Software Implementation of Synchronous Programs

Charles Ande* Frédéric Boulanger Alain Giraultf

* 13S Lab. University of Nice-Sophia Antipolis/fCNRS, France. Tel: +33 4 92 94 27 40. Earailr e@ini ce. fr
f SUPELEC, Service Informatique, France. Tel: +33 1 69 85 14 84. Enfaikder i c. Boul anger @upel ec. fr
EINRiA Rhéne-Alpes, BP project, France. Tel: +33 4 76 61 53 51. Email:ai n. G raul t @nri al pes. fr

Abstract error in an aircraft automatic pilot or in a nuclear
Synchronous languages allow a high level, concurrent, Plant controller are disastrous. Therefore these sys-
and deterministic description the behavior of reactive sys- tems require rigorous design methods and languages
tems. Thus, they can be used advantageous|y for the pro- as well as formal verification and validation of their
gramming of embedded control systems. The runtime re- behavior.
quirements of synchronous code are light, but several crit2. Temporal requirements. This concerns both the in-
ical properties must be fulfilled. put rate and the input/output response time. To check
In this paper, we address the problem of the software their satisfaction on the implementation, it is neces-
implementation of synchronous programs. After a brief sary to know bounds on the execution time of each
introduction to reactive systems, this paper formalizes computation as well as on the maximal input rate.
the notion of “execution machine” for synchronous code. 3 Concurrency requirements. It is convenient and
Then, a generic architecture for centralized execution ma- natural to design such systems as sets of components
chines is introduced. Finally, several effective implemen- that cooperate to achieve the intended behavior. Here

tations are presented. we distinguish between thepecification parallelism
. and theexecution parallelism. The latter is some-
1 Introduction times required by the implementation, while the for-
mer helps the programmer in specifying his/her sys-
1.1 Reactive Systems tem clearly and concisely.

Reactive systems are computer systems that react contin-4_ peterminism. These systems, or at least their most
uously to their environment, at a speed determined by the yitical parts, always react the same way to the same
latter [16]. This class of systems contrasts witans- inputs. This property makes their design, analysis
formational systems and interactive systems. Transfor- and debugging easier. It must therefore be preserved
mational systems are classical programs whose inputs are by the implementation.

available at the beginning of their execution, and which p programming language well suited to the design of

deliver their outputs when terminating: for instance comggctive systems should therefore be parallel and deter-

pilers. Interactive systems are programs which react cQfyiistic, and allow formal behavioral and temporal veri-
tinuously to their environment, but at their own speed: fqf-ation.

instance operating systems. Among reactive systems are
most of the industrial real-time systems: control, supervj-

; - : 2 The Synchronous Approach
frllc()ar;,t ?r?g %ﬁgﬁ:ﬂg?ggj;gn%;{t‘c’st?ms' These systems ynchronous languages have been introduced in the 80's

to make the programming of reactive systems easier [6].
1. Safety requirements. This is perhaps their most im-The purpose of these languages is to give the designer
portant feature since these systems are often criticédéal temporal primitives, thus reducing the chance of
ones. For instance, the consequences of a softwpregramming misconceptions. Instead of the interleaving

paradigm, they are based on the simultaneity principldte synchronous approach has a rigorous mathematical

all parallel activities share the same discrete time scademantics which allows the programmers to develop

Concretely, this means that the parallel statenagjirtis critical software faster and better.

viewed as the “packageib wherea andb are simultane- Finally, all synchronous languages can import and

ous. Each activity can then be dated on the discrete timanipulate external objects (constants, variables, proce-

scale; this has the following advantages: dures, and functions), specified irhast language, e.qg.,

C, ADA,...The compiling model adopted for the vari-

ous synchronous languages consists then in compiling
* Interleaving-based non-determinism disappeagge source program towards an intermediate format where

which makes program debugging, testing, anghrallelism, preemptions, local communications, and so
validating easier. on, have been transformed into sequential deterministic

Concerning the implementation, the idea is to projecbde. This intermediate format consists of several tables

this discrete time scale onto the physical time. As thad a control part. The tables describe the input/output

scale is discretenothing occurs between two consecusignals, the constants, the types, the variables, and so on.

tive instants: everything must happen as if the processtite control part is either a deterministic finite state au-

running the program were infinitely fast. This is th@- tomaton (the internal OC format), or a system of Boolean

chrony hypothesis. equations with registers (the internal DC or SSC format).
Of course, such an infinitely fast processor does not €x-both cases, the intermediate code program is compiled

ist, but it suffices that any input be treated before the nakto atransformational function in the host language.

