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Abstract
The burst of video production appeals for new browsing

frameworks. Chiefly in sports, TV companies have years
of recorded match archives to exploit and sports fans are
looking for replay, summary or collection of events.

In this work, we design a new multi-resolution motion
feature for video abstraction. This descriptor is based on
optical flow singularities tracked along the video. We use
these singlets in order to detect zooms, slow-motions and
salient moments in soccer games and finally to produce an
automatic summarization of a game.

We produce a database for soccer video summarization
composed of 4 soccer matches from HDTV games for the
FIFA world cup 2014 annotated with goals, fouls, corners
and salient moments to make a summary. We correctly de-
tect 88.2% of saliant moments using this database. To high-
light the generalization of our approach, we test our system
on the final game of the handball world championship 2015
without any retraining, refining or adaptation.

1. Introduction
In the world of digitization we live in, big quantities of

numerical data are stored and available. This is particularly
common for image and video databases since a simple clip
in high definition of 30s contains 750 frames (with 25fps)
and therefore more than a billion pixels. The amount of
stored videos keeps increasing every hour. For instance, last
IPhone and Samsung smart phones take short videos instead
of static pictures, that they called respectively ”live pho-
tos” and ”motion photos”. ”Live photo” is perfectly chosen
name since even a very brief motion recording gives life to a
simple picture. Besides every Facebook user can now have
a video profile on his main own page instead of a classic
profile picture. The number of Youtube videos increased to
such an extent that Google Research just released a dataset
called YouTube-8M that contains half a million hours of
videos [1]. To face this always increasing amount of videos,
algorithms must analyze and recognize the content of these
elements to be able to extract knowledge, statistics and ev-

erything that a user could look for. With over a decade of
extensive research, there has been a tremendous develop-
ment in the domain of video content mining [13, 24].

In this article, we present a new motion descriptor based
on extracting singularities in the motion domain in Sec-
tion 3, that is detecting specific motion patterns in the op-
tical flow. In Section 3.2, we build a unified description
of optical flow that allows us to describe different aspects
of video semantics. We call this descriptor singlet which
corresponds to motion singularities at different resolutions
tracked along a video. As a good context of video abstrac-
tion, we focus on the application of our new motion fea-
tures for sport analysis, more specifically soccer matches.
In the experiment section, our flow description is detailed
for zoom detection, extraction of salient moments and slow-
motion detection. We then propose an automatic method of
production of video skimming. Finally, we evaluate the sin-
glets’ efficiency in various contexts: soccer games from the
World cup 2014 and the final game of handball world cham-
pionship 2015.

2. Related Works

We classify the contributions regarding video analysis
along two axes: retrieval and abstraction [10].

On the one hand, video retrieval is a very active research
field aiming at providing tools to retrieve videos from con-
tent. The current state of the art methods for video con-
tent representation start by detecting keypoints. Most of the
time, these keypoints are then tracked along the video, and
finally described by combining a description of both static
and dynamic visual information (shape, appearance...).
Among these contributions, let us cite the seminal work
on Space-Time Interest Points (STIP) [12] which proposed
to combine Histograms-on-Oriented-Gradients (HOG) with
Histograms-on-Optical-Flow (HOF). In [17], the tracklets
are also defined from HOG and HOF and classified using
dynamic time warping. Improved dense trajectories (iDT)
adds SURF and MBH (derivative of HOF) to the descrip-
tion, keeping a combination of keypoint displacements [25].
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However all these standard motion descriptors usually do
not hold complex motion information. Recently, deep learn-
ing convolution networks for video description, such as the
C3D network [22], have been considered, but for now they
only achieves complementary results compared to iDT.

Abstraction consists in segmenting the video stream into
consistent content units and generating a brief overview
of the video from these units. Truong et al. [23] lists
and compares techniques providing video abstraction by
distinguishing video summarization, made of static video
keyframes, from video skimming, made of dynamic video
shots. Four types of video are much analyzed: meetings,
movies, broadcast news and sports [28]. The growing mass
of available video data is well illustrated in the sports do-
main: TV channels have broadcast matches in soccer com-
petitions for years. Nowadays, the amount of sport broad-
cast has drastically increased with the legalization of sports
betting. The algorithms to enhance these broadcasts are ea-
gerly awaited and related research works have emerged.

