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ABSTRACT
To build a detailed knowledge of the biodiversity, the geo-
graphical distribution and the evolution of the alive species
is essential for a sustainable development and the preser-
vation of this biodiversity. Massive databases of underwa-
ter video surveillance have been recently made available for
supporting designing algorithms targeting the identification
of fishes. However these video datasets are rather poor in
terms of video resolution, pretty challenging regarding both
the natural phenomena to be considered such as murky wa-
ter, seaweed moving the water current, etc, and the huge
amount of data to be processed.

We have designed a processing chain based on background
segmentation, selection keypoints with an adaptive scale,
description with OpponentSift and learning of each species
by a binary linear Support Vector Machines classifier.

Our algorithm has been evaluated in the context of our
participation to the Fish task of the LifeCLEF2014 chal-
lenge. Compared to the baseline designed by the LifeCLEF
challenge organizers, our approach reaches a better precision
but a worse recall. Our performances in terms of species
recognition (based only on the correctly detected bounding
boxes) is comparable to the baseline, but our bounding boxes
are often too large and our score is so penalized. Our results
are thus really encouraging.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Information
retrieval—Specialized information retrieval,Multimedia and
multimodal retrieval,Video search

General Terms
Video analysis
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video processing; image recognition; machine learning
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1. INTRODUCTION
For the purpose of supporting the conception of auto-

matic fish identification systems, the Fish task of the Life-
CLEF2014 [7, 4] is organized in 4 subtasks: video-based
fish identification (subtask-1), image-based fish identifica-
tion (subtask-2), image-based fish identification and species
recognition (subtask-3), and image-based fish species recog-
nition (subtask-4). In this paper, we consider the subtask-3:
we have to detect a fish and recognize its species inside a
video. The training set is made of 285 videos, acquired with
underwater still camera, and labeled with 19868 bounding
boxes of fishes and their species annotated. The testing set
is made of 116 videos.

The next section will review recent works on object recog-
nition in video. In section 3, our method will be described
in details. Results are discussed in Section 4, followed by
conclusions and perspectives.

2. RELATED WORK
When considering video classification, the first process-

ing step is extracting relevant features to input them in a
learning machine.

Among standard video content analysis approaches, op-
tical flow is probably the most widely considered. In [12],
the authors used for the first time optical flow for motion
recognition, using temporal textures (i.e. 1st and 2nd order
statistics based on the direction and the magnitude of the
flow). For periodic human actions (i.e. walking, running,
skiing, swimming), the same authors proposed to compute
optical flow, then to accumulate its magnitude in a regular
spatio-temporal grid, this grid defining then a flow-based
motion descriptor. This idea of extracting optical flow in-
formation with respect to a spatio-temporal grid was ex-
tended by Rodriguez et al [13] with flow features computed
in spatio-temporal cubes over regularity flow information.
These features were further classified through a template
matching process based on correlation from Fourier trans-
form.

Efros et al [6] also splitted the optical flow but rather
than following a 2D+t regular grid, they divided the optical
flow informations into 4 groups of vectors according to the
flow directions. Ahad et al [1] recently used also this same
four flow channel description in order to solve the problem
of self-occlusion in a Motion Histogram Image approach.

In [2], Ali and Shah extracted more complex kinematic
features from optical flow such as divergences, vorticity, sym-
metric and anti-symmetric flow fields, second and third prin-
cipal invariants of flow gradient, rate of strain tensor and
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Figure 1: Variations of illumination (sun light)

Figure 2: Seaweed moving in the background

third principal invariant of rate of rotation tensor. After a
PCA on these features, the classification step is based on a
nearest neighbor algorithm for Multiple Instance Learning
(MIL).

On FishClef dataset, all the methods we have tried to
extract a relevant optical flow were useless owing to illumi-
nation variations (figure 1), large seaweed moving (figure 2),
etc. We have thus decided to extract not anymore only mo-
tion features but 2D+t features since these approaches have
shown to be pretty powerful.

Indeed, in [19], after blurring and sub-sampling video se-
quence along temporal direction to build temporal pyramid
(3 levels), the authors extract space-time gradient at each
space-time point in each of the 3 cubes and then classify
them by comparing gradient measurements. In [15], Thurau
and Hlavac extend HOG for videos (dividing video volume
into regularly spaced overlapping blocks) and classify these
2D+t HOG descriptors with a nearest neighbor algorithm.