one. In order to verify this condition, one only needs to

know the minimal input period, and an upper bound on thf3 Problem Statement

execution time of the object program. For this purpos@yhen executing synchronous programs, one must deal
synchronous languages have deliberately restricted thefiy, the big difference between the program and its en-
selves to programs that can be compiled into a finite detg[:onment. Indeed, the program is synchronous while its
ministic interpreted automaton, a control structure Whog@, ironment is intrinsically asynchronous, i.e., its evolu-

transitions are deterministic sequential programs opergis are not governed by the synchrony hypothesis.
ing on a finite memory. Each transition, whose executionAS we have said, a reactive system must react continu-

time is statically computable, corresponds to the syste{fjqy g its environment, at a speed imposed by the latter.

reaction to an input. Concretely, the program communicates with its environ-
There are numerous languages based upon f@nt through input/output signals. Input and output sig-

synchrony hypothesis: $FEREL [7], LUSTRE [14], 55 are respectively sensed and emitted by the program.

SIGNAL [17], STATECHARTS [15], SML [11], \we distinguish two kinds of sensors, and accordingly two
SYNCCHARTS[1], ARGOS[18], and SR [13]. kinds of inputs:

Synchronous languages have recently seen a]]
tremendous interest from leading companies de-® State sensors: They measure a physical value either

e Time reasoning is made simpler.

veloping automatic control software for criti- continuous (e.g. the temperature) or discrete (e.g. an
cal applications, such as CBNEIDERELECTRIC, on/off limit switch). They give the current state of
DASSAULT AVIATION, AEROSPATIALE, SNECMA, the physical value, sampled in the case of a continu-
CADENCE, TEXAS INSTRUMENTS THOMSON,...For ous one.

instance, WSTREIs used to develop the control software e Event sensors: They measure both the state changes
for nuclear plants [5] and ®RBUS planes P]. ESTEREL of a physical value (e.g., moving above a thresh-
is used to develop DSP chips for mobile phonds {o old) and the discrete events (e.g., an alarm). A state
design and verify DVD chips, and to program the flight change is by essence discrete, fleeting, and must
control software of RFALE fighters [?]. And SIGNAL is therefore be expected specifically in order to be ob-

used to develop digital controllers for airplane engines. served. We include in this part messages possibly
The key advantage pointed by these companies is that coming from other subsystems. In the case of a

large scale system, the designers often divide it inphhase), and to act upon the environment (acting phase).
several subsystems that are programmed separatElgure 1 states these interactions and emphasizes the nec-
Thus, each subsystem receives inputs from the esssary input and output treatments.

vironment as well as from other subsystems, via a

local bus (CAN, VAN, FIP, home made bus, and so Execution machine
on). This was the case of the CO3N4 nuclear plant -
controller made by SHNEIDER ELECTRIC.

The program is synchronous. From the implementa-
tion point of view, this means that it transforms instanta-
neously a tuple of inputs into a tuple of outputs. An

execute a reaction

stant of the synchronous program corresponds therefore f ‘
to the reception of a new input tuple, the reaction to these image of image of
inputs, and the emission of a new output tuple. As a con- the system commands

sequence: state to the system

. . . i

e the inputs of a same instant are synchronous since
they belong to the same tuple, Y
e the outputs are synchronous with the inputs since the ‘ sensors ‘ ‘ actuators‘

reaction of the program is instantaneous. f ‘
It follows an intrinsic mismatch between the syn-

chronous program and the asynchronous environ-
ment. Any implementation, be it software or hardFigure 1: Interactions between the execution machine and

ware, must solve this discrepancy, throughsyn- thw\gé?fﬁ@eﬁ execution machine as the combination

chronpus/asynchronousmterface, whose precise PUTPOSEqt 4 reactive machine, a transformational machine, and
remains to be stated.

a controller [2]:

e The reactive machine is made of the object program

1.4 Paper Outline : o
: : : . obtained after compiling the synchronous program,
We address in this paper the problem of implementing the interface functions for inputs and outputs, and

synchronous programs. There are two ways of imple- the run-time specific to the target processor

menting such programs: either software or hardware. We P) ; g. P '

focus here on their software implementation. We formal- ® The transformational machine implements the con-
stants, types, procedures, and functions external to

ize our problem in Section 2 by studying the interactions C
between the program, the interface, and the environment. th€ synchronous program in the chosen host lan-
guage (for instance C).

