current state state.
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ST
(x = K(x, state) ∧ y = K(y, state))

(x > K(x, state))x 7→ x − 1

(x < K(x, state))x 7→ x + 1

(y > K(y, state))y 7→ y − 1

(y < K(y, state))y 7→ y + 1

Fig. 8: PTS for the mucus production system in P. aeruginosa

Each guard can be translated into a semantically equivalent Presburger formula.
For example, x < K(x, state) is equivalent to

(x < K(x, {}) ∧ x < 2 ∧ y < 1)
∨ (x < K(x, {x}) ∧ x = 2 ∧ y < 1)
∨ (x < K(x, {y}) ∧ x < 2 ∧ y = 1)
∨ (x < K(x, {x, y}) ∧ x = 2 ∧ y = 1)

Remarks. The initial constraints can specify some information available on the sys-
tem. For exemple, it is possible to code in these initial constraints that we are looking
for parameterizations which satisfy the Snoussi’s constraints[12]: larger the set of ef-
fective activators, larger the focal point. In other words, if in a configuration the
concentration of a node is increasing (resp. decreasing), then the addition of another
activator (resp. inhibitor) does not lead to a decreasing (resp. increasing) of the
concentration.

5.1.2 Specification of behaviours by Presburger-LTL formulas.

From biological knowledge we can state that P. aeruginosa does not produce mucus in
a common environment, so there is no path from a state where x = 0 to a state where
x = 2. In other words, the formula ϕ ≡ ¬((x = 0) ∧ F(x = 2)) has to be evaluated to
true on all paths. The associated constraint generated by our method is K(x, ∅) ≤ 1.

5.1.3 Results.

If the hypothesis of an epigenetic change in mucoid P. aeruginosa is verified, bacteria
which produce mucus can continue to produce mucus in a common environment. A
path beginning with (x = 2) which turns back forever to (x = 2) is described by ((x =
2)∧G(F (x = 2))) which has to be evaluated to true on all paths. Our method leads to
the constraints ((K(x, {x, y}) = 2∧K(y, {x}) = 1)∨(K(x, {x}) = 2∧K(y, {x}) = 0)).
If we assume that K(x, {y}) = K(y, {}) = 0 (when no activator is present and when
all the inhibitors are present, then the concentration of the considered variable is
decreasing to 0) and that parameters verify the Snoussi constraints [12], 8 interesting
models are to be considered for further analysis [10].

5.2 Bacteriophage lambda

Bacteriophage lambda is a virus whose DNA can integrate into bacterial chromosome
and be faithfully transmitted to the bacterial progeny. After infection, most of the
bacteria display a lytic response and liberate new phages, but some display a lysogenic
response, i.e. survive and carry lambda genome, becoming immune to infection.
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Fig. 9: Interaction graph for the lambda switch

Figure 9 presents the interaction graph described by Thieffry and Thomas [13]
which has also been studied in [11]. 4 genes (called cI, cro, cII and N) and 10 interac-
tions are involved, with 24 parameters. The states, represented by a vector (cI , cro,
cII , N), are in {0, 1, 2}×{0, 1, 2, 3}×{0, 1}×{0, 1}. The set of possible instantiations
of parameters is enormous (38 × 44 × 28 × 24 = 6.879.707.136) since cI (resp. cro, cII ,
N) has 3 regulators (resp. 2, 3, 2). Thus we are in the situation where the parametric
transition system represents a large number of rather small models (each model is a
transition system with 3 × 4 × 2 × 2 = 48 states).

5.2.1 Parametric Transition System.

The PTS associated with the interaction graph of Fig. 9 is defined as follows.

• The set of attributes is constituted by the concentrations cI , cro, cII and N

associated to the different nodes.

• The set of locations is {T, S}.

• The set of parameters is
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:

K(cI, {}), K(cI, {cI}), K(cI, {cro}), K(cI, {cII}),
K(cI, {cI, cro}), K(cI, {cI, cII}), K(cI, {cro, cII}), K(cI, {cI, cro, cII}),
K(cro, {}), K(cro, {cI}), K(cro, {cro}), K(cro, {cI, cro})
K(cII, {}), K(cII, {cI}), K(cII, {cro}), K(cII, {N}),
K(cII, {cI, cro}), K(cII, {cI,N}), K(cII, {cro, N}), K(cII, {cI, cro,N}),
K(N, {}), K(N, {cI}), K(N, {cro}), K(N, {cI, cro})
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;

• The initial location is “T” and the initial constraints are:
V

ω⊆G−1(cI) 0 ≤ K(cI, ω) ≤ 2 ∧
V

ω⊆G−1(cro) 0 ≤ K(cro, ω) ≤ 3 ∧
V

ω⊆G−1(cII) 0 ≤ K(cII, ω) ≤ 1 ∧
V

ω⊆G−1(N) 0 ≤ K(N, ω) ≤ 1

where G−1(x) denotes the set of regulators of x.