Several authors have studied the repeatability and accu-
racy of detected features under changes in spatial and tem-
poral video resolution and under camera motion [9] or un-
der scale changes, in-plane rotations, video compression and
camera motion [18]. Comparison of local space descriptors
including higher order descriptors, image gradients and op-
tical flow [10], space-time HOG, HOG and HOF [8] and in
terms of image brightness, gradient ans optical flow [5] have
been done.

However, the resolution and the quality of the FishClef
dataset were too low for achieving good results with any of
these methods. We thus came back to extract less seman-
tic information from motion by computing only background
detection.

Such an approach has already been considered by Pic-
cardi [11]. Difference of frames are considered, optic flow

is thresholded and a model of the background is estimated.
Tanase [14] compensates the motion of the camera by es-
timating an homography from features (method based on
RANSAC). Then, full frame optical flow is computed us-
ing Farneback’s method. Finally, foreground objects are de-
tected using the displacement between the synthetic back-
ground motion field and the actual motion field.

We now detail our approach.

3. THE PROCESSING CHAIN
Our method starts with an extraction and a description

of keypoints on each specie.

3.1 Points of interest and their descriptions
The XML metadata provided with the training set de-

fine the bounding boxes of annotated fishes. We consider
three keypoints located on the central horizontal axis and
at one third and two third of the horizontal length (see fig-
ure 3). These three keypoints are described using the Oppo-
nent SIFT color descriptor [16] at different scales. Scales are
computed starting from the bounding box size (around 60
pixels in diameter). Some part of a fish may not belong to
the bounding box: four increasing sizes are thus considered
allowing a keypoint to describe the whole fish. It may also
happen that the bounding box is too large: four decreasing
sizes are thus considered enabling to describe approximately
three parts of a fish: head, body and tail. We adopt this
strategy of large keypoint descriptors owing to the low res-
olution of the videos.

The offline part of the processing chain ends here (the
training phase is summarized in figure 4).

We now describe the online part of the system which con-
sists in analysing a query video.
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Figure 3: Extraction of points of interest at different locations and scales with respect to the given bounding
box.

Figure 4: Extraction of positive descriptors from training data set with metadata

3.2 Background and motion detection
The first step of analysing is to detect motion from a

background-foreground segmentation obtained thanks to an
adaptive background mixture model [20]. This method con-
sists in assuming that each pixel in the scene is modeled by a
mixture of many Gaussian distributions and then each pixel
of the background is computed with the distributions with
the smallest fitness value. Finally a background subtraction
is performed by marking as a foreground pixel, any pixel
that is over 2.5 times any standard deviation of any back-
ground distribution. We end up with a mask for the motion
detection that we first erode and then dilate to define blobs
of detected moving objects.

3.3 Background description, filtering and learn-
ing

Since the training distribution must be the same as
the test distribution in a supervised learning process and
in order to distinguish specie from background and iden-
tify them,for each specie, a SVM classifier is trained with
the descriptors of this specie as positive samples and some
OpponentSift descriptors of the current video background
as negative samples. Specifically, keypoints are densely ex-
tracted from the background with fixed scales from 30 to
110 pixels of diameter with respect to the size of the video.

Figure 5: An original frame and its motion mask

To ensure the definition of the background, these key-
points were located in the still areas of the motion mask
(black areas on figure 5). Because of the large size of bound-
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ing boxes, some descriptors of specie describe the back-
ground. Thus, before training, we filter the positive key-
points: for each one of these keypoints, we look for its 10
nearest neighbors and remove any keypoint from the bound-
ing box with more negative neighbors (keypoints from the
background) than positive ones.

Then, for each species, a linear SVM classifier is trained
with the aforementioned filtered species keypoints descrip-
tors as positive samples and the background descriptors as
negative examples in similar proportion. We have hence
done the first row of our processing chain during the query
video classification (Figure 6).

3.4 Species and bounding box
First of all, we segment the motion mask to differentiate

each blob. Then, for each blob, the centered and shifted key-
points are extracted with several scales (fixed scales from 30
to 110) and their scores are computed by each species SVM
classifier. This score represents the distance between the
current descriptor and the SVM decision boundary with the
sign of the selected class. Only positively classified points
with a distance larger than 0.5 are considered. For a blob,
we sum up the score over each keypoint associated with each
species in order to obtain a global score per species (see fig-
ure 7). Then, the list of potential species is given by decreas-
ing scores. For our bounding box construction, we frame
every keypoints with respect to its scale and associate the
species classified with the highest score (first species from
the list).