Then we present in Section 3 some practical implementa-
tions, before concluding in Section 4. e The controller coordinates everything together.
Implementations can be either centralized, or dis- As said in Section 1.2, a synchronous program is com-
tributed. This presentation focuses on the former. Tided into a function in the host language. This func-
distribution of synchronous programs raises other issué, which belongs to the above reactive machine is it-
that are beyond the scope of this paper. selftransformational and not reactive. This means that it
must be explicitly invoked, possibly with inputs, and that
. . it terminates, possibly with some results. The role of the
2 Formalization execution machine is precisely to give a reactive behavior
21 TheExecution Machine to this transformational function. To this end, the con-
The purpose of the execution machine is to actually etxeller must trigger the reactions of the program to make
ecute a synchronous program in an asynchronous envieactive to its environment. Hence the controller must
ronment, that is, to observe the current state of the eninelude anexecution loop in charge of invoking the trans-
ronment (sensing phase), to decide what to do (executfonmational function. Each invocation corresponds to an

Environment to control

instant of the synchronous program. We present in the — the sensors for the inputs coming from the en-

next section two strategies for this execution loop. vironment,

Finally, the transformational function has strictly — the local bus for inputs coming from the other
speaking neither inputs nor outputs. The program inputs subsystems.
are implicit in the sense that they are updated by dedicated In the periodic model:
functions. Concretely, to each input signal corresponds — the real-time periodic clock,
a function in charge of updating the value of the signal — the sensors for the inputs coming from the en-
(except if the signal is pure) and marking the signal as vironment,
present. These update functions must be invoked by the ~ — the local bus for inputs coming from the other
execution machine. Concerning the program outputs, they subsystems.

are explicitly emitted by output functions invoked by the For commodity reasons, we call such taskterface

transformational function. These output functions mu&dsks. Each interface task is executed concurrently with

be written by the programmer. the program, and has a higher priority. Their implementa-
It is clear that no execution machine, no matter hotign will be explained in the sequel.

fast, can react in zero time. This fact may seem red-Eachinterface task, exceptthe real-time periodic clock,

hibitory for the execution of synchronous programs. THEvokes the update function of the corresponding input.

remaining of this paper shows how to remove this obstadlds important to distinguish between the sensor reading
and achieve synchrony in non zero time. task and the sensor itself. As we have seen in Section 1.3,

continuous inputs are sampled by a sensor. This sampling
can be periodic, triggered by the program (polling), or
gven triggered by the sensor itself (smart sensor). Con-
cerning the discrete inputs, we have said that they are
fleeting and must be expected specifically: this is exactly
e In the general model, each input event triggers a ne@le purpose of the interface tasks executed concurrently
reaction of the program. with the program.
e Inthe periodic model, the program reactions are trig- All these tasks can interrupt the execution loop, which
gered at each “tick” of a real-time periodic clock. raises two problems: the consistency between inputs and
Here is the code in each case: the validity of the synchrony hypothesis. We will study
these two problems in the following sections.
Finally, let us mention the fact that the most commonly

2.2 The Execution Loop
We distinguish two models for the execution loop: th

general model and theeriodic model:

e General model:

for_each event used model in industry applications is the periodic one.
read nore inputs It is for instance the case of the nuclear plant controller
conput e next state CO3N4 of SSHNEIDER ELECTRIC, as well as the flight
emt outputs controller of the ARBUS A340 of AEROSPATIALE

end_f or _each

2.3 Consistency Between | nputs

e Periodic model: The problem of the consistency between inputs in a given

for_each tick instant comes from the possibility for a given input to be
read inputs updatedduring the program transition, that is during the
conpute next state conput e next state phase of the execution loop.
emt outputs For instance, during a reaction, as EERELprogram may

end_for_each read twice the value of an input signal. If, due to an inter-

| h | task t be taken int ruS)tion of the interface task of this input sensor, the input
n €ach case, several tasks must be taken Into acc be is updated, there will be an inconsistency.
besides the program:

Programmable logic controllers already encounter this
e In the general model: problem. In order to prevent the risk of a value change

during their reaction, they set all the input values at tigroperty ensures in particular that no input event can be
beginning of a reaction and keep them during the wholest. The importance of this property comes from the fact
reaction. that some input events are fleeting. Without the inter-
We adopt a similar solution for execution machines. Aface tasks mechanism presented in Section 2.3, in order
the inputs received since the previous instant are metaprove that the program is faster than its environment, it
orized into buffers, and then, during the reaction eaetould require to prove that the reaction time of the pro-
signal is read at most once from the buffers. Inputs ageam is systematically lower than the time lag between
thus read exclusively during theead nore i nputs any two successive input events. In any case, it is not
orread i nput s phase of the execution loop. Besidegossible to establish necessary conditions that validate the
the program has a vector of buffers, one for each of isynchrony hypothesis. The conditions that we establish in
inputs. Each buffer contains a value of the entry type artitis section are thusufficient conditions.
a Boolean telling whether or not the input has been re-Let us define formally the program reaction time as
ceived since the previous instant. As a result, the inpwtell as the input clocks:

are received by the program in the following way: e The progranbasic reaction timeis the maximal time
e When an interface task interrupts the execution loop for running the sequential code obtained after com-
because a new input has been received, it writes piling the program for the target processor. Since this
this value in the corresponding buffer and sets the code is sequential and deterministic, it is possible to
Boolean tot r ue. Any further interruption of the find an upper bound of this time from the character-
same interface task writes a new value in the buffer, istics of the target processor. This upper bound is

overwrites the previous value, and lets the Boolean
totrue. If the considered input is continuous, then
the loss of the overwritten value makes sense since
it is preferable to work with the newest value. If the
considered value is discrete, then the loss of the over-,
written value means the loss of an event: we address

what we call the basic reaction time.

The programotal reaction timeis the sum of the ba-
sic reaction time plus the execution time of all inter-
face tasks during one period of the real-time clock.
Theclock of an input, be it discrete or continuous, is
the infinite sequence of the instants when the input

this problem in the following section.
e When the program runs theead nore i nputs
or read i nputs phase, it scans the buffer vec- of its clock.

tor, and for each Boolean settto ue, itinvokesthe , orqer to compute the execution time of all interface

corresponding update function with the value of thg,ks it is necessary to know the minimal period of each

buffer. At the same time, all the Booleans are set [+ These frequencies must therefore be given in the

f al se. This scanning of the buffer vector must b%ystem specification.

executed within a critical section, S0 as to be iMPOS™ \yithin the periodic model, it suffices to satisfy two

sible to interrupt. It is the only part of the execution.qgitions to be certain that the software implementation
MODULE | X is the update function of the in,put signél he real—_tlmg clock _penod be greater than the program to-
Arrows represent the control, not the data flow. tfal reaction time: this ensures that. the'program has enqugh

' time to run between two successive ticks of the real-time
Figure 2: Theread i nputs phase of the executionclock. The second one is that the smallest of all the in-
loop puts minimal periods be strictly greater than the real-time
clock period: this ensures that no input event islost

events occur.
e Theminimal period of an input is the minimal period

24 Validity of the &/nchrony Hypothesis LIn order to determine by what margin the smallest of all the inputs
Vélidating the ‘synchrony hypothesis means proving th?{nimal periods must be strictly greater than the real-time clock period,
Itis

. . . . ; actually necessary to take into account the characteristics of the
the.pmgram |$3-5ter the}n Its en\{|r0nm_ent- This IS.phyS|-. sensor hardware: time needed to prepare and maintain the sensed value,
cal interpretation of thédeal notion of instantaneity. This minimal time between two successive acquisitions,. . .

Within the general model, a first approach consists 12 Architecture of an Execution Machine
requiring that the minimal period of thenion of all input The architectural description makes it possible to under-
clocks be greater than the program basic reaction tingéand what are the main functional components of the ex-
The union clock is the infinite sequence of the instants 8¢ution machine, and their interactions.
all the input events. A first relaxation consists in exclud-
ing the continuous inputs from the clocks union, and th&2-1 Information Flows
in triggering a sampling of each continuous input duringn execution machine is a reactive system whose purpose
ther ead nore i nputs phase of the execution loop.s to react to incoming information by generating output
Still with this approach, the period of the union clock camformation. This role has been explained in Section 2.1.
be very small. A second relaxation consists in considerifigpese information flows have to lsentrolled: dedicated
the infinite sequence of time slots whemaly one input control signals are in charge of that. Possible dysfunctions
event occurs. The minimal period of this union clock isf the execution machine are indicated by exceptions sig-
greater. nals.