In video abstraction and in particular in soccer video ab-
straction, people do not use the state of the art representa-
tion, iDT, which is made for retrieval and is not suitable for
motion abstraction. From a single match, there is already a
big amount of information to extract in order to summarize
the match: number of passes or goals, players’ statistics...
For example, by focusing on play-break session can filter
video information [6]. To detect the play-break moments,
Xu et al. [29] used heuristic rules based on view classi-
fication (long, medium and close-up views) while Xie et
al. [27] used a stochastic structured model by HMM. Also
in a stochastic approach, Leonardi et al. [14] proposed con-
trolled Markov chains to detect goals.

In general, the first approach in soccer video analysis is
to segment shots and extract features. These low-level fea-
tures are extracted from the frames and are often associated
with hand-crafted features, like line marks, ball tracking or
the color of the players jersey. Gong et al. [8] use these
features to classify events like shots or corner kicks.

A soccer match is quite long and contains few interest-
ing actions, which is why detecting salient moments is the
most active research side in the soccer video domain. Other
hand-crafted features like the overall excitement computed
from shot length, motion and audio activity are used to
characterize game extracts in [9]. These features are found
by building mid-level representation of the shots that can
be learned to recognize events: Duan et al. [4] used shot
lengths and texture maps to train a SVM while Wu et al.
[26] used global motion estimation to train a neural net-
work. Sadlier et al. [19] focused on audio features, and
low-level features to train a SVM and they claims their tech-
niques to be generic while only focusing on “field sports”
and thus benefiting from knowing the ground color (grass),
field line marks and others shared characteristics. Yow et

al. [31] built a panoramic representation of a shot and then
select important shots using heuristics. Assfalg et al. [2]
and Tabii et al. [21] used finite state machines, respectively
one based on ball motion, players positions and jerseys and
the other one based on play field segmentation, shot detec-
tion and classification, however this method requires good
handmade rules. Ye et al. [30] chose an incremental learn-
ing SVM on a mid-level description containing the features
of successive moments like view labels, line mark positions
and shot descriptors to select highlights. After using an ar-
tificial neural network in order to detect the appearance of
logos and score and using Hough and k-means to detect goal
mouths, Zawbaa et al. [32] classified goals, attack and other
events with an SVM from the detection of goal mouth po-
sition. In recent work, Raventos et al. [18] ranked shots
and their associated keyframe using face and skin detection,
whistle detector and user specifications.

All these methods use at best an energy function to mea-
sure the motion activity whereas the motion in a soccer
game is probably the most important information. We now
present our adaptive and generic representation to describe
the motion and show how this representation allows us to
build a video abstraction.

3. Video movement analysis
Our method of motion content analysis is inspired by the

work of Kihl et al. [11] which extracts singularities from
motion in the domain of fluid mechanics. A singularity is a
vanishing point akin to root for polynomials. It can be seen
like keypoints in optical flow. Optical flows are projected to
polynomial bivariable function space to detect these vanish-
ing points from their polynomial approximations. Starting
from the definition of these singularities, we design a new
local motion video content descriptor.

3.1. Polynomial projection of optical flow and sin-
gularities

The two horizontal and vertical components of the op-
tical flow U and V at each pixels (x1, x2) are computed
using the method of Gunnar Farneback [7]. U and V are
projected onto Legendre basis to get the best approxima-
tion in the polynomial optical flow space. Then they are
expressed in a canonical basis.

PU (x, y) =

K∑
k=0

L∑
l=0

uk,l.x
k.yl;PV (x, y) =

K∑
k=0

L∑
l=0

vk,l.x
k.yl

(1)
with K + L ≤ degree. Similarly to the work of Kihl et
al. [11], we restrict approximations to degree 1.

(
U
V

)
' A

(
x1
x2

)
+ b =

(
a11x1 + a12x2 + b1
a21x1 + a22x2 + b2

)
(2)
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Indeed, according to A and b, the singularities of the
optical flow appears at the position (x1 x2)

T
= −A−1b.

