
A hybrid model of cell cycle in mammals

Jonathan Behaegel*,‡, Jean-Paul Comet*,§, Gilles Bernot*,¶,

Emilien Cornillon*,|| and Franck Delaunay†,**

*Universit�e Nice-Sophia Antipolis

I3S-UMR CNRS 7271, CS 40121

06903 Sophia Antipolis Cedex, France
†Universit�e Nice Sophia Antipolis

CNRS UMR7277, INSERM U1091
Institut de Biologie Valrose

06108 Nice, France
‡behaegel@i3s.unice.fr

§comet@unice.fr
¶bernot@unice.fr

||ecornillon@i3s.unice.fr
**franck.delaunay@unice.fr

Accepted 12 October 2015

Published 24 December 2015

Time plays an essential role in many biological systems, especially in cell cycle. Many models of
biological systems rely on di®erential equations, but parameter identi¯cation is an obstacle to

use di®erential frameworks. In this paper, we present a new hybrid modeling framework that

extends Ren�e Thomas' discrete modeling. The core idea is to associate with each qualitative

state \celerities" allowing us to compute the time spent in each state. This hybrid framework is
illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are

determined by applying formal methods on the underlying discrete model and by constraining

parameters using timing observations on the cell cycle. This ¯rst hybrid model presents the most
important known behaviors of the cell cycle, including quiescent phase and endoreplication.

Keywords: Discrete modeling; hybrid modeling; mammalian cell cycle.

1. Introduction

Regulatory networks are models based on graphs which we use to obtain a simpler

view of gene regulation. Gene regulation is then the process of turning genes on and

o® and is made possible by a network of interactions using regulatory proteins. Gene

regulation guarantees that appropriate genes are expressed at proper times specially

during early development where cells begin their speci¯c functions. Gene regulation

also helps an organism to respond to its environment.
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The various existing modeling frameworks di®er by the aspects they highlight.

Stochastic models emphasize non-determinism, di®erential models represent a sys-

tem with a lot of details (transcription, traduction, transports, etc.) and give precise

trajectories in terms of concentrations, qualitative models focus on the major features

that explain the observations (only main causalities are taken into account), and

hybrid models link qualitative aspects with continuous variables such as time. For

gene networks, the qualitative framework by Thomas1,2 has become a standard

because it highlights the qualitative nature of gene regulations and powerful software

platforms have been designed that help the biologists in designing and analyzing

models. Unfortunately, the qualitative nature of discrete models leads to completely

abstract time scale: When chronometrical time plays a crucial role in the biological

system, Thomas' discrete method is not su±cient.

Whatever the modeling framework, the main di±culty relies on the identi¯cation

of good parameter values. For di®erential, probabilistic, discrete or hybrid models,

parameters pilot the dynamics, and ¯nding accurate values remains a di±cult step.

For discrete modeling frameworks like the one of Thomas, formal methods assist the

modeler to automatically select or constrain the parameters in order to get accurate

dynamics.3,4 When the models have to handle durations, they can be described in

terms of di®erential systems or in terms of hybrid models. Whereas parameter

identi¯cation in di®erential systems is a hard problem even when the nature of

di®erential systems is well known, hybrid modeling frameworks can still be assisted

by computer-aided methods to help the modeler to setup the parameters.

In the context of gene networks, several hybrid frameworks have been designed in

order to take into account timing informations.5–7 In this paper, we introduce a new

hybrid modeling framework where the discrete kinetic parameters of Thomas's ap-

proach are extended into \celerities" (real number values), allowing us to deduce the

time spent in each discrete state. To illustrate the ability of this hybrid modeling

framework to represent timing information, we model the well-studied cell cycle, that

gives several daughter cells starting from a parent cell. In this paper, we focus on

mitosis which produces two daughter cells.

The behavior of the cell cycle in mammals can be summed up as follows. Cell cycle

displays four phases which are always linked in the same order: G1, S, G2, and M.

Each of these phases is controled by a protein complex made of a Cyclin and a Cdk

(Cyclin-dependent kinase). For example, Cyclin A/Cdk2 governs the S phase of cell

cycle. Checkpoints exist for G1/S and G2/M transitions. They allow the cell to

control that DNA is not damaged before continuing cell cycle and the second

checkpoint additionally controls that DNA is properly replicated before starting

mitosis (M phase). At the end of mitosis, that is after cell division, progeny cell can

stop cell cycle in order to remain in an idle state G0 called quiescent phase. This

phase terminates when the cell starts a new cell cycle. In another particular case of

the cell cycle, the endoreplication allows the cell to terminate earlier the classical

behavior by stopping the cell cycle at the ¯rst step of mitosis (no cellular division):

Cell starts mitosis (prophase step) but it is stopped just before cell division. The cell
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directly goes towards the middle or end of the G1 phase without leading to the

development of two daughter cells. Therefore, the parent cell grows and its genome

doubles: This phenomenon leads to polyploidy.

