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Abstract

The development of in silico tools able to predict bioactivity and toxicity of chemical

substances is a powerful solution envisioned to assess toxicity as early as possible. To

enable the development of such tools, the ToxCast program has generated and made

publicly available in vitro bioactivity data for thousands of compounds. The goal of the

present study is to characterize and explore the data from ToxCast in terms of Machine

Learning capacity. For this, a large scale analysis on the entire database has been

performed to build models to predict bioactivities measured in in vitro assays. Simple

classical QSAR algorithms (ANN, SVM, LDA, Random Forest and Bayesian) were first
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applied on the data, and the results of these algorithms suggested that they do not seem

to be well suited for datasets with a high proportion of inactive compounds. The study

then showed for the first time that the use of an ensemble method named "Stacked

generalization" could improve the model performance on this type of data. Indeed,

for 61% of 483 models, the Stacked method led to models with higher performance.

Moreover, the combination of this ensemble method with an applicability domain filter

allows one to assess the reliability of the predictions for further compound prioritization.

In particular we showed that for 50% of the models, the ROC score is better if we do

not consider the compounds that are not within the applicability domain.

Introduction

Chemical risk evaluation is aiming at defining the safe conditions of use of chemicals for

both human health and the environment. To do so, the various hazards of the compounds

are determined in a series of in vitro assays and in vivo studies using rodent and non-rodent

laboratory animals. However, these in vivo studies are expensive with regard to time, money

and animals, and are not adapted for the evaluation of thousands of chemicals. Therefore,

alternative solutions were envisioned to assess, as early as possible, the potential toxicity of

compounds and to prioritize them for further testing. The Tox21 partnership between the

US Environmental Protection Agency (US EPA), the National Institutes of Health and the

National Toxicology Program proposed to address in an eponymous project these issues by

using high-throughput screening (HTS) in vitro assays to determine bioactivities of selected

chemical substances.1 This project was expected to help in characterizing pathways of tox-

icity based on chemical bioactivity profiles, in prioritizing compounds for further targeted

toxicity testing, and in developing predictive models for toxicity.2 The ToxCast program led

by the EPA in response to the Tox21 suggestions is one of the initiatives which generated

public data regarding bioactivity of more than 8000 compounds tested in up to 900 HTS

assays.3 The main goals of the ToxCast project were to identify in vitro assays that were
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relevant to predict in vivo toxicity, to develop predictive models based on these assays, and

to use these models to prioritize compounds for further screening and testing.4 Since the be-

ginning of ToxCast in 2007, several computational methods such as Machine Learning (ML)

and other statistical analysis have been proposed in order to establish relationships between

in vitro data and in vivo effects. For example, Judson5 used a set of in vitro assays from

ToxCast to develop classifiers of in vivo toxicity using different ML methods. He showed

that some methods are more appropriate than others for classifying the available in vivo

toxicity data, which was largely derived from marketed compounds which tend to be of low

toxicity and thus highly imbalanced. Also, Martin6 and Sipes7 used Linear Discriminant

Analysis algorithm to predict in vivo reproductive toxicology and developmental toxicology

respectively, based on specific in vitro assays. Other approaches tried to link bioactivity

to in vivo outcomes using statistical methods such as correlation,4 unsupervised multivari-

ate analysis8 or linear additive model.9,10 Finally, in vitro assays have been combined with

chemical structures to predict in vivo toxicity in ML models.11,12 Nonetheless, since HTS

programs can also be costly and time-consuming, there is a real interest in developing in

silico methods, in particular, Quantitative Structure-Activity Relationship (QSAR) models

predicting compound activity based on the chemical structure information,13 to limit the use

of in vitro assays.14,15 Such QSAR models are used by regulatory agencies for risk and safety

assessment16 and the Organization for Economic Cooperation and Development (OECD)

proposed five principles to be met by a QSAR model to be used for regulatory purposes.17

These principles require: (1) a defined endpoint, (2) an unambiguous algorithm, (3) a defined

domain of applicability, (4) appropriate measures for model evaluation and (5) a mechanis-

tic interpretation, if possible. Some QSAR models have already been developed to predict

bioactivity measured in HTS assays for specific endpoints.18,19 The Tox21 challenge in 2014

specifically highlighted the need for such in silico tools by looking for good models which

predict the activation of nuclear receptor and stress response pathways.14 In this paper we

explore how ML can be applied to ToxCast data, and what the optimum uses of those data
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are in order to build the most accurate classifiers based on chemical structural information.

Since we did not want to focus on a specific endpoint, we performed a large scale analysis

using all the available data which, to our knowledge, has never been done before. Indeed,

several QSAR models were built to predict bioactivity measured in numerous assays using

different types of molecular descriptors and different learning algorithms. As classical QSAR

methods are sometimes not well suited for toxicity data, we evaluated if the combination

of different algorithms proposed by ensemble techniques could lead to more robust models.

Here we focus on the Stacked generalization technique20 applied to toxicological data and

show that it results in an improvement of the model performance. Also, in order to assess

the relevance of the predictions the use of applicability domain (AD), as proposed by the

OECD principle 3 was evaluated. To our knowledge, this is the first time that Stacked

generalization method combined with applicability domain is applied to toxicological data.