The type of a singularity depends on tr(A) and ∆(A).

∆(A) = (tr(A))2 − 4 det(A) (3)

We present the different configurations in figure 1.

Figure 1. Classification of singularities based on the value of A
(illustration from [11]).

Singularities are detected using a sliding window at dif-
ferent scales (from 0.1h to 0.5h by steps of 0.1h where h
is the smallest dimension of the video, usually the height).
This makes the singularity to be multi-resolution compliant.
Multiple singularities are detected at different scales at the
same position. These multiple singularities have not been
merged, as for SIFT features, since they could be of differ-
ent types or intensity and carry different information.

By definition, a singularity corresponds to vanishing
points. Thus no singularity will be detected in a pure trans-
lation. A singularity is not detected in situations where A
is not invertible. Moreover the highest the determinant is,
the more significant singularities are preserved: a thresh-
old on det(A) permits to filter the noisy singularities and to
keep informative ones. No thresholding on det(A) implies
to keep every singularities, even the ones with very small
motion which are most probably produced by pixel noise.

Thereafter, we globally or locally extract these singular-
ities, according to what we focus on.

3.2. Spatio-temporal representation

As introduced above, singularities can be tracked along
a video to describe a time lapse.

For T frames, T−1 optical flows are computed. On each
of these optical flows, we extract the singularities. In or-
der to build chains of singularities, called singlets, they are
matched in reverse time. Based on the hypothesis that a sin-
gularity has a small displacement between two frames and
to reduce computational cost, we match only singularities

in a near neighborhood. Thus, for each singularity sings in
the optical flow ft, the singularity candidates in the optical
flow ft−1 are restricted to a near neighborhood V (sings).
Two singularities are considered in the same neighborhood
if their sliding windows have a suitable overlap ratio (fig-
ure 3.2) as defined directly below:

V (sings) =

{
sing;

area(W (sing) ∩W (sings))

area(W (sing) ∪W (sings))
> α

}
(4)

where W (sings) is the sliding window of sings.

Figure 2. Two successive optical flows: Searching a match for the
singularity sct within the singularities in the previous optical flow.
Regarding the overlap ratio, sspt−1 and sct−1 are candidates while
ssnt−1 is not. The match is the closest singularity regarding local-
ization and type: sspt−1. Singularity types sp, sn and c respectively
correspond to spiral, star node and center.

To match singularities during time, the best candidate
within a close neighborhood is selected as the one which
minimizes the singularity distance described below:

d(

A
x
y

 ,

A′

x′

y′

) = ||A−A′||F +λ||
(
x
y

)
−
(
x′

y′

)
||2 (5)

where λ is a weight balancing the distance between the po-
sitions and the similarity between singularity coefficients
values. In each affine optical flow ft, a singularity sings
is described by 6 coefficients, 4 in A and 2 in b, and the
distance matching deals with these information.

• Since b contains information about the singularity cen-
ter location within its windows W (sings), we convert
this center in a pixel position (x, y).

• Since A contains information about the singularity
type (fig 1), matching the coefficients of A leads to
match singularities of the same type or at least with
close vector field aspects.

The entire algorithm to extract singularities and match
them as a singlet is described in algorithm 2. An example
of singlet is presented in figure 3.

Collecting singlets along a video and analyzing their
shapes, positions or their lengths provide robust description
of optical flow within this time lapse. Besides, in the next
section, we detail our application of singlets description on
soccer videos in order to sum up sport matches.