In this paper, we use biological knowledge on the cell cycle in order to constrain

the parameters of our hybrid model. Because the hybrid model relies on a discrete

one, we determine parameters using both formal methods for discrete parameter

identi¯cation and measurements of time spent in di®erent phases.

The paper is organized as follows. We ¯rst de¯ne the hybrid modeling frame-

work based on Thomas' discrete one (Sec. 2). Then Sec. 3 is devoted to the in-

teraction graph of the cell cycle. Section 4 focuses on the identi¯cation of

parameters of both discrete and hybrid models. Section 5 sketches the results

obtained by simulations. Finally, we discuss the limits of our hybrid model of the

cell cycle in Sec. 6.

2. Hybrid Modeling Framework

2.1. Thomas' discrete framework

In 1973, Thomas designed a discrete framework well suited for modeling dynamics of

gene networks.1,2 Quantitative concentrations of gene products are abstracted into

qualitative levels. This abstraction is an acceptable simpli¯cation because real con-

centrations are not accurately measurable in vivo and the thresholds between

qualitative levels are chosen in a clever way.

The gene regulations are classically represented by an interaction graph where

vertices abstract gene products and arrows the regulations between them. When a

gene regulates several targets, there is no reason that the regulations take place

exactly at the same concentration. In such a case, we must consider more than two

(on/o®) abstract levels to represent the set of targets regulated by the gene. These

genes are said multivalued. The dynamics of a model is driven by kinetic parameters,

that give the qualitative variations for each gene product. From these parameters, a

state transition graph showing the behaviors of the system can be easily built.

Here we complete the ¯rst formalization3,8 of this approach using multiplexes,

that specify, via a logical formula, the cooperation or concurrency between two or

more regulators of the same target (see Fig. 1(a)). Vertices are called variables

because these latter can gather genes which are co-expressed.

De¯nition 1. A gene regulatory network (GRN) with multiplexes is a tuple N ¼
ðV ;M;E;KÞ satisfying the following conditions:

. V and M are disjoint sets, whose elements are called variables and multiplexes,

respectively.

. G ¼ ðV [M ;EÞ is a labeled directed graph such that:

(a) edges of E start from a multiplex and end to a variable.

(b) every variable v of V is labeled by a positive integer bv called the bound of v.
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(c) every multiplex m of M is labeled by a formula ’m belonging to the language

L inductively de¯ned by:

(i) If v belongs to V and s 2 N , then v5 s is an atom of L.
(ii) If ’ and  belong to L then :’, ð’ ^  Þ and ð’ _  Þ also belong to L.

. K ¼ fKv;!g is a family of integers indexed by v 2 V and ! � N�ðvÞ, where N�ðvÞ
is the set of predecessors of v in G (that is, the set of multiplexes m such that

m ! v is an edge of E). Each Kv;! must satisfy 04Kv;!4 bv.

De¯nition 2 (States, satisfaction relation and resources). Let N be a GRN

and V be its set of variables. A discrete state of N is a function � : V ! N such that

�ðvÞ4bv for all v 2 V . The satisfaction relation �N between a state � of N and a

formula ’ of L is inductively de¯ned by:

. If ’ is an atom of the form v5 s, then ��N ’ if and only if �ðvÞ � s.

. If ’ � : then ��N ’ if and only if � �N  .

. If ’ �  1 ^  2 then ��N ’ if and only if ��N  1 and ��N  2; and we proceed

similarly for other connectives.

For v 2 V , a multiplex m 2 N�ðvÞ is a resource of v at state � if ��N ’m. The set

of resources of v at state � is de¯ned by �ð�; vÞ ¼ fm 2 N�ðvÞj��N ’mg.
According to De¯nition 2, a resource is a multiplex whose formula is satis¯ed at

the current state. The parameter that gives the variation of variable v is the one

associated with the set of resources of v at the current state. We call focal point the

state whose coordinates are given by the parameters associated with each variable.