Methods

ToxCast data

Both chemical structure and bioactivity data used in this work come from the ToxCast

database and are publicly available on the US EPA website1. Overall, we retrieved 8599

unique substances, with information for each substance corresponding to a chemical name,

molecular formula, CAS registry number (CASRN), and Simplified Molecular Input Line

Entry Systems (SMILES) code.

Bioactivity data corresponding to the results of 1192 HTS in vitro assays was provided as

a hit matrix with values of 0, 1, -1 and NA for each pair of compound/assay respectively

meaning “inactive”, “active”, “undetermined” and “non assigned”. A compound is determined

as “active” in an assay if the half maximal activity concentration (AC50) could be measured.
1https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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Chemical descriptors computation

To build QSAR models, we computed chemical descriptors for all the compounds using

their SMILES representation and two different software: PaDEL-Descriptor21 which is open

source, and Pipeline Pilot22 developed by Dassault Systèmes BIOVIA. We computed 1D

and 2D descriptors that respectively encode: (1) chemical composition such as in particular

fragment counts and molecular formulae, and (2) topology determined from the molecular

graph (number of rotable bounds, number of rings).

With PaDEL-Descriptor, we computed 1444 descriptors; in order to keep all of them and

study their relative importance for ML, we chose to remove compounds for which at least

one descriptor value could not be computed. With Pipeline Pilot, 164 descriptors were

computed. This constitutes the first step of the data processing workflow, see Figure 1-A.

The full lists of descriptors are available in supplementary materials.

From ToxCast raw data to processed datasets

We built one dataset for each ToxCast bioassay, characterized by molecular descriptors as

input and the assay result as output. A total of 2384 datasets were generated (1192 with

Pipeline Pilot descriptors and 1192 with PaDEL descriptors), corresponding to the 1192

ToxCast in vitro assays. For each dataset, we removed the compounds for which the assay

value was not available (NA or -1) in order to build classifiers that can predict the positive

or negative results of the assays Figure 1-A. As a consequence, 200 datasets containing only

NA or -1 values were discarded. Finally, we ended up with 2184 datasets (1092 for each

types of descriptors). Then, in order to discard irrelevant descriptors, we removed the ones

that had a variance close to 0, and to limit redundancy in the dataset, we removed one of

two correlated descriptors using a threshold of 0.8. Moreover, we kept only datasets that

include at least 10 members of each class (i.e. 10 “active” compounds and 10 “inactive” ones)

and that have at least 5 times more observations than descriptors. Finally, we ended up

with 515 datasets with Pipeline Pilot descriptors and 414 datasets with PaDEL descriptors,
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and, respectively denoted PLP datasets and PaDEL datasets (all the datasets are available

in the supplementary material).

Original 
dataset

8599 unique 
compounds with
SMILES
One in vitro assay

Chemical 
descriptors
computation

PLP (164)
PaDEL (1444)

Compounds and 
descriptors
selection

Remove
compounds with
NA or -1 values
Variance close to 0
Highly correlated 
descriptors

Criteria
verification

At least 10 
compounds in 
each class? 
At least 5 times 
more compounds 
than descriptors? 

Final 
dataset

A

Predicted
output

80%

20%

Learning
Stratified

cross-validation
Training set

Test set

Final dataset

Internal
performance

Model
External

performance

B

Input

Figure 1: Workflow of the data processing and learning
procedure for one in vitro assay. A – Data processing:
For each in vitro assay, the original dataset contains the list of
tested compounds with their structure from which chemical de-
scriptors are computed. The compounds for which the reported
value for the assay is NA or -1 are removed and the chemical
descriptors are then selected according to their variance and cor-
relation. Only datasets containing at least 10 compounds of the
two classes (positive and negative) and at least 5 times more com-
pounds than descriptors are kept. They correspond to the final
datasets. B – Learning procedure: the dataset obtained in
A is split into training set (80%) and test set (20%). The training
set is used to learn the model using one of 5 different algorithms
and a stratified 5-fold cross-validation is performed to get the in-
ternal performance of the model. The test set is then used to
compute external performance of the model.

Simple QSAR classifiers

The learning procedure applied to each dataset is described in Figure 1-B.

We built ML models for all the datasets obtained previously using five supervised ML al-

gorithms. Three algorithms (single hidden layer Artificial Neural Network (ANN), Support

Vector Machine (SVM) and Linear Discriminant Analysis (LDA)) were provided by the R

packages NNET e1071, and MASS.23–25 Two other algorithms (Forest multi-tree recursive

partitioning classifier,26 denoted hereafter as RPForest, and two-class Laplacian-modified

Bayesian classifier,27 denoted Bayesian) were implemented in Pipeline Pilot. For the 5 algo-

rithms, we used the default parameters of the Pipeline Pilot machine learning collection.
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We performed a stratified 5-fold internal cross-validation for each ML algorithm. To guaran-

tee that each fold contained at least one member of each class of molecules, we first separated

active and inactive molecules and the five folds were generated by randomly picking 20%

from each class. For external validation, each dataset was randomly split into a training

set (80%) and a test set (20%). The process was repeated 5 times and the average of the

performance metrics was computed. Note that we chose to use random splitting by common

use but other alternatives exist such as temporal split28 or chemical clustering split.29