3



foreach frame in the shot do
get the frame fn;
if previous frame exists then

compute the optical flown=(U,V) from fn−1
and fn;

foreach sliding window do
crop the optical flow within the window;
compute the projection of each component

U and V by doing the scalar product of
each component with each element Pi,j

of the Legendre basis;
change of basis to get A and b;
detect if there is a singularity and its

characteristics;
end

end
foreach detected singularity sings in flown do

foreach singularity of flown−1 within V(sings)
do

find the one with the best distance between
their As and the singularities positions;

end
if the bestdistance is under 2 then

if the bestMatch is at the end of a singlets
then add sings in this singlets;

else create a singlets with the both
singularities.;

if no match has been found within flown

then
search a match in the previous flow

until an historic of 5 flows
end

end
end

end
Algorithm 2: Algorithm to extract singlets

4. Experiments
4.1. Data

Facing the lack of benchmark from TV in the domain
of sport video analysis, we have recorded our own videos
from HDTV broadcasting. We manually annotated zooms
and slow motions from 4 soccer matches of the FIFA World
CUP 2014 (Germany vs Portugal, Nigeria vs Argentine,
France vs Honduras, Switzerland vs France) and the Qatar
Handball World Cup 2015 final. Each video has been scaled
to 25 fps.

In order to evaluate our salient moment detection, we
have extracted the ground-truth for the 4 selected matches
(Germany vs Portugal, Nigeria vs Argentine, France vs
Honduras, Switzerland vs France) from lists of salient mo-
ments extracted on the official FIFA website [3]. As can
be seen from these ground truths, the description of each

Figure 3. Singlets: illustration of matching of singularities ex-
tracted from real optical flow on three consecutive frames in a soc-
cer match. It is a spiral singularity (red, as in figure 1) as can be
seen from the flow.

Match FIFA Extended
ground-truth ground-truth

Germany vs Portugal 30 27
Nigeria vs Argentine 51 35
France vs Honduras 54 32
Switzerland vs France 40 26

Table 1. Number of salient moments in each match according to
the ground-truth of all the moments described on FIFA official
webpage vs our extended ground-truth.

salient event is linked to a given minute of the match and
describes roughly the action. We manually annotated the
salient moments from the FIFA description with the num-
ber of starting and ending frames to obtain a frame level
decision.

We improved the annotation of this benchmark to make
it compliant with a computer vision groundwork. First, we
have completed this list of salient moments by adding all
corners and kick-off to fill missing actions. Secondly, we
have merged the salient moments which are listed twice:
for instance, a goal from a kick-off listed as first an action of
kick-off and an action of goal. We call the ground-truth with
this completed list of salient moments: Extended ground-
truth. In table 1, we report the amount of salient moment in
each games and in each database.

In this database, there are more than 7 hours, precisely
696002 frames. For reproducible research sake, all our
metadata and our code will be available on our website1.

4.2. Zoom detection

In a soccer match from TV channel, zooms, and in par-
ticular zoom(s)-in(s), are effective indicators of highlights
and salient moments of the match, since they represent a

1http://www.i3s.unice.fr/˜kblanc/
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Figure 4. ROC curves of our method for different thresholds on
det(A). Best result is obtained when there is a threshold of 0.2 on
det(A) and an averaged ∆(A) on 30 frames.

natural reaction of the cameraman to an action salience.
To evaluate, we use a video of the half soccer game, i.e.

more than 128500 frames. We only annotated persistent
zooms which are important in intensity and in time. There
are exactly 5659 positive optical flows and 122841 nega-
tive optical flows. To compare each methods, we use ROC
curves (figure 4 and 5) which well illustrate performances,
even in the case of unbalanced classes.

The two singularities star node and improper node (fig-
ure 1) represent zooms. Two conditions are required for
these detection: a strong determinant det(A) and a low
∆(A) (cf eq. 3). det(A) corresponds to the intensity of
the optical flow. In figure 4, we evaluate the influence of
a threshold on det(A) over zoom detection performance:
no threshold on det(A) implies that every global motion is
a zoom candidate, even slight ones and as one could guess,
that option gives poor results; with a threshold on det(A),
results are quite stable. Since projections are all computed
from optical flows and in order to get a detection with time
consistency closer to human perception, we add a chrono-
logical window to average these ∆(A) during time. Af-
ter grid search on the window size from 5 to 100, best re-
sults are obtained with a time history of 30 frames, that al-
most corresponds to a second. We obtain best results with a
chronological average, a threshold of 0.2 on det(A) and a
threshold of 4 on ∆(A) (figure 4).