In conclusion, the general case is much more constrain-
ing to validate than the periodic case. This is one of tt&2.2 Control
reasons why the periodic model is the most employed{f,q set of control signals includes:

industry.
e An input signalbegin of instant (Bol), which is

compulsory. Its occurrence triggers a new reaction
)) of the execution machine.
3 Practical | mplementatlons ¢ An output signaknd of instant (Eol), which is also

31 Introduction compulsory. This signal is emitted by the execution

machine, after the output image has been updated.
With respect to the environment, the occurrence of

(Eol) indicates the end of the current reaction.

We presentin this section some techniques for implement-
ing synchronous execution machines. Besides the formal
aspects seen in Section 2, these techniques allow the tak- .) .]
ing into account of the practical aspects of the implemen-® OPtional control signals, which are used for fine con-
tation, that depend on the programming model, the hard- trol of the execution machine. They are especially

ware environment, and the context where the synchronous USeful for hierarchical execution machines. They can
program is used. stop, suspend, resume, and re-initialize the execu-

First, we explain how to satisfy the constraints estab- tion.

lished in Section 2. It consists of a finer description level
where we describe usable mechanisms and technique
We also draw the attention on possible problems. Su
dysfunctions must be considered as warnings to the rea
willing to design its own synchronous execution machin
F"?a”y’ we prese.nt some (_affective implementations, "&lock. of course, th&ol associated with 8ol must be
stricted to centralized solutions. emittedbefore the end of the clock period.
Concerning the practical implementations, few de-

tailed documents are available. The documentation 93 Monitoring _ _ _
ESTEREL-V5 [8], given along with the compiler distribu- Observers can be used to monitor the execution machine.

tion, includes low level informations on the GiEereL IN the case of an abnormal behavior of the machine (not
interface. Of course, these only concersTEREL Yet, ©f the program), an exception signal is emitted.
while the problem of the synchronous execution machine These exception signals are, above all, warnings sent to

is not specifically treated there, this documentation is velije user of the execution machine. Clearly, raising an ex-
useful for designers. ception signal means that the implementati&mo longer

In this section, we consider only the first two signals.
She respective dates of occurrenceBufl and Eol

st be such that the synchrony hypothesis is satisfied
&e Section 2.3). The simplest case is the periodic activa-
on: Bol signals are periodically emitted by an external

running under the synchronous hypothesis. Themmser 3. Data overwriting. Observers can be attached to ac-

be kept informed of this problem. quisitions and actuations. Overwriting a value means
In more sophisticated execution machines (e.g., fault- that the application is no longer run in real-time.

tolerant execution machines), exception signals can be

handled by a higher-level execution machine. The up2.4 Structure

per machine can then force actions in the lower Mgne various functionalities of the execution machine can
chine through the optional above-mentioned control Sige assigned to dedicated modules (Figure 3). Dashed lines
nals. The user must be cautious with this kind of “contrgle fiows of control, whereas solid lines are data flows.
loop™ in execution machines: the handling of an excep-is the input tuple presented to tgnchronous kernel.
tion may cause the execution machine to violate timinghe kernel computes the reaction and generates the output
constraints. The cure will be worse than the disease! tupleO.
Below, we list some typical dysfunctions; this listis not The controller ensures the correct synchronous behav-
exhaustive: ior: atomic reaction and bounded reaction time. In its sim-
1. Miolation of arelation. Suppose that the user has deplest form, the controller is a sequencer whose behavior
clared in his/her program thatandB are two exclu- can be expressed by the following EEREL-like pseudo-
sive signals (i.e., never simultaneously present). THigde:
assertion may be violated during a reaction. The rea-
son for this violation may be either a lack of knowl- exceptions
edge about the environment, or a sensor failure. The
latter is a chance event that can be detected only
while the system is operating. The former is a mis-
conception and should be avoided by rigorous de- observers
sign methodologies. In both cases, since violations
may lead to unpredictable executions, the execution inputs

—».»

outputs

machinemust not ignore this violation. A possible ————

; ; PP ; ﬁ synchronous ?
conservative strategy is to “filter” faulty signals, so—— | |NpUTS = el | OUTPUTS———
that onlyacceptableevents are considered for execu-

tions. There exist several filtering techniques; none
is fully satisfactory. Whatever the recovering politic