• Finally transitions are represented in the figure 10. Actually, the guards are
expressed using the notation K(x, state) which denotes the parameter to be ap-
plied to x in the current state state. Each guard of the figure can be translated
into a semantically equivalent formula of Pres(V ) (see example of P. aerugi-
nosa).



5 PTS for biological systems 21

ST

(cro < K(cro, state))cro 7→ cro + 1

(cro > K(cro, state))cro 7→ cro − 1

(cI > K(cI, state))cI 7→ cI − 1

(cI < K(cI, state))cI 7→ cI + 1

(cII < K(cII, state))cII 7→ cII + 1

(cII > K(cII, state))cII 7→ cII − 1

(N < K(N, state))N 7→ N + 1

(N > K(N, state))N 7→ N − 1

∧cII = K(cII, state) ∧ N = K(N, state))

(cI = K(cI, state) ∧ cro = K(cro, state)

Fig. 10: PTS for the lytic/lisogenic switch in phage lambda

5.2.2 Specification of behaviors by Presburger-LTL formulas.

We used Presburger-LTL formulas to specify two kinds of biological knowledge: static
and dynamic.

Static knowledges describe the states of interest, that is the protein concentration
corresponding to lytic or lysogenic states, and the fact that viral proteins are absent
when the viral genome integrates a cell.

• The lytic response leads to the states where cro is fully expressed, and other
genes repressed. To specify that the system is in one of these states, we use the
following formula, called lytic:

lytic = (cI = 0 ∧ cro ≥ 2 ∧ cII = 0 ∧N = 0)

• The lysogenic response leads to the state where cI is fully expressed, and the
repressor produced by cI blocks the expression of the other viral genes, leading
to immunity. This state corresponds to following formula, called lysogenic:

lysogenic = (cI = 2 ∧ cro = 0 ∧ cII = 0 ∧N = 0)

• The viral proteins are initially absent when the viral genome integrates a cell.
The system is in this initial state if it verifies the following init formula:

init = (cI = 0 ∧ cro = 0 ∧ cII = 0 ∧N = 0)

Dynamic knowledges express that lytic and lysogenic states are stable, and that
these states can be reached from the initial state.

• When a lytic state is reached, the system does not leave the set of lytic states,
thus any path of searched models must verify:

P1 : ¬(lytic ∧ F (¬lytic))

• Similarly, the stability of the lysogenic state is equivalent to the following prop-
erty which must be verified by any path:

P2 : ¬(lysogenic ∧ F (¬lysogenic))

• As lytic and lysogenic responses are possible from the initial state, it means that
there exists at least a path from initial state to lytic states, and at least a path
from initial state to lysogenic state. These properties are translated into:

P3 : init ∧ F (lytic)

P4 : init ∧ F (lysogenic)
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5.2.3 Results.

The models we are interested in are the ones which admit at least one path verifying
P3 and P4, and all paths verifying P1 and P2.

• The condition on P1 leads to following constraints on parameters:

C1 = (K(cI, {cro}) = 0)∧(K(cro, {}) > 1)∧(K(cII, {}) = 0)∧(K(N, {cro}) = 0)

• Similarly, P2 leads to the constraint:

C2 = (K(cI, {cI}) = 2)∧(K(cro, {cI}) = 0)∧(K(cII, {cI}) = 0)∧(K(N, {cI}) = 0)

• Focusing on P3, we remark that all models satisfying C1 and C2 have a path
verifying init∧ F (lytic), in other words, the information given by P3 is already
contained in P1 and P2.

• Finally property P4 leads to the constraint:

C4 = (K(cI, {}) = 2)∨((K(cI, {cII}) = 2)∧(K(cII, {N}) = 1)∧(K(N, {}) = 1))

The set of interesting parameter interpretations is then reduced from more than 6.8
billions to 2156 [9], leading scientists to focus directly on models which are coherent
with current knowledge on the dynamics of the system.

6 Concluding remarks

A Parametric Transition System represents a set of models as Kripke structures in
a concise manner. Thus, PTS are particularly useful when the modelled system is
highly parametrical that is when the number of possible parameter interpretations is
greater than the number of attribute interpretations. If we consider the example of
Bacteriophage lambda, we have to deal with 24 parameters and 4 attributes, what
leads to a large number of rather small models. This situation is common for genetic
regulatory networks, which makes PTS perfectly adapted for their studies. Moreover,
results are easy to read and manipulate due to their symbolic representations for both
formulas and constraints.

A promising follow-up is to model and analyse larger biological networks, in order
to prove that our approach can avoid the state space combinatorial explosion, common
in the study of genetic regulatory networks. We are also interested in developing the
applications of PTS to other domains, issued from Software Engineering for example.
A remaining challenge is to avoid, or at least to delay, the states enumeration, that is
to make the SET more symbolic.
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