Usually zooming are detected by the Global Motion Es-
timation (GME) method [30]. For this method, we used the
RGMC [20] method to compute the homography ht that
models the camera motion for each frame t.

x′ = m0x+m1y +m2

y′ = m3x+m4y +m5

According to [16], a zoom is then detected if m0 and m4

are equals. We set then a threshold on their difference. The
best threshold value found for GME method is 0.0004.

In [5], Duan quantified motion vectors to produce two
histograms, on angles and on magnitudes. A zoom is
detected if there is enough vectors with small norms
and enough vector angles between the following angles

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
u

e 
p

o
si
�

ve
 r

at
e

False posi�ve rate

ROC curve

our method (with best parameters)

GME

Duan

Figure 5. ROC curves for each methos for zoom detection: our
method vs Duan method vs GME method.

Method Precision Recall Accuracy
GME 3.68 % 68.4 % 19.79 %
Duan 8.92 % 50.62 % 75.06 %
ours 19.45 % 63.47 % 86.82 %

Table 2. Precision, recall and accuracy for zoom detection.

[15; 75] ∪ [105; 165] ∪ [195; 255] ∪ [285; 345]. Therefore,
this method requires two thresholds which are not provided.
The detection gives best results without filtering the mag-
nitude histogram (i.e. no threshold on the magnitude his-
togram) leading us to focus on the angle histogram. The
best threshold value for Duan method on the angle his-
togram is 42% of the pixels numbers.

We compare our method with the best parameter setting
with reference approaches but we can see by looking at fig-
ures 4 and 5 jointly that our method is not very sensitive
to the parameter setting since most of the settings provide
better results than reference approaches.

In the table 2, we compute the accuracy of each method
with the best corresponding threshold. Since our database
is unbalanced with 5% of positives samples, the precision
values are weak but are still a good indicator of recogni-
tion rate to check if the classifier does not always answer
negative classes.

Our zoom detection method has three advantages. The
main advantage of our method is that zooms are detected
even if the zoom direction is not in the image center. As can
be seen in figure 6, the optical flow center (represented as
the light blue dot on the third row) is very far from the zoom
center which is still detected. To the best of our knowledge,
such a result can only be achieved with our approach. More-
over, we can also localize the zoom center which is an indi-
cator of where the action happens. Finally, the last advan-
tage is to easily differentiate zoom-in and zoom-out. In the
case of those singularities, star node and improper node, the
eigenvalues of A are equals. Thus we simply have to check
the sign of one of the eigenvalues to differentiate zoom-in
and zoom-out. This method is very efficient to detect zoom
anywhere in the video.

Therefore, extracting global singularity on the whole op-
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Figure 6. A zoom detected in a soccer match. From left to right: 3 consecutive frames. From top to bottom: original frames (ball highlighted
by a red square), original optical flows and polynomial optical flow approximations. In the last rows, the singularity center is represented
by a small target and it is centered on the soccer ball that you can see in the first row.

foreach frame in the shot do
get the frame fn;
if previous frame exists then

compute the optical flown=(U,V) from fn−1
and fn;

compute the projection of each component U
and V by doing the scalar product of each
component with each element Pi,j of the
Legendre basis;

change of basis to get A and b;
if |det(A)| > 0.2 and |∆(A)| < 4 then

zoom detected
zoom center position at −A−1b if
trace(A) < 0 then zoom-out detected;

else zoom-in detected;
end

end
end

Algorithm 3: Zoom detection

tical flow can provide useful video editing information such
as zoom detection while extracting local singularities help
to measure the amount of motion.

4.3. Global excitement

We made the hypothesis that a salient moment of team
sports is when several players are in conflict to get the ball
or when players are running towards the goal (attack). In
that cases, there are local singularities around moving zones
and these singularities will have a temporal consistency.

We detect singularities in each optical flow within a slid-
ing window and compute a spatial histogram on their posi-
tions. Our purpose is to detect regions where there is an
global excitement. Each image is splitted by a 3x3 his-
togram, 9 uniform bins (see figure 7).