A
|
adopted, all violations must be reported by the exe- T \ -7

cution machine.]
|
|
|

2. Lasting transition. An execution machine can arm
a watchdog at each beginning of a reaction. If the
transition is not terminated before the deadline, an
exception is raised. This exception can be due to
a transient overloading of the system or to errors in
the user’s program. The latter is often due to exeyi ti al i zati on
cution of the transformational parts of the programg, o, y Bol do

v

control

Figure 3: Execution Machine: Structure

(e.g., calls to external functions or procedures). Itis read inputs: build I:
the responsibility of the designer to ensure that ex- react -
ternal transformational parts of his/her program have build O write outputs:

a bounded and known duration. When this proPerB’nd_every

cannot be guaranteed, asynchronous executions must

be considered for this data processing (see below theThis pseudo-code is compatible with the one presented
notion of “task” in ESTEREL). in Section 2.2. Auxiliary variables have been introduced

and some phases refined. For instancertbad i n-

put s phase of the execution loop is refined into a sub-

phase of input acquisitiorr @ad i nput s) and a sub-
phase of input tuple constructiopyi | d I).

3.25 Inputs/Outputs

The consistency of inputs has been analyzed in Sed— >

tion 2.3. Moduled nput andCut put in Figure 3 make

and the environment. They are, themselves, reactive sys-
tems with their own control flows and data flows. Figure 4 > R

the necessary interfacing between the synchronous kernel a ()
A —

shows a possible refinement of the input module.

SR
— A 4»@—»
> R
AN .
N .
Event B
builder
N -

e Modules A are interface tasks described in Sec-
tion 2.2. They may be interruption handlers or pe- Figure 4. Execution Machind:nput Module

ripheral drivers. A signaR (for “Reading”) triggers
the sending of a valua.

3.2.6 Asynchronous Execution: ESTERELTasks

e This information is consumed by an optional filterAmong synchronous languagess EERELIs the only one
ing moduleF that produces signals (with the synto supportlasting activities, through theasynchronous
chronous language meaning of this word). Thedask mechanism. Since this mechanism interferes with
filtering modules are useful for imperative synthe synchronous/asynchronous interface, we address it
chronous languages since they give greater imp@pPecifically in this section. Contrary to functions or pro-
tance to events instead of values. Consider for iaedures that are supposed to take no time (synchrony hy-

stance an BTEREL program. Leta be the logi-

pothesis), an ETERELtask may have any non null dura-

cal level 0 or 1 at a push button. When presse_til?n- A tas_k can perform heavy data processing or activ-
the button changes from 0 to 1. Now, suppose ttiées not directly controlled by the synchronous program

ESTEREL program has a pure input sighatalled

(e.g., moving a robot). The body of the task is executed

But t on_Pr essed. In this case, the filtering mod-asynchronously with respect to the synchronous program.

ule will generate signaButt on_Pr essed at in-

Interactions with the ETEREL program are very limited.

stantk, if and only if, a was 0 at instant — 1 and 1 Without entering into details:

at instant: (i.e., the Boolean expressian—_1 A ay,).
For a declarative language likeUsTRE, this “edge

e The task is launched by axec statement;

detection” would have been done by the program it- ¢ When the task terminates,rat ur n signal is sent

self.

e Thet upl e bui | der module consumes possibly
filtered signals and generates the current input tuple
| . This generator, in the simplest cases, does a con-
catenation of signals. In the case of a relation viola-

tion, it can also perform extra filtering operations.

to the synchronous kernel,

e In order to respect the semantics of the language,
when a task is executed within the scope of an abort
or a suspend, the asynchronous task has to be killed,
suspended, and resumed under the control of the syn-
chronous kernel.

All these events exchanged by the synchronous kernel
and the asynchronous tasks, are also controlled by the ex-

2|n ESTEREL a pure signal is a signal that conveys no value. Orgcution machine. See [9] for a detailed description of task

its presence or absence is of interest.

execution and possible solutions.