We used four metrics to evaluate the classification performance of the models, where T

P (resp. TN) is the number of true positive (resp. negative), and F P (resp. FN) is

the number of false positive (resp. negative): Sensitivity (TP/(TP + FN)), Specificity

(TN/(TN + FP )), Balanced Accuracy, BA for short ((Sensitivity + Specificity)/2) and

ROC score (area under Receiver Operating Characteristic curve) where ROC curve is the

plot of Sensitivity against (1− Specificity).

In order to perform 2-class predictions, the predicted continuous number that was returned

by the algorithm was transformed into a binary one according to a threshold. There are

several ways to determine this threshold and it has been shown that the traditional default

method (threshold = 0.5) was unreliable for most of the datasets.30 One of the best approach

is to maximize the percentage of correctly classified observations. We chose an equivalent ap-

proach which is based on the minimization of the balanced error rate: 11
2

(
TP

TP+FN
+ TN

TN+FP

)
.

Stacked Generalization

The Stacked generalization technique is an ensemble method which consists of the training of

a learning algorithm that combines the predictions of several other algorithms. We randomly

split each dataset into one training set (Train 1) and two test sets (Test 1 and Test 2) in the

following proportions: 60%, 24% and 16% (see ovals in Figure 2). On Train 1, we trained a

Bayesian and an RPForest algorithm to build models B1 and RP1 and we tested them on

Test 1 to obtain predictions P1-b and P1-rp (see the blue workflow in Figure 2). We then
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used these predictions P1-b and P1-rp as input descriptors with the outputs of Test 1 to train

a so-called Stacked model. We chose a naïve Bayesian algorithm to build the final Stacked

models (orange workflow of Figure 2) due to its performance and its ease of use in particular

compared to Random Forest algorithm. We performed a 5-fold cross-validation repeated

three times to find the best cutoff for the Stacked model. In some cases, it was impossible

to compute a 5-fold cross-validation because of a small number of active compounds in Test

1: in these cases, the whole dataset was removed. Finally, we evaluated external predictive

performance of the Stacked model on Test 2 (orange workflow of Figure 2). We applied this

workflow for the 515 PLP datasets and generate 483 Stacked models. In order to compare

the performance of the Stacked model with the simple QSAR classifiers, we merged Train 1

and Test 1 to train simple Bayesian and Random Forest learners and build models B2 and

RF2 (see red workflow in Figure 2), and computed their external predictive performance on

Test 2.

Train 1 
(60%)  

Test 1 
(24%) 

Test 2 
(16%) 

B1 

RP1 

B2 + RP2 

Apply to  

Stacked 
(Bayesian) 

Classifier  

Data 

Legend: 

Predictions from 
B2 and RP2  

Predictions 
from Stacked 

Apply to  

Apply to  Apply to  

Output 
predictions 

Output 
predictions 

Output 
predictions 

Prediction
s P1-b 

Prediction
s P1-rp 

Figure 2: Principle of the Stacked generalization method.
Blue Workflow: A Bayesian B1 and a RPForest RP1 models
are built using Train 1 (60% of the dataset). The models are then
used to make predictions P1-b and P1-rp on Test 1.
Orange workflow: the predictions P1-b and P1-rp are used to
train a Stacked Bayesian model (Stacked).
Red workflow: By merging Train 1 and Test 1 to train a simple
Bayesian model B2 and simple RPForest model RP2, we are able
to compare performance of B2, RP2 and the Stacked model on
Test 2.
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Applicability Domain

We used two different approaches to compute the AD.

In the first approach, we performed a principal components analysis (PCA) directly applied

on the chemical descriptors (1D and 2D) of the compounds used in the training set in order to

reduce the space to only a few principal components (PCs). Basically, the PCs are computed

to explain a minimum of 80% of the variance or a minimum of 10 components if 80% of the

variance is explained with fewer components. Therefore, the number of principal components

depends on the datasets. This allowed computation, for each PCA descriptor, of a range

of acceptable values, as defined by the minimal and maximal PCA values observed in the

training set. Then for a new compound, if the value of at least one of its PCA descriptors

was out of the previously computed range, the compound was flagged “out of domain”. For

each model we computed the average performance obtained on an external test set using

either all the compounds or only the compounds that are in the AD (note that when the

test set had only one active compound in the AD, the dataset was removed, leaving only 487

datasets).

In the second approach, we computed the average Euclidean distance from each molecule

of the test set to its three closest compounds from the training set.31 After sorting the

compounds in ascending order of the average distance, we first cut the test set into blocks

of 50 compounds. We then counted the number of good predictions in each of these disjoint

blocks.