De¯nition 3 (State Graph). Let N ¼ ðV ;M ;E;KÞ be a GRN. The state graph of

N is the directed graph S de¯ned as follows: The set of vertices is the set of states of

N , and there exists an arc (called transition) � ! � 0 if one of the following conditions
is satis¯ed:

. for all variables v 2 V we have �ðvÞ ¼ Kv;�ð�;vÞ, and then � 0 ¼ �,

yx

(m1)

(m2)

x � 1

¬(y � 1)

(a)

0 1

y

x

1

0

(b)

10

y

x

0

1

(c)

Fig. 1. (a) Graphical representation of a gene regulatory graph with multiplexes. Dashed lines represent
participation of variables in multiplexes (not present in De¯nition 1). (b) State graph obtained with

parameters Kx;fg ¼ 0, Kx;m2
¼ 1, Ky;fg ¼ 0, Ky;m1

¼ 1. (c) Hybrid trajectories obtained by the following

celerities: Cx;fg;0 ¼ �1:5, Cx;fg;1 ¼ �4, Cx;fm2g;0 ¼ 1:5, Cx;fm2g;1 ¼ 4, Cy;fg;0 ¼ �3:33, Cy;fg;1 ¼ �3, Cy;fm1g;0
¼ 2:4 and Cy;fm1g;1 ¼ 3.
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. there exists v 2 V such that �ðvÞ 6¼ Kv;�ð�;vÞ, and

� 0ðvÞ ¼
�ðvÞ þ 1 if �ðvÞ <Kv;�ð�;vÞ;

�ðvÞ � 1 if �ðvÞ >Kv;�ð�;vÞ

(
and for all variables u 6¼ v; � 0ðuÞ ¼ �ðuÞ:

The ¯rst item of De¯nition 3 expresses a stable state: The focal point coincides

with the current state. The second item expresses when it is possible to go from a

state to another one: If the value of the variable v is lower (respectively greater) than

the parameter value associated with v, then this variable can increase (respectively

decrease) by one unit. Note that at each step, only one variable can evolve. The

construction of the state graph is illustrated on the toy example in Fig. 1(b).

The combinatorics of acceptable parameter values is exponential (because

the number of parameters associated with a variable depends on the number of

possible resources). In order to decrease this combinatorics, we admit the Snoussi's

condition9:

8 v 2 V ; 8!; ! 0 � N�ðvÞ; if ! 0 � !; thenKv;! 04Kv;!:

2.2. Hybrid modeling based on Thomas' modeling

De¯nition 4 introduces the hybrid gene regulatory networks (HGRN), a formalism

using Thomas' discrete states, and adding continuous variables allowing the han-

dling of time. The celerities can be viewed as abstract speeds.

De¯nition 4. A HGRN is a tuple N ¼ ðV ;M ;E; CÞ where V ;M ;E satisfy the ¯rst

two items of De¯nition 1 and where C ¼ fCv;!;ng is a family of real numbers indexed

by ðv; !;nÞ triplets where v 2 V , ! � N�ðvÞ and n is an integer such as 04n4 bv.

There is a strong connexion between the discrete Thomas formalism and our

hybrid formalism: The sign of the celerities can be deduced from the discrete para-

meters. The discrete parameters describe the focal point towards which the system is

attracted, and, because the celerities express the directions of trajectories, their signs

are constrained by the focal point. In Fig. 2, we represent a set of states that di®er

only by the value of a variable v and we assume that they share the same set of

resources ! for v. Let n ¼ 0 � � � 3 be the states of v. When Kv;! di®ers from 0 or bv,

0 1

Cv,ω,2 Cv,ω,3Cv,ω,0 Cv,ω,1

v

Kv,ω

32

(a)

Cv,ω,3Cv,ω,0 Cv,ω,1

v

Kv,ω

3210

Cv,ω,2

(b)

Fig. 2. Relationship between Thomas' parameters and celerities. Here, each discrete state is supposed

to have the same set of resources ! for a given variable v. (a) If Kv;! ¼ 1 then below this discrete

level, celerities are positive, above it, they are negative (see arrows). In the state where v ¼ 1, the celerity
is null. (b) Kv;! is supposed to be equal to 0 and the variable v is attracted towards 0: The celerity in the

discrete state where v ¼ 0, is negative or null.
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three cases have to be considered (Fig. 2(a)): If n is below Kv;!, we have Cv;!;n > 0, if

n is above Kv;!, we have Cv;!;n < 0 and if n is equal to Kv;!, we have Cv;!;n ¼ 0

because v has already reached the value towards which the variable is attracted. If

the parameter Kv;! equals 0 or bv (Fig. 2(b)), two choices can be made: One can

consider as previously that, when the value of v is equal to the parameter, the

variable no longer evolves (Cv;!;0 ¼ 0 or Cv;!;bv ¼ 0), or one can consider that

the variable is attracted towards the external boundary and in this case, for all n, the

signs of celerities Cv;!;n are constant.

De¯nition 5. Let us consider a HGRN N ¼ ðV ;M ;E; CÞ. A hybrid state of N is a

couple h ¼ ð�; �Þ where:
. � is a function of V in N such as 8v 2 V ; 04 �ðvÞ4 bv; � is called the discrete state

of h,

. � is a function of V in the real interval ½0; 1�. � is called the fractional part of h.