In order to stabilize spatial histograms through time, we
sum spatial histograms within a temporal window of size
10 frames. We discard video regions where there is a score-
board and sum up the remaining bins. We choose this in-
dicator to select moments for a summary and sort them
according to their intensity based on the aforementioned
hypothesis. These histograms are particularly interesting
when they are extracted from the farthest view in a match.

Figure 7. Left: a shot with all detected singularities. Each col-
ored square corresponds to one singularity, with the color of their
type (figure 1). Right: their corresponding space-time histogram
expressed with the given heat scale representing the amount of sin-
gularity.

Other clues indicate that an important action just hap-
pened such as replays (slow motions).

4.4. Slow motion detection

When a fast action deserves to be detailed, producers
usually use slow motions, often from an other point of view
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Dataset Precision Recall Accuracy
Train 97.06 % 80.49 % 89.41 %
Test 76.32 % 87.88 % 79.36 %
Test on handball 100 % 20 % 60 %

Table 3. Precision, recall and accuracy for slow motion detection
on different datasets.

to see all details. Thus we can detect the match salient mo-
ments in spotting slow replay. Most of the proposed solu-
tions for this detection problem use the video production
habits that consist usually in putting a logo before and af-
ter each replay. Pan et al. [15] used a HMM algorithm to
detect slow motion from differences between frames and an
HMM to model states before and after the slow motion like
editing effects for shot transition. Zawbaa et al. [32] filter
each frame of the video with the logo dominant color and a
trained SVM predicts if the logo appears or not. This type
of method has the drawback of both requiring a training set
of logo appearance and totally ignoring that the motion is
very slow.

To detect slow motion, we focus on the slowness inten-
sity of motion. Our method is based on a simple assumption
that is: in a slow replay, a motion will be consistent during
time. A singlet describes a typical motion evolution until
it totally change its type. Therefore the length of singlets
tells us how long a motion last. Thus several long singlets
implies that the shot is a slow motion.

We compute the length of each singlet and store their
length in a histogram of 100 bins. The histogram is then
considered as the feature vector for detecting video slow-
ness. To detect slow motion in video, we train a SVM
with a radial basis kernel function after whitening and a
PCA on our slow motion feature vector. To train an SVM,
we use a database of 82 videos containing 41 slow motion
and 41 non slow motion video parts extracted from three of
the soccer matches. In our experiment, we set the param-
eters as α = 0.4 for the neighborhood selection (cf eq 4),
λ = 0.02 for the matching distance (cf eq 5) and C = 29
and γ = 4.103 for the SVM training.

The test sets is composed by the rest of slow motion and
non slow motion samples in each soccer matches, being 33
slow motion segments and 33 non slow motion segments.
In order to evaluate the power of generalization of our de-
scriptor, we add 5 slow motions and 5 non slow motions
part extracted from the handball game.

Table 3 presents our recognition results on each slow mo-
tions dataset. As you can see, we obtain high accuracy for
soccer slow motions classification. With the same feature
extraction framework and without retraining the SVM, we
obtain a slow motion detection at high precision score for
the handball dataset. Since our framework was trained on
soccer matches and since we do not change any parame-

ters, regarding the results on the handball game, it is indeed
generic in spite of an over detection effect.

In the next part, we describe how singlets are useful
through these detections to extract salient moments of a
match and make a summary.

4.5. Salient moment detection and match summa-
rization

Singularities and singlets represents motion regions.
Globaly extracted, singularity represents camera motion:
we use star node and improper node to spot zooms in sec-
tion 4.2. Locally extracted, they represents players and ball
mouvements: we use the amount of singularities to char-
acterize global excitement. Singlet identifies singularity’s
evolution during time: we use their length to notice slow
motions by their nature.

From the singlets’ descriptions, we compute a summa-
rization. We select best moments by a combination of sev-
eral zoom-in and zoom-out, followed by a peak in the space
time histogram of singularities and then a replay of the ac-
tion with a slow motion.