Results and discussion

Datasets are imbalanced

The total number of compounds in the PLP datasets ranged between 1115 and 7810 with

average and median values of 3054 and 3362 compounds respectively (Figure 3-A). Overall

9

Page 9 of 31

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



58% of the datasets (300/515) had less than 10% active compounds (positive in the in vitro

assay) (Figure 3-B). Regarding PaDEL datasets, their size varied from 1391 to 7516, and

there was no dataset with more than 50% active compounds (data not shown). Moreover,

66% of the datasets (275/414) had less than 10% active compounds. Based on a binary

classification of the assay values, the datasets were highly imbalanced in favor of inactive

compounds (negative in the in vitro assays).
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Figure 3: A) Distribution of the 515 PLP datasets accord-
ing to the number of compounds in the datasets. B)
Distribution of the 515 PLP datasets according to the
percentage of active compounds in the datasets. 58% of
the datasets (300/515) have less than 10% of active compounds.
Similar observations are made for the PaDEL datasets (data not
shown).

Simple QSAR models

Performance of 5 simple supervised learning methods

We trained five ML algorithms on the two types of datasets (PLP and PaDEL) and the mean

of each performance metric (Sensitivity, Specificity, ROCscore and BA) was computed

over the 515 and 414 datasets. Results are presented in Figure 4. For the two types of

descriptors and the five algorithms, the four metric means were between 0.6 and 0.73 (except

ANN-PaDEL Sensitivity which was at 0.52) and standard deviations were ranging between

0.06 and 0.19. Overall these results indicate that all algorithms performed similarly on this
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type of data and have performance which are below our expectations.

0.4

0.5

0.6

0.7

0.8

0.9

ANN Bayesian LDA RPForest SVM

A − PaDEL descriptors

0.4

0.5

0.6

0.7

0.8

0.9

ANN Bayesian LDA RPForest SVM

B − PLP descriptors

Metrics

ROC_AUC
Sensitivity
Specificity
Balanced accuracy

Figure 4: Comparison of performance metrics (ROCscore,
Sensitivity, Specificityand BA) after internal cross-
validation for the 5 ML algorithms. A- Models using
PaDEL descriptors and all datasets (414). B- Models
using PLP descriptors and all datasets (515).There is no
difference between the 5 algorithms used, both for PaDEL and
PLP.

As we already showed that the data are imbalanced, we considered if this characteristic

can explain these results. For all algorithms, plots of BA obtained for each dataset ac-

cording to the percentage of active compounds display a “funnel” shape with BA variability

descreasing when datasets were more balanced (Figure 5). In particular, we observed lower

BA variability for datasets containing at least 10% of compounds in the minority class. For

datasets with low percentage of positives, most of the BA variability BA is due to the variabil-

ity of the Sensitivity, which depends on the number of positive compounds in the datasets:

for a same percentage of positive compounds, the larger the number of positives, the higher

the Sensitivity. We obtained similar results with PaDEL datasets (data not shown).

Figure 6 presents the variance of ROCscore obtained with RPForest algorithm trained
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Figure 5: Balanced accuracy according to percentage of
positive compounds in PLP datasets for the 5 ML algo-
rithms. BA is getting stable when percentage of positive com-
pounds in datasets increases. For datasets with low percentage of
positives, most of the BA variability is due to the variability of the
Sensitivity, which depends on the number of positive compounds
in the datasets.

on PLP datasets according to the percentage of active compounds in the datasets. For each

different range of percentage of positive compounds, we computed the variance of ROCscore

over all the datasets having a percentage of positive compounds in that range. Figure 6 shows

that the variance of the ROCscore tends to decrease when datasets are more balanced. We

also see a cut-off: when datasets contain at least 10% of positive compounds, the associated

variance is always below 0.0065. Similar results were obtained with PaDEL datasets (data

not shown).
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Figure 6: Variance of ROCscore according to the percent-
age of positive compounds after internal cross-validation
for Random Forest models based on PLP descriptors.
Variance is lower than 0.0065 when percentage of positive com-
pounds is greater than 10%.

These results suggest that the imbalanced nature of datasets has a negative impact
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on model performance and that these classical learning methods are not suitable for highly

imbalanced datasets. This finding is in agreement with previous work from different domains

showing that most classifier algorithms assume a relatively balanced distribution of the

data.32–35 Moreover, the models with very few positive compounds will be characterized

by a limited applicability domain regarding this class of compounds. Consequently, a new

positive compound will have a low chance to be within the applicability domain and its

associated prediction will be of low confidence. In order to be able to follow principle 3 of

the OECD recommandations about the use of QSAR modelling for regulatory purposes and

based on the fact that our results are in line with previous published work, the datasets

containing less than 10% of compounds that belong to the minority class were excluded in

the following analysis.