Here � represents the qualitative part of the current state, the fractional part

reveals the exact position ð�ðvÞÞv2V inside the discrete state. For each variable v 2 V ,

the set of hybrid coordinates of v fð�ðvÞ; �ðvÞÞj�ðvÞ 2 ½0; 1�; �ðvÞ ¼ ng can be inter-

preted as the real interval ½n;nþ 1�.
De¯nition 6. Let us consider a HGRN N ¼ ðV ;M ;E; CÞ and a hybrid state

h ¼ ð�; �Þ. The touch delay of v noted �hðvÞ is the time allowing v to reach the

border of the current discrete state. For each v 2 V , �h is the function of V in Rþ

de¯ned by:

. if Cv;�ð�;vÞ;�ðvÞ ¼ 0, then �hðvÞ ¼ þ1,

. if Cv;�ð�;vÞ;�ðvÞ > 0, then �hðvÞ ¼ 1��ðvÞ
Cv;�ð�;vÞ;�ðvÞ

,

. if Cv;�ð�;vÞ;�ðvÞ < 0, then �hðvÞ ¼ �ðvÞ
jCv;�ð�;vÞ;�ðvÞj.

De¯nition 6 gives the times necessary for the variables to reach a border of the

current discrete state. When experimental data allow us to derive the time spent in a

state, the touch delay leads to constraints on celerities.

We do not formalize here the whole dynamics associated with such a hybrid model

because the behavior is intuitive: Starting from a hybrid state h ¼ ð�; �Þ, the cele-

rities de¯ne a linear evolution inside the discrete state until touching a border. At the

border, several situations can appear. Let us consider that the trajectory reaches a

border separating two discrete states that di®er by the value of variable v.

(1) If the second discrete state can accept trajectories from the border (celerities of v

in both neighbor states have the same sign), then the trajectory goes into the

second discrete state and can be extended using celerities of the second one.

(2) If the second discrete state prevents trajectories to enter (celerities of v in both

neighbor states have opposite sign), then the trajectory cannot enter the second

discrete state and then slides along the border according to celerities of other

variables.
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If the reached border is an external one (�ðvÞ ¼ 0 and Cv;�ð�;vÞ;0 < 0 or symmetrically

v ¼ bv and Cv;�ð�;vÞ;bv > 0), the trajectory cannot cross the border and it slides as in

the previous case.

Figure 1(c) is a representation of the hybrid trajectories of the toy example.

Directional vectors represent the relative celerities in each discrete state.

3. Molecular Aspects of the Cell Cycle

3.1. Sketch of the cell cycle functioning

Cell proliferation realized by the cell cycle is essential for individual survival. It

ensures tissues renewal or cell growth. Mitosis is a biological phenomenon giving rise

to two daughter cells starting from a unique cell. The o®spring have the same

characteristics than parent cell. The cell cycle is classically divided into four phases

called respectively G1, S, G2, and M, which come one after another, leading to cell

division, see Fig. 3(a). Between G1 and S and between G2 and M, there exist two

checkpoints: If conditions are not satis¯ed, the cell cycle stops and there is no cell

division.

From a molecular point of view, the cell cycle is mainly controlled by complexes

made of a Cyclin and a kinase of the family Cdk,10 see Fig. 3(b):

(1) The cell cycle starts when entering into G1 phase depending on growth factors

present in the cell. During this phase, the cell prepares replication and increases

its size. The growth factors stimulate the Cyclin D/Cdk4-6 complex, ensuring

the activation of Cyclin E/Cdk2. This last complex allows the cell cycle to pass

G1/S checkpoint11 (veri¯cation of the non-damage of DNA).

Cyc. E / Cdk2

Cyc. A / Cdk2

Cyc. B / Cdk1

S

G1

G2

M

G0

Cyc. D / Cdk4−6

Endoreplication

G2/M checkpoint

G1/S checkpoint

(a)

p27

Cyc. D / Cdk4−6 p16GF

Skp2

p21

CAK

Chk1/Chk2

G1

G1/S

S

G2

G2/M

M

−

+
−

Cdc20

POLO K

Wee1

E2F

Cyc. A / Cdk2 

Cdh1

pRB

−

Cdc25 B ou C

+

−

−

−

+ +

+

Cyc. B / Cdk1 
−

−
+−

−

−+
Cyc. E / Cdk2 

+

−

−

−
−

−
−

− −

−

−
+

−

−
+

+ −

(b)

Fig. 3. (a) Cell cycle phases. (b) Molecular aspects of cell cycle.
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(2) During S phase, Cyclin A/Cdk2 is indirectly stimulated by Cyclin E/Cdk2. Then

the cell continues to grow and its centrosome is replicated.