3.2.7 Somelmplementations ESTEREL modules or IUSTRE nodes). The first limita-

An execution machine can be small yet very efficienfon iS that instantaneous communication loops between
This is the case for micro-controller-based implementigactive machines aferbidden. Such loops can be han-
tions. For instance, an execution machine farEreL dled by the synchronous compiler since it knows the in-
programs has been implemented on the Harris’' RTx20¢#/nal details of each module and is able to determine
micro-controller [3]. Implementations on PC usually rewhether the loops are causal or not, and if so, to compute
lies on some real-time operating system (RTOS). Tifage behavior of the synchronous system. However, from
authors have developed applications running under R¥¢€ point of view of an execution machine, a reactive ma-
(Real-Time Craft) and CHORUS [4]. More generic maghine is a black box, and it is not possible to know if an
chines, but for soft real-time applications are presentétptantaneous communication loop between several reac-
in the Boufaéd's thesis [9]. With these machines, ea,:%ge machines is causal without more information about
configuration of inputs/ouputs and module reuses, are internals of the boxes. _The second I|m|tat|on_|s that
main concern. the topology of the connections between the reactive ma-
The next section develops the implementation of a ceflines must betatic, that is it is not possible to create

tralized execution machine composed of several “reactiggnamically new reactive machines or new connections.
machines” We address first the basic case (no instantaneous loops

and no dynamic reconfigurations), before relaxing these
two limitations in Sections 3.3.6 and 3.3.7.
3.3 Centralized Execution Machines .
As seen in Section 2.1, an execution machine is composed1 Logical Instants
of a reactive machine, a transformational machine andAflogical instant is defined to be the reaction of the exe-
a controller that coordinates their operation.céatral- cution machine to a tuple. This leads to the following:
ized execution machine is an execution machine with only A L .
; e Atthe beginning of alogical instant, every signal has
one controller. This controller manages the synchronous 7
. . the same value and is in the same state for all the
code, input and output operations, and the transforma- . .
tional code. Adistributed execution machine has several reactive machines.
controllers that work together for synchronously execut- ® At the beginning of a logical instant, each reactive
ing several reactive machines. machine is in a completely determined state. There
The centralized execution machine is the simplest to IS no state transition during a logical instant, only the
implement since it has global control over input, output ~ computation of the next state of the machine.
and synchronous code. Two cases arise:

. . . 3.3.2 Sequential Execution of Reactive M achines
e the execution machine has only one reactive ma-

chine: it must provide it with a clock and inputs, ané{Vhen there is no instantaneous communication loop be-

must drive its outputs to the outer world (see the prév_veen the synchronous compilation units, there always
vious subsection): exists a partial order induced by the dependencies be-

] tween the corresponding reactive machines. Thus, the ex-
e the synchronous code is composed of several reggytion machine is able to chose an activation schedule
tive machines: it must provide them with a mechanat is compatible with this partial order. The execution
nism for communicating synchronously. machine must also propagate the signals that were emit-
The second case is the most general and encompasseésluring the reaction of a reactive machine so that they
the first one. It allows, with some restrictions, to link sevare seen in the same instant by the reactive machines that
eral synchronous modules that were compiled separatébflow it in the schedule.
We discuss in this section the case of several reactive maThe schedule is determined once for all the instants
chines. since the connections between the machines do not
There are two limitations when using several reachange. At each instant, the execution machine sends the
tive machines (for instance, several separately compilBdl control signal to each reactive machine so that they

are all in the same logical instant. When the machines aréProcessing the beginning of the instant is generally a
ready to process the new instant, the execution machmatter of setting the outputs absent. But for an input ma-
activates them according to the schedule. The activatichine, the outputs are set according to the data coming
of a reactive machine consists of three steps: build its ifnrem the interface tasksA(modules in Figure 4). Sim-
put tuple, compute its state for the next instant, and buildrly, a “delay” reactive machine will set its output ac-
its output tuple. Last, when all the reactive machines hawerding to the input it has received at the previous instant.
been activated, the execution machine sends thefdhe During the activation, the machine builds its input tu-
control signal that marks the end of the instant. ple, then determines its next state and the output tuple.

The input and output tuples are built during the activd=or an input machine, the output tuple was built when
tions because some inputs of a machine may be produggdcessing the beginning of the instant. However, such
by another machine which is activated earlier in the schedmachine may compute its next state if its method for
ule, so the input tuple of each machine cannot be built @@nerating tuples depends on the data it receives from the
the beginning of the instant. interface tasks.