Performance on more balanced datasets

When focusing on datasets containing at least 10% compounds in the minority class, we

ended up with 139 PaDEL and 215 PLP datasets. Figure 7 shows the means of each per-

formance metric over these datasets. The means of all metrics were between 0.63 and 0.75

and here again the results suggested that all the algorithms present similar performance

(BA around 0.68). Interestingly, standard deviations were lower than previously: BA stan-

dard deviation decreased in average from 0.07 to 0.04, Sensitivity from 0.16 to 0.10 and

Specificity from 0.14 to 0.09. In order to quantify the advantage of using more balanced

datasets, we performed a Student test: Table 1 shows the p-values of the t.test that com-

pared the mean of the 4 metrics between the datasets containing striclty less than 10% of

compounds of the minority class and the ones containing at least 10% of compounds, for the

5 algorithms and the 2 types of descriptors used. Most of the metrics means are significantly

different, meaning that the use of more balanced datasets has an impact on the models per-

formance. In particular, the Sensitivity is always significantly increased suggesting that the

use of more balanced datasets, and therefore more positive compounds in that case, helps in
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the detection of true positives. Overall, the same tendencies were observed with both types

of descriptors but PLP datasets contain fewer descriptors which confers several advantages.

They are generally easier to understand as they are related to well-known physico-chemical

properties such as molecular weight or solubility. Also, other advantages of building ML

models with fewer descriptors are decreased model complexity, reduced chances of overfit-

ting,36,37 and decreased computational time. Therefore, we made the decision to focus only

on PLP datasets for the rest of the study.
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ANN Bayesian LDA RPForest SVM

A − PaDEL descriptors

0.4
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Figure 7: Comparison of performance metrics (ROCscore,
Sensitivity, Specificity and BA) after internal cross-
validation for the 5 ML algorithms. A- Models using
PaDEL descriptors and datasets with at least 10 percent
of compounds in the minority class (139). B- Models us-
ing PLP descriptors and datasets with at least 10% of
compounds in the minority class (215). There is no differ-
ence between the 5 algorithms used, both for PaDEL and PLP.
Standard deviations get smaller when we keep datasets with at
least 10% of compounds in the minority class.

External validation

Figure 8 presents the average BA, Sensitivity and Specificity obtained after external vali-

dation for the 5 ML algorithms on all 215 PLP datasets. We observed that, except for the

Bayesian algorithm, Sensitivity was very low (under 0.4) and Specificity was high (greater
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Table 1: p-values of Student test performed on the 4 metrics for the 5 algorithms and 2 types of descriptors,
between the datasets that contain strictly less than than 10% of active compounds and the datasets that
contain at least 10% of active compounds. The p-values lower than 0.05 are in bold. Most of the metrics means
are significatively different meaning that the use of more balanced datasets has an impact on the models performance.

Method Descriptor type ROC AUC Balanced Accuracy Sensitivity Specificity
ANN PADEL 1.10× 10−4 9.06× 10−2 1.58× 10−4 1.15× 10−3

Bayesian PADEL 6.32× 10−7 5.96× 10−1 5.95× 10−4 2.00× 10−3

LDA PADEL 1.29× 10−13 4.85× 10−7 2.98× 10−9 9.03× 10−2

RPForest PADEL 2.40× 10−23 1.04× 10−15 1.70× 10−22 8.48× 10−4

SVM PADEL 8.76× 10−22 3.55× 10−13 3.85× 10−8 3.73× 10−1

ANN PLP 1.66× 10−7 1.20× 10−4 3.30× 10−13 7.59× 10−7

Bayesian PLP 2.11× 10−1 7.82× 10−2 2.55× 10−2 1.47× 10−4

LDA PLP 3.79× 10−5 1.69× 10−2 6.80× 10−4 1.79× 10−1

RPForest PLP 2.15× 10−8 9.39× 10−6 8.98× 10−10 5.69× 10−3

SVM PLP 6.71× 10−15 2.31× 10−10 1.46× 10−17 1.09× 10−4

than 0.8) which led to a BA around 0.6. Moreover, standard deviations of data obtained

with ANN, LDA, RPForest and SVM algorithms were large, and we were unable to draw

conclusions on the usefulness of this method based on these results. These external per-

formance make us think that the 4 ML methods are not able to build good models, even

when focusing only on datasets having at least 10% of compounds in the minority class. We

hypothesized that they were too sensitive to imbalanced datasets as Mazurowski38 showed

for neural networks. Indeed, Mazurowski performed a large scale analysis on simulated im-

balanced data and studied the impact of this characteristic on two neural network methods

(classical backpropagation and particle swarm optimization). He concluded that even a small

imbalance in the training set leads to a deterioration of the performance.

On the contrary the Bayesian algorithm seems to be more suited to imbalanced datasets since

BA, Sensitivity and Specificity are greater than 0.6 with smaller standard deviations.

Overall, our results suggest that a unique algorithm alone was not able to generate models

with sufficient performance.
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Figure 8: Comparison of performance metrics (sensitivity,
Specificity and balanced accuracy) after external valida-
tion for the 5 algorithms on PLP datasets with at least
10% of compounds in the minority class (215 datasets).
ANN, LDA, RPForest and SVM are not able to build good models
whereas Bayesian algorithm seems to be more suitable.

An ensemble technique: the Stacked generalization

The next step was to test if combining different types of algorithms would improve the results.