(3) During G2 phase, cell prepares its division and achieves replication: The Cyclin

A/Cdk2 activates Cyclin B/Cdk1 so that it passes through the G2/M checkpoint

(veri¯cations of non-damage of DNA and ending of replication).

(4) The M phase represents the steps of mitosis to make two daughter cells. In

particular, a surveillance mechanism exists which recognizes the kinetochores

attached on mitotic spindles that activates APC protein: The latter activates

proteins triggering the cleavage of sister chromatids (metaphase/anaphase

transition).

All these complexes are synthesized and degraded successively during a cell cycle, but

several complexes can be expressed simultaneously. These complexes are also stim-

ulated by kinases (Cdc25 or CAK complex) and they are inhibited by CKI (Cdk

Inhibitors like p21 or p27) or by kinases like Wee1. Even if the molecular interaction

map of the mammalian cell cycle is well known and rather large,12 here we focus on

essential components that regulate cell cycle.

In addition to the classical cell cycle, one observes a quiescent phase called G0

that is the state when cell neither divides nor prepares division. Cells can enter G0 at

the end of cell division, and then they do not proliferate. They can remain in the

quiescent phase from a few hours to several years.13 Then cells can re-enter into a new

cell cycle starting in G1 phase.

Endoreplication is also linked to cell cycle14: Cells can start mitosis without

¯nishing it. These cells duplicate their DNA (a cell with more than two copies of

its chromosomes is said polyploid) and their cytosols grow. In mammals, mega-

karyocytes making platelets in blood have 128 copies of their chromosomes.

3.2. A simpli¯ed 5-variable gene network

Our interaction graph modeling molecular aspects of cell cycle is inspired by a John

Tyson's model,15 which has been designed to represent mammalian or yeast cell cycle.

We add supplementary biological phenomena in order to get an interaction graph

speci¯c formammals, inwhichboth checkpoints and surveillancemechanismofmitosis

are taken into account. In Fig. 4, the simple multiplexes (with a unique input and a

unique output) are replaced by arrows labeled by a sign and a threshold. For example:

. The arrow from SK to A is labeled by þ2. It codes for the multiplex with formula

ðSK5 2Þ pointing towards A.

. The arrow from SK to En is labeled by �1. It codes for the multiplex with formula

:ðSK5 1Þ pointing towards En.

Our model di®ers from Tyson' model by the three following aspects:

. First, we include the CAK complex (Cyclin H/Cdk7) in SK: CAK is an activator

of Cyclin E/Cdk216 whose activation is necessary to pass the G1/S checkpoint.

J. Behaegel et al.
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Because CAK and Cyclin E/Cdk2 are both in SK, an autoregulation of SK

is added. Moreover, because Cyclin E activates Cyclin A (involved in A), SK

activates A. Knowing that CAK activates ¯rst Cyclin E/Cdk2 then Cyclin A/

Cdk2, the level of the autoregulation of SK is lower than the level of the acti-

vation of SK on A. We chose accordingly the thresholds: The autoregulation of

SK takes place at level 1 and the regulation of SK on A at level 2. Thus, SK is

multivalued.

. Secondly, in the Tyson's model, Cyclin A and Cyclin B are both represented by a

unique variable. We split these cyclin complexes because they act in di®erent

phases whose durations are di®erent.

. The last modi¯cation is the addition of the multiplex m: It describes, via a logical

formula, the conditions under which B is inhibited by EP and En. It is well known

that these variables, when simultaneously present, inhibit B17 (part ’r of the

formula). However, other biological knowledge points out that En inhibitors are

su±cient18 (part ’l of the formula). The formula of m can then be simpli¯ed: An

equivalent formula is :ðEn5 1Þ. Thus EP could be removed from the interaction

graph. Nevertheless, we decide to keep EP because the APCM protein acts during

the surveillance mechanism of mitosis19 which we want to represent.

4. Parameter Identi¯cation

4.1. Identifying discrete parameters from traces

SK is three-valued and the other variables are Boolean. The number of states is

24 	 3 ¼ 48. In the sequel, we note \abcde" the state where SK ¼ a, EP ¼ b, A ¼ c,

B ¼ d and En ¼ e. For example, the state ðSK ¼ 0;EP ¼ 0;A ¼ 1;B ¼ 0;En ¼ 0Þ is
denoted 00100. Thomas' dynamics is controled by 26 parameters (see Table 1).