4. EXPERIMENTATION AND RESULTS
The Fish task of the LifeCLEF2014 [7, 4] is organized in

4 subtasks:

• Subtask 1- Video-based Fish Identification, four videos
fully labeled, 21106 annotations corresponding to 9852
different fish instances.

• Subtask 2- Image-based Fish Identification, 957 videos
labeled with 112078 fish annotated.

• Subtask 3- Image-based Fish Identification and Species
Recognition, 285 videos labeled with 19868 fish (and
their species) annotated.

• Subtask 4- Image-based Fish Species Recognition, 19868
fish images annotated.

We consider the subtask 3: we have to detect a fish and
recognize its species inside a video. At first, we tried to
track fishes in order to obtain more descriptors with some
standard tracking methods as CamShift and segmentation
of optical flow for instance. But the tracking was not effec-
tive enough owing to the resolution. We also encountered
difficulties with moving seaweed and changing brightness as
warned by the organizers since the dataset contains videos
recorded from sunrise to sunset. Furthermore, underwater
cameras are still with a fixed focal which does not provide
much advantages owing to the natural phenomena aforemen-
tioned while bringing other difficulties since without specific
fish focalization, any fish of any size is a possible target (as
can be seen on figure 1, figure 5 or figure 8). We have built
up our processing chain to deal with these difficulties.

As scoring functions, the organizers of LifeCLEF have
computed both average precision vs recall and precision vs

recall for each fish species for the subtask-3 (figure 9 and 10).
Only bounding boxes matching with a bounding box from
test set with a PASCAL score above a certain threshold are
considered. The organizers have computed a baseline pro-
gram with the ViBe background modeling approach [3] for
fish detection and VLFeat [17] for fish species recognition to
compare against our method.

Finally, we submitted three runs:

1. The first one with the blobs computed from the mask
segmentation.

2. For the second run, we wanted to detect if there were
several fishes in connected blobs. Thus we have com-
puted a lighter dilation (than in the first run) on the
initial motion mask and detected the dominant color
in each blob. Small blobs with same dominant color
were merged into one blob. Then each blob was dilated
to obtain the maximum numbers of keypoints on the
fishes. You can see on figure 8 that even if the fish is
separated in several blobs, these ones are then merged
together. Finally the same processing is applied to
each group of blobs as it is in run 1.

Figure 8: Fish segmentation with dilatation and
dominant color

3. The third run has computed groups of blobs as in the
run 2 except that we have provided as many answers as
little connected blobs regardless their dominant color.

Compared to the baseline, we have a better precision and
worse recall. It is worth noting that the performance in
terms of species recognition (based only on the correctly
detected bounding boxes) was comparable to the baseline,
but our bounding boxes were often too large.
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Figure 6: Our processing chain from acquiring test video to detection and identification

Figure 7: From left to right:(a) original frame, (b) the detected and positively classified keypoints with
the color corresponding to the species with highest score and (c) the final bounding boxes with the color
corresponding to species with the highest sum over scores

Figure 9: Recall on each species and average recall of our three runs and the baseline of the organizers

5. CONCLUSION
For the purpose of supporting the conception of auto-

matic fish identification systems, the Fish task of the Life-
CLEF2014 Challenge [7, 4] provides 285 videos for training,
acquired with underwater still camera, labeled with 19868
bounding boxes of fishes and their species annotated, and
116 videos for testing. This dataset is a real challenge since
the video are poor owing to both video resolution and natu-

ral phenomena (e.g. murky water, seaweed moving with the
sea, ...) and the huge amount of data to be processed.

We have designed a processing chain based on background
segmentation, selection keypoints with an adaptive scale,
description with OpponentSift and learning of each species
by a binary linear Support Vector Machines classifier. Our
results are really encouraging but could be improved.

5



Figure 10: Precision on each species and average precision of our three runs and the baseline of the organizers

For instance in order to improve our processing chain, a
good tracking from the annotated fishes would allow us ob-
taining more positive descriptors for each species. Moreover,
some metadata could be used as the GPS coordinates. Fi-
nally, with the tracking, we could study the movement of
each species to see if this could be a significant feature to
identify species and we could also try analyzing the interac-
tions between species.
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