This approach has been widely studied and led to different approaches so-called "ensemble

techniques".39 Intuitively, each learning algorithm makes a hypothesis to predict as well

as possible a particular output. When the choice of these algorithms (and the underlying

hypothesis) is not obvious, taking an "ensemble" of models trained on a same dataset allows

the combination of multiple hypotheses in a unique model leading to higher performance.39,40

Here, we used the Stacked generalization technique20,41 using two methods based on very

different internal representations of the training sets (instances and trees): Bayesian and

RPForest algorithms which have been shown to lead to the best Sensitivity (Bayesian) and

high Specificity (RPForest). The final stacked model was built using a naïve Bayes classifier.

Note that we also built stacked models using 3 to 5 base models (by iteratively adding ANN,

SVM and LDA to RPForest and Bayesian) on a subset of datasets (data not shown). Since

the performance did not change significantly according to the number of models used, we

therefore decided to keep only two base models for a matter of computing time.
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Stacked generalization vs. simple QSAR classifiers

We compared the predictive performance of the 483 simple Bayesian and RPForest models

(B2 and RP2) with the Stacked ones. Table 2 shows, for the three types of methods, the

number of models that reach a certain value of ROCscore. First, less RP2 models are able to

reach ROCscore greater than 0.6 compared to the B2 and Stacked ones and only 30 among

the 483 have ROCscore above 0.8. Furthermore, if an equivalent number of B2 and Stacked

models reach 0.6 and 0.7 values of ROCscore, when looking at higher and better perfor-

mance (above 0.75 and 0.8), the Stacked method becomes clearly better than the Bayesian

one. Finally, when we look at the method that lead to the highest ROCscore for each

model, the Stacked is the winner for 61% models (294/483), followed by the Bayesian one

with 30% of models (147/483) and the RPForest with only 9% (42/483) (data not shown).

These results confirm that, also in our application and based on the ROCscore values, the

Stacked generalization method is able to build more models with good performance than

simple QSAR algorithms.

Table 2: Comparison of simple Bayesian B2 and Random
Forest RP2 models with Stacked generalization models
on the 483 PLP datasets. The comparison of the number of
models that reach a certain value of ROCscore shows that the
Stacked generalization method is able to build more models with
higher ROCscore than simple QSAR methods.

Method ROC ≥
0.60

ROC ≥
0.70

ROC ≥
0.75

ROC ≥
0.80

Stacked 417 319 253 144
Bayesian 416 321 223 90
RPForest 356 205 89 30

Figure 9 shows the ROC curves of B2 and stacked models for one particular assay

(TOX21_ERa_BLA_Antagonist_ratio) measuring the expression of the Estrogen Receptor

gene2 and for which model performance were among the best. The associated dataset con-

tains 7810 molecules, 13% of which were active in the in vitro assay. We observed that the

ROC curve of the Stacked model is always above that of the B2 model. For this particular
2see https://actor.epa.gov/dashboard.
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assay, the ROCscores were 0.84 and 0.77 for Stacked and B2 models respectively. Further-

more, since the ROC curve displays the Sensitivities and their corresponding Specificities

obtained for all threshold values between 0 and 1, we can choose a specific threshold according

to a desired Sensitivity or Specificity. As an example, a Sensitivity of 85% corresponds to

a Specificity of about 73% with the Stacked model and only of 52% with the Bayesian one,

see dotted lines in Figure 9. This again illustrates the difference of performance between the

two models and the ability of the Stacked model to detect more inactive compounds than

the Bayesian one, for the same number of active detected. Naturally, one can move this

threshold depending on the necessary stringency of the model output.

The same analysis on other assays led to the same observations and conclusions (data not

shown).

Figure 9: ROC curves obtained for mod-
els trained on the dataset of the assay
TOX21_ERa_BLA_Antagonist_ratio with the
two types of methods (Stacked generalization and
simple Bayesian). ROC curve of the Stacked model is always
above the one of simple Bayesian model. For a given Sensitivity
of 85%, the Bayesian model detects 52% of the inactive molecules
whereas the Stacked model detects 73% of them.

Focus on in vitro bioactivity assays proved to be linked to in vivo toxicity

Since the bioactivity assays can be seen as an intermediate step towards the evaluation of the

in vivo toxicity, several works have relevantly focused on the link between ToxCast in vitro

assays and toxicity outcomes observed in vivo. In particular, in 2015 Liu and co-workers

built ML models that predict in vivo chronic toxicity observed in liver12 based on either
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chemical descriptors, bioactivity descriptors (i.e ToxCast in vitro assays) or a combination

of both. This study has been extended in 2017 to 19 other organs.42 They extracted in both

studies the 36 (resp. 50) in vitro assays most frequently used in their models and which were

supposed to be the most correlated with in vivo liver (resp. 19 other organs) toxicity.

Since we built QSAR models for the majority of the ToxCast in vitro assays, we proposed

here to focus on the ones that predict these assays. More precisely, among the 36 (resp.