We constrain the set of parameters using a \genetically modi¯ed" Hoare logic.20

Classical Hoare logic for imperative programs has been introduced to prove cor-

rectness of programs. Hoare introduced the notation fPgpfQg to mean \If the

EPB

En

A

− 1

− 1

− 1 − 1 + 1

+ 1

− 1

multiplex (m)

SK

+ 1 + 1+ 2 + 1

¬(En � 1
︸ ︷︷ ︸

ϕl

∨ (EP � 1 ∧ En � 1)
︸ ︷︷ ︸

ϕr

)

Entity Proteins and complexes
represented in the variable

SK Cyclin E/Cdk2, Cyclin H/Cdk7
A Cyclin A/Cdk1
B Cyclin B/Cdk1
En APCG1 , CKI (p21, p27), Wee1
EP APCM , Phosphatases

Fig. 4. A simpli¯ed 5-variable gene network of the mammalian cell cycle. APCM is a complex involved in

surveillance mechanism in order to enter into anaphase (third step of mitosis). The combined e®ects of the
APCG1 , p27, and Wee1 inactivate Cdk1, Cdk2, Cdk4, and Cdk6.
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assertion P (precondition) is satis¯ed before performing the program p and if the

program terminates, then the assertion Q (postcondition) will be satis¯ed after-

wards." This constitutes de facto a speci¯cation of the program under the form of a

triple, called Hoare triple.

Here, we view an experimental trace of the gene network as a program. The

elementary instructions of this \program" are the observed transitions in the state

graph of the gene network: An assignment of the form x :¼ xþ 1 or x :¼ x� 1

corresponds to an actual observation at this time of the experiment, where the gene x

has increased (which we note x+ for simplicity), or respectively decreased (which we

note x�). Such an observation tells us that there is a transition somewhere in the

state graph where gene x has changed its abstract expression level.

The ¯rst constraints are deduced from the classical behavior of the cell cycle: Its

cyclic behavior starts from 00001, goes through a sequence of transitions and goes

back to 00001. Both precondition and postcondition are then the constraints de¯ning

the state 00001. We have to determine the program corresponding to the sequence of

transitions. Although the transitions between phases are known, the precise order of

transitions inside a same phase is not. This leads us to consider 12 hypothetical

sequences of transitions for the cell cycle. For lack of space, we consider only one of

them leading to the following Hoare triple:

SK ¼ 0

EP ¼ 0

A ¼ 0

B ¼ 0

En ¼ 1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
SKþ; SKþ; En�;Aþ; SK�; SK�;

Bþ;A�; EPþ; Enþ;B�; EP�

SK ¼ 0

EP ¼ 0

A ¼ 0

B ¼ 0

En ¼ 1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

Table 1. Constraints on discrete parameters. By abuse of notation, and because

simple multiplexes (with a unique input and a unique output) are replaced by a
labeled arrow, resources can be either multiplexes or variables.

Parameter Parameter Parameter Parameter

KSK;fg ¼ 0 KB;fg ¼ 0 KA;fg ¼ 0 KEn;fg ¼ 0

KSK;fAg > 0 KB;fAg ��� KA;fEng ¼ 0 KEn;fAg ¼ 0

KSK;fSKg ¼ 0 KB;fmg ��� KA;fBg ��� KEn;fSKg ���
KSK;fA;SKg ¼ 2 KB;fA;mg ¼ 1 KA;fSKg ��� KEn;fEPg ���

KA;fEn;Bg ��� KEn;fA;SKg ���
KEP;fg ¼ 0 KA;fEn;SKg ��� KEn;fA;EPg ���
KEP;fBg ¼ 1 KA;fB;SKg ��� KEn;fSK;EPg ���

KA;fEn;B;SKg ¼ 1 KEn;fA;SK;EPg ¼ 1
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Using the genetically modi¯ed Hoare logic,20 we obtained 13 exact values of

parameters, and one inequality (KSK;fAg > 0), see Table 1. Among the 34 	 222 ¼
339; 738; 624 possible parameter valuations, only 213 ¼ 8192 valuations satisfy the

constraints.

Other constraints can be deduced from experimental timing properties, which

cannot be used in the purely discrete modeling framework of Thomas. So, we switch

to our enriched hybrid modeling framework to take bene¯t of time measures.

4.2. Determining celerities of hybrid models from temporal traces

According to De¯nition 4, there are 56 celerities. Among them, six celerities are

useless because the resources and the state are incompatible: For instance CSK;fSKg;0
applies to states where �ðSKÞ ¼ 0 and SK is a resource of itself. However, when

�ðSKÞ ¼ 0, SK cannot be a resource of itself. Moreover, the sign of many celerities is

known from biological observations shown in Table 2 (the arrows give the sign of

associated celerities).

In order to constrain celerities, we consider that the cell cycle phase durations are

10, 8, 4, and 0.5 h for phases G1, S, G2, and M.21 The time spent in each of

qualitative states is approximated assuming that the duration of each phase is

uniformly distributed in each of its states. This hypothesis will have consequences

on the constraints on celerities. Adopting a reasoning way similar to the one of

Sec. 4.1 (using Hoare logic on discrete models), we determine precisely ¯ve accurate

points along the cell cycle: These ¯ve hybrid states allow us to deduce by De¯ni-

tion 6 relationships between time spent in some qualitative states and associated

celerities.