In order to combine different clues of the salient mo-
ments, we build a frieze for each different values. In figure
8, you can see on the left a soccer video frame and on the
right its actual singlets space-time histogram. Underneath,
from top to bottom, there are 5 friezes. The first frieze cor-
responds to extracted zooms: red for zoom-in and blue for
zoom out. The second frieze shows the quantity of zoom
changes within a second according a heat scale. The next
frieze shows the amount of large vectors also using a heat
scale. We use this light indicator to contrast close-up view
from large field view. The forth frieze indicates SVM clas-
sification for slow motions in close up views: red for slow
motion and blue for non slow motion. Finally the last frieze
indicates the amount of singularities: the global excitement
indicator.

A match summarization is the concatenation of de-
tected salient moments. A salient moment is detected if
within 30 seconds time frame there are:

• at least two zoom direction changes, and

• an activity peaks higher than 1500 (at least 1500 singu-
larities) in a farthest view, and

• a slow motion replay in a close up view.

Therefore, we extract a list of main moments of the
match with these rules. On these 4 matches, our method
obtains the results referred in table 4.

Unfortunately, the authors of summarization methods for
soccer games do not provide any source code nor any binary
executable to reproduce their results on our database and the
re-implementation implies either human user specifications,
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Figure 8. Top left: random frame of a soccer match. Top right:
its space time histogram. Bottom: 5 friezes that describe a salient
moment detection criteria (from top to bottom: zoom-in/out, zoom
changes count, saturation, slow motion detection and activity
score).

Match FIFA Extended
ground-truth ground-truth

Germany vs Portugal 80 % 88.9 %
Nigeria vs Argentine 53 % 77.2 %
France vs Honduras 53.7 % 90.7 %
Switzerland vs France 62.5 % 96.6 %
Mean 62.3 % 88.2 %

Table 4. Precision rate of detected salient moments by our method
over all the salient moments, using two different ground-truth (see
paragraph 4.1).

not provided thresholds or logo database collection. This
makes the comparison impossible for video summarization.

We can summarize a soccer match by extracting zooms,
by detecting slow motion and salient moments without
any hypothesis on the player movements, just in analyzing
global video motion. To compute the summary, the shots
that contains the detected activity peaks are aggregated.

Since we do not use either soccer characteristics or pro-
ducing specificities (e.g. logos), our approach is generic.
In order to confirm this, we have set all parameters of our
method for soccer and train the SVM on soccer video train-
ing set. We have then extracted salient moments on a ex-
tract of an handball match without any retraining, refining
or adaptation. The extract is a part the HDTV video of the
final of the 2015 world championship, Qatar against France
(figure 9). We detect on that extract one salient moment,
followed by one slower replay, out of the three which are
indeed in this extract ground-truth. Please notice that the
handball field is purple, and that the players are moving dif-
ferently with zone restriction rules really different from soc-
cer games.

5. Discussion
In this article, we focus on detecting salient moments as

zooms, slow motion replays and global excitement of play-

Figure 9. Frame of the extract of handball game.

ers. However our description gives other information within
the projection coefficients that could lead to a semantic de-
scription of a game.

For instance, the simple degree 0 on polynomial basis
(cf eq.1) can provide interesting information in the process
of semantic description: u0,0 and v0,0 gives the translation
on the vertical and the horizontal axis. These coefficients
from the projection of the global optical flow, as computed
for zoom detection 4.2, characterize the camera translation
and then they determine the presence of an attack phase or
a counterattack phase.

These projections can be done from any bivariable func-
tion to any degree of polynomial bivariable function. We are
currently studying these coefficients to provide other clues
on a soccer match.

In the open code, we provide the possibility to set the
degree of polynomial projection, so these other motion fea-
tures can be easily computed.

6. Conclusion
We have presented in this article a new robust multi-scale

video descriptor: the singlets. They correspond to the track-
ing of singularities in the polynomial projections of optical
flow along the temporal dimension of the video.

This descriptor proves its informativeness in detecting
zooms (in and out), slow motions and salient moments dur-
ing sport events without any ad-hoc elements (no logo, no
particular ground color), thus allowing to build relevant
sport summary.

On future works, we will evaluate the potential of sin-
glets for a retrieval task as a motion descriptor itself or as
a complementary description to a shape and color descrip-
tion.
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