50) in vitro assays highlighted by Liu, we were able to build 25 (resp. 38) corresponding

QSAR models. Because 11 models were common to both sets (25 and 38), we finally got 52

QSAR models, using the simple algorithms and the stacked method. Table 3 summarizes the

best ROCscore we obtained for these 52 QSAR models and the corresponding method used

(simple Bayesian, RPForest or Stacked generalization). For 71% of the assays (37/52), the

Stacked generalization was the method leading to the best ROC score. Also, for 62% of the

assays (32/52) the ROCscore was greater than 0.75 meaning that we were able to build good

QSAR models to predict some of the in vitro assays highlighted by Liu. Altogether, these

results show that the Stacked generalization method allows one to build QSAR classifier

models that predict in vitro assays which have been previously shown to be associated to

in vivo toxicity outcomes. This suggest that we could think about replacing all or part of

these in vitro assays by in silico predictions and use these predictions as input of Liu’s ML

models for example.

Applicability domain information to reinforce the confidence of pre-

dictions

The OECD QSAR Validation principles recommend that a model should be used within

its applicability domain (AD).17 Several definitions of the AD have been proposed and the

Setubal Workshop report43 proposed the following one: “The AD of a (Q)SAR is the physico-

chemical, structural, or biological space, knowledge or information on which the training set

of the model has been developed, and for which it is applicable to make predictions for
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Table 3: Most frequently used assays in Liu’s models and
the best ROCscores we obtained with either Stacked gen-
eralization or simple methods (Bayesian and RPForest).
Assays are sorted by decreasing ROCscore. Stacked gener-
alization method has the best ROCscore for 71% of the assays
and this score is greater than 0.75 for 62%.

Assay name Liver Others ROC Bayesian(B)/
score Stacked(S)
score RPForest (RP))

BSK_KF3CT_SRB_down × 0,855 S
TOX21_TR_LUC_GH3_Antagonist × 0,842 S
APR_HepG2_CellLoss_24h_dn × 0,842 B
TOX21_ERa_BLA_Antagonist_ratio × 0,839 S
ATG_VDRE_CIS_up × × 0,836 S
ATG_SREBP_CIS_up × 0,834 S
ATG_PBREM_CIS_up × 0,834 S
ATG_MRE_CIS_up × 0,834 S
ATG_PXR_TRANS_up × 0,833 S
APR_HepG2_MitoticArrest_72h_up × × 0,830 S
TOX21_ERa_LUC_BG1_Antagonist × 0,828 S
TOX21_PPARd_BLA_agonist_ratio × 0,827 S
TOX21_Aromatase_Inhibition × 0,821 S
ATG_TGFb_CIS_up × 0,819 S
ATG_RARa_TRANS_up × 0,815 S
APR_HepG2_StressKinase_1h_up × 0,815 B
ATG_RORE_CIS_up × 0,812 B
BSK_3C_Vis_down × 0,811 S
ATG_PXRE_CIS_up × × 0,810 S
BSK_BE3C_SRB_down × 0,809 S
ATG_NRF2_ARE_CIS_up × 0,793 S
ATG_PPRE_CIS_up × × 0,791 S
NVS_GPCR_hOpiate_mu × 0,791 S
ATG_RXRb_TRANS_up × 0,787 S
ATG_C_EBP_CIS_up × 0,785 S
ATG_LXRb_TRANS_up × 0,780 B
ATG_BRE_CIS_up × × 0,780 S
TOX21_PPARg_BLA_antagonist_ratio × 0,775 S
ATG_Oct_MLP_CIS_up × 0,771 S
APR_HepG2_MicrotubuleCSK_72h_up × 0,760 B
APR_HepG2_MitoMembPot_1h_dn × 0,759 B
ATG_NFI_CIS_up × 0,754 B
ATG_NF_kB_CIS_up × 0,749 B
NVS_MP_rPBR × × 0,749 RP
NVS_ADME_hCYP2C19 × × 0,733 S
APR_HepG2_CellCycleArrest_24h_up × 0,733 B
NVS_NR_hAR × 0,727 B
ATG_ERE_CIS_up × 0,717 S
NVS_ADME_hCYP1A2 × 0,717 B
NVS_NR_mERa × 0,708 S
ATG_IR1_CIS_up × 0,708 S
APR_HepG2_CellCycleArrest_72h_dn × 0,705 S
NVS_NR_hPXR × 0,691 B
NVS_NR_hCAR_Antagonist × 0,689 S
NVS_MP_hPBR × × 0,682 S
TOX21_ERa_LUC_BG1_Agonist × × 0,676 S
NVS_TR_hNET × 0,668 S
APR_HepG2_NuclearSize_72h_up × 0,650 B
NVS_NR_hER × × 0,649 S
TOX21_TR_LUC_GH3_Agonist × 0,646 S
APR_HepG2_MitoMass_24h_up × 0,599 B
APR_HepG2_MitoMass_72h_up × × 0,537 S

new compounds. [...] Ideally, the (Q)SAR should only be used to make predictions within

that domain by interpolation not extrapolation”. Basically, the AD enable to estimate the

similarity between training set and test sets.31,44 In practice, there are different approaches

to estimate if a molecule is within the AD or out of it. We chose to consider two of these

approaches, first the position of the new molecule in the space described by descriptors and

second the distance between the new molecule and the closest molecules of the training set.