In the sequel, we suppose that Boolean variables are attracted towards the ex-

ternal boundaries because this hypothesis does not change the reachability proper-

ties. Assuming this and according to Sec. 2.1, the discrete parameters allow the

determination of the sign of the celerities (and conversely): If Kv;! ¼ 1, then

Cv;!;n > 0; If Kv;! ¼ 0, then Cv;!;n < 0. Thus, we get the sign of six celerities leading

to Table 3, which contains 38 constraints on celerities.

Table 2. Biological observations of the ¯ve variables during cell cycle. The ¯rst row represents the
sequence of discrete states (see Sec. 4.1) crossed by the classical behavior of the cell cycle.

00001 10001 20001 20000 20100 10100 00100 00110 00010 01010 01011 01001

G1 S G2 M

SK % % Max Max & & Min Min % % % %
EP Min Min Min Min Min Min Min % % Max Max &
A Min Min Min % % Max Max & & & Min Min

B Min Min Min % % % % % Max Max & Min

En Max & & Min Min Min Min Min % % Max Max
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4.3. Additional biological observations

To determine parameters controling behaviors outside of the classical cell cycle be-

havior, we have to take into account alternative observed trajectories, in particular

about the quiescent phase and the endoreplication phenomenon.

(1) We suppose KB;fAg ¼ 0 because EP and En inhibitors of B outweigh the acti-

vator A (A is ressource of B and m is not). Moreover, maintaining mitotic

inhibitors involved in EP prevents the continuation of the cell cycle. Thus, it is

assumed that the presence of EP keeps the activity of En: KEn;fSK;EPg ¼
KEn;fA;EPg ¼ KEn;fEPg ¼ 1 (using also Snoussi's condition).

(2) The endoreplication begins in mitosis and ends in G1 without going through cell

division. Because endoreplication skips the ¯rst step of G1 and the duration of

G1 is shortened,14 we deduce that the trajectory going from mitosis (skipping

cell division) to the ¯rst step of G1 is forbidden, leading to the constraint

CA;fSK;Eng;0 < 0.

(3) The quiescent phase is reachable from the end of mitosis. Because we can stay in

G0 for a long time, the model has to present a cyclic behavior inside the G0

Table 3. Constraints on celerities.

En CEn;fg;0 < 0 EP CEP;fg;0 < � 3
�tG1

CEn;fg;1 < 0 CEP;fg;1 ¼ � 3
�tM

CEn;fAg;0 < � 4
�tS

CEP;fBg;0 ¼ 1
�tG2

CEn;fAg;1 ¼ � 3
2
�tG1

CEP;fBg;1 > 3
�tM

CEn;fSKg;0 < 0 B CB;fg;0 < � 3
�tM

CEn;fSKg;1 < 0 CB;fg;1 ¼ � 3
�tM

CEn;fA;SKg;0 < 2
�tG2

CB;fmg;0 < 4
�tS

CEn;fA;SKg;1 > 0 CB;fmg;1 > 2
�tG2

� CB;fA;mg;1

CEn;fA;EP;SKg;0 ¼ 6�3
�tG2
CEn;fA;SKg;0
2
�tM

CB;fA;mg;0 ¼ 4��tS
CB;fmg;0
3
�tS

CEn;fA;EP;SKg;1 > 3
�tM

CB;fA;mg;1 < 2
�tG2

A CA;fg;0 < � 6�ð3
�tG2þ2
�tM Þ
jCA;fEng;0 j
2
�tM

SK CSK;fg;0 < � 4
�tS

CA;fg;1 < 0 CSK;fAg;0 ¼ 6
2
�tG1þ6
�tMþ3
�tG2

CA;fBg;0 < 0 CSK;fSKg;1 ¼ � 4
�tS

CA;fBg;1 < 0 CSK;fSKg;2 ¼ � 4
�tS

0 > CA;fEng;0 > � 2
�tG2

CSK;fA;SKg;1 ¼ 3
�tG1

CA;fEng;1 ¼ � 2
�tG2

CSK;fA;SKg;2 > 3
�tG1

CA;fB;Eng;0 > 0

CA;fB;Eng;1 > 4
�tS

� CA;fB;En;SKg;1 > 0

CA;fB;SKg;0 < 0

CA;fB;SKg;1 < 0

CA;fB;En;SKg;0 ¼ 4
�tS

0 < CA;fB;En;SKg;1 < 4
�tS

J. Behaegel et al.

1640001-12



phase. Among the two possible cyclic sequences of transitions inside G0 states,

only one is compatible with previous constraints.