Table 4 presents the results of the first approach and shows the percentage of assays for
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which performance metrics were higher when considering the test set with the molecules

in AD only compared to the entire test set. For more than 50% of the assays, ROCscore

and BA were higher when "out of AD" compounds were excluded. Specificity was higher

for 88% of the assays but only 16% showed higher Sensitivity when using only "in AD"

compounds. This could be explained by the low number of active compounds in the test

sets leading to equivalent performance regardless of the molecules taken into consideration.

Moreover, the number of compounds "out of AD" was very low for all test sets (between 5

and 10) which led to similar test sets and also explains the results of Table 4. It could be

interesting to test the importance of this AD approach for test sets with more "out of AD"

compounds or to calculate the BA of compounds that are "out of AD".

Table 4: Percentage of assays with higher
performance when using only "in AD" com-
pounds than when using all compounds.

Metric % of assays
ROC score 53.2

BA 53.0
Sensitivity 16.0
Specificity 88.3

We applied the second approach to the dataset of the assay TOX21_ERa_BLA_Antagonist_ratio

which was reported by Liu to be linked to chronic liver toxicity.12 The test set was composed

of 1251 molecules, corresponding to 24 disjoint blocks of 50 molecules and one block of 51.

Figure 10 displays the results of the AD analysis obtained for these 25 blocks for the sim-

ple Bayesian and Stacked models for which ROCscores are 0.77 and 0.84 respectively. We

observed that the percentage of good predictions decreased (from 100% to less than 50%)

when the average distance to the compounds in the training set increased. This shows that

we can be more confident in the predictions when the compounds are close to the ones of

the training set. Moreover, the percentage of good predictions with the Stacked model was

greater than with the Bayesian one (except for blocks 20 to 23). We also performed the

analysis for the assay TOX21_AR_BLA_Antagonist_ratio and found comparable results
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(data not shown).

This analysis shows that the use of the Stacked generalization method to predict in vitro

assays from the chemical structure, in association with a tool to measure whether a new

compound belongs to the AD, can lead to good and reliable predictions when this new com-

pund is actually inside the AD.

Figure 10: Number of good predictions made by the
Stacked model and the simple Bayesian in all blocks of
50 predictions according to the average distance between
the molecules of the test set and the three closest com-
pounds of the training set. The dataset used corresponds
to the assay TOX21_ERa_BLA_Antagonist_ratio. Per-
centage of good predictions decreases when the average Euclidean
distance to the training set increases. Percentage of good predic-
tions of Stacked model is almost always greater than that of the
Bayesian model.

Conclusion

In this work, we performed a large scale analysis in order to characterize the Toxcast data

which is generally very imbalanced with only a few active compounds for each in vitro assay.

We first used classical learning methods, using two types of descriptors (PLP and PaDEL),

in order to build models aiming at the prediction of results of ToxCast in vitro assays

from chemical strucutures. The results indicated that all algorithms performed similarly

and appeared to be below our expactations for this type of data. We then built Stacked

models and, as recently shown by Madasamy,45demonstrated that this technique is more

appropriate for this type of imbalanced data. In particular, we were able to build models
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with good performance for in vitro assays that have previously been shown to be related to

specific in vivo toxicity outcomes.12,42

Moreover, we demonstrated that the AD information is an important parameter to evaluate

the reliability of predictions and can help to support decision making and prioritization.

Indeed, it could be a complementary and stringent filter allowing the selection of compounds

for further in vivo testing. For example, molecules within the AD and predicted as toxic

would be the first to be further characterized in vivo. For Toxcast data, combining Stacked

generalization methods with an AD filter led to better classifier than did the classical learning

method for Toxcast data.

Choices made in this study highlight directions for future work. First, instead of build-

ing classifiers, one could use regression algorithms to predict the AC50 values obtained in

each in vitro assay and not simply the “active” vs “inactive” labels. Here, by applying the

threshold before the learning, we might have lost information. It could be interesting to see

if more accurate models can be built by applying the threshold after the predictions. Second,

we did not explore all the possible parameters for the different learners; these parameters

can be tuned in order to increase the performance but the operation is time consuming.46,47

Regarding the stacked generalization method, we could think about exploring more combi-

nations of customized base models and using other algorithms as meta-learner to build the

stacked model in order to reach higher performance. Third, to complement the 1D and 2D

molecular descriptors used in this paper, we could also use 3D descriptors and fingerprints

which are known to be good for QSAR.48,49 Then, to face the effect of the highly imbalanced

data, we could implement data augmentation techniques50 which balance the training set

by adding or removing data and are supposed to increase model performance.51 Finally, we

could test other ensemble techniques such as bagging, boosting or bucket of models45 to

compare with the stacked generalization method. We actually already tried to use bagging

with Random Forest and Bayesian algorithms on 15 datasets (having more than 1000 com-

pounds and at least 30% of positive ones) and these first results showed that the bagging did
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not lead to better performance than the stacked generalization. However, this work needs

to be extended to all the datasets and more methods. More interestingly we would like to

evaluate the ability of predicting in vivo toxicity by considering both structure and in vitro

information, either by combining them as input descriptors or by chaining up two prediction

steps.
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