These remarks allowed us to ¯nd the set of useful celerities and the 26 discrete

parameters of our model (see Table 4). Note that the discrete parameters do not

make all regulations of Fig. 4 functional because the discretization is too rough to

keep each regulation. At the opposite, each regulation is visible in terms of celerities.

5. Simulations

Several simulations were performed with parameters (celerities and initial states)

picked to satisfy constraints of Sec. 4.2:

. Equality constraints give exact values of celerities.

. Inequality constraints lead to choices: For each constraint of the form C < 0 (re-

spectively C > 0), we choose C ¼ �1 (respectively C ¼ 1). For each constraint of

the form 0 < C < k (respectively 0 < k < C) where k is a constant, we choose C ¼
0:5	 k (respectively C ¼ 1:5	 k). For negative celerities, we choose symmetrically

their exact values by multiplying the constant of inequalities by 0:5 or 1:5.

. The chosen initial state is one of the hybrid states determined in Sec. 4.2.

Figure 5 shows the traces for such a simulation: After 22.5 h (simulated time), the

simulation goes back exactly to the initial hybrid state from which the same behavior

Table 4. Discrete parameters.

Parameter Parameter Parameter Parameter

KSK;fg ¼ 0 KB;fg ¼ 0 KA;fg ¼ 0 KEn;fg ¼ 0

KSK;fAg ¼ 2 KB;fAg ¼ 0 KA;fEng ¼ 0 KEn;fAg ¼ 0

KSK;fSKg ¼ 0 KB;fmg ¼ 1 KA;fBg ¼ 0 KEn;fSKg ¼ 0

KSK;fA;SKg ¼ 2 KB;fA;mg ¼ 1 KA;fSKg ¼ 0 KEn;fEPg ¼ 1

KA;fEn;Bg ¼ 1 KEn;fA;SKg ¼ 1

KEP;fg ¼ 0 KA;fEn;SKg ¼ 0 KEn;fA;EPg ¼ 1

KEP;fBg ¼ 1 KA;fB;SKg ¼ 0 KEn;fSK;EPg ¼ 1

KA;fEn;B;SKg ¼ 1 KEn;fA;SK;EPg ¼ 1

0 5 10 15 20 25
Time (hour)

0

0,5

1

1,5

2

2,5

3

G1 1GM2GS

A
B
En
EP
SK

Fig. 5. A simulation representing the classical cell cycle behavior.
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can be repeated in¯nitely. This cyclic behavior corresponds to the classical cell cycle

trajectory. Moreover, it is a limit cycle because, when starting from a neighborhood

of this cyclic trace, the limit cycle is reached again after a su±cient time.

Other simulations showed that endoreplication and remaining in the quiescent

phase are also possible in the model (results not shown for lack of space).

6. Conclusion

We developed in this paper a hybrid formalism which is well suited for modeling

time-dependent biological phenomena such as the mammalian cell cycle. Indeed, we

built a model which exhibits the limit cycle representing the classical cell cycle, the

endoreplication, and the quiescent phase. This has been made possible because of the

wise choice of variables, in particular with the split of the cyclin complexes. The

parameter choice was aided by the determination of constraints, but exact values

rely on hypotheses (constants for exact values of celerities, equidistribution of time

on all qualitative states within a phase). This model constitutes, to our knowledge,

the ¯rst hybrid model of the cell cycle, which provides the proof of concept of our

computer-aided method for parameter identi¯cation.

Our simulations did not allow us to observe traces remaining a long time in the

quiescent phase, this constitutes the main limitation of our model. We have now to

accurately tune the parameter values in order to get a model presenting such a trace

but we did not ¯nd any parameter valuations satisfying this speci¯cation. If no

valuation of parameters is compatible with a long stay in the quiescent phase, to

improve our hybrid model, we could also make the hypothesis of a regulator which

would modify the celerities during this phase.

Moreover, the model presented here is based on only one of the 12 possible

sequences of transitions of the cell cycle (remember that the exact order of the

sequence of transitions is not known). The next time-consuming task is now to take

into account the other sequences which would lead to other possible parameter

constraints and then to other hybrid traces. More generally, we have to handle a

large set of possible sequences of transitions. Hopefully, this di±culty can be over-

stepped because our hybrid modeling framework can be assisted by computer-aided

methods to determine the set of parameters. Thus, our ongoing work is also to

develop an automation of the building of constraints on celerities and to study the

predictability of our hybrid model.

Finally, a long term objective is to make a coupling of our cell cycle model with a

model of the circadian clock,22 in order to apprehend the interactions between these

cycles whose functioning plays an important role in oncology.23
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