The inputs and outputs of the system must be handledn most cases, processing the end of the instant is
separately because, to preserve the synchronous senf@i€ly setting the state of the machine to the state that
tics, the reactive machines must have the same viewV¥s computed during the activation. For output machines,
the outer world: if a signal is present at a given instant,Rfocessing the end of the instant consists in propagating
must be present at this same instant for all the reactive ifa€ output of the system to the outer world.
chines. Therefore, we cannot allow each reactive machigg g I ter ating Reactive M achines

to sample the inputs of the system during its act|vat|on.|f the execution machine knows some information con-

. cerning the dependencies between the outputs and the in-
333 Input/Output Machines puts of the reactive machines, and if these machines are
One method of ensuring the consistency of the inputs fable to compute some of their outputs without knowing all
all the reactive machines in a system while preserving thigeir inputs, instantaneous communication loops between
execution model, is to use reactive machines to handle fe@ctive machines may be allowed. For this, we need to
inputs and the outputs of the system. From the point ensider two kinds of reactive machines:

view of the execution machine, an input reactive machine, gyrict machines, that need to know all their input to
has only outputs, so its does not depend on any other ma- pa apje to compute any of their outputs,

chine and will be executed at the beginning of the sched- . . .
. . .~ e non-strict machines, that may compute some of their
ule. Conversely, an output reactive machine has only in- . . -
outputs without knowing all their inputs.

FhUtS’nsc? r;c;hothe;]mdaclhme depends on it and it will be atWhen all reactive machines are strict, instantaneous
€e 0_ € schedule. . . loops are forbidden, and the execution machine uses se-
These input/output machines are a way to mpleme&gentia' execution as discussed above

thel nput andQut put modules of Figure 3. Although \yhen some reactive machines are non-strict, they are

they are reactive, these machines are seldom written,ify, e to appear in instantaneous loops. Edwards proved
a synchronous language but rather in the implementatigpy if hese machines arsonotonic, that is if they com-
language of the execution ma(?hlne. They are similar {040 more of their outputs when they are provided with
drivers in an operating system: they provide an abstragh e of their inputs, the behavior of the synchronous sys-
view of the environment of the synchronous systemin the, s the unique fixed point reached by iterating the re-

form of tuples. action of the machines [13]. Moreover, the number of
))) iterations and the sequence of the activations in each it-

3.34 Benavior of a ReactiveMachine eration can be statically determined from the topology of

The behavior of a reactive machine can be seen as méuke synchronous system.

of three phases: processing the beginning of the instantThe key idea is to consider the tuple of all inputand

activation, and processing the end of the instant. outputso of the system, and to consider the system as a

function that produces a new tugfle, o) fromthe oneit 3.3.6 Generic Execution Machines and Synchronous
receives, as shown on Figure 5: Objects

An execution machine may be designed specifically for
a set of reactive machines, but it is possible to design a
generic execution machine that may execute any set of

Y

s e reagtive mraghipes with known properties: is the system
€ S - Rlynamic, lare t i ication |
» s i ,\are there instantaneous communication loops...

We-have developed in [10] such a generic execution ma-
chine.

Rigyredreprateinidthét I9ep d &Rvivaient Stpasypiem This scheme requires a standard interface for the reac-
present signal by’ and an absent signal by. These val- tive machines so that the execution machine may manage
ues are partially ordered, the corresponding partial ord&em without knowing their internal details: we need an
being shown in Figure 6(a). Such a partial order can B#stract notion of a reactive machine.
extended to two signals, as shown in Figure 6(b): accord-Object oriented languages allow the definition of ab-
ing to this order(A, P) is more determined thapL, P), stract entities and the refinement of their behavior for
but (4, P) may not be compared t@°, L). By general- more concrete entities. Once we have defined the abstract
izing ton signals, it is possible to sort the possible valuggactive machine as a class, we are able to implement a
ofthe(i, o) tuple from the less determined to the mogarticular reactive machine as a subclass. Such subclasses

determined. are named “synchronous classes”, and instances of these
PP AP PA AA classes are “synchronous objects” [10].
Any synchronous class must be able to process the be-
‘ >< >< ‘ ginning of the instant, the activation, and the end of the
P PL AL LA instant. It may be useful to be able to get the list of sig-
nals and the dependencies between outputs and inputs for
W such a class. Each synchronous class implements these
1L services according to its intended behavior, but what is

inportant is that the execution machine does not need to

Eigure 6: (a) Partial _order onasingle signal tuple (b) Pﬂmow the details: it is enough for it to know that a syn-
HalPHER" RILBIYE HI8ERITESIBre considered as functigfifonous objet will answer its request to process the be-

that compute signal tuples, the condition for the existen@pnning of the instant for instance.

and uniqueness of the fixed point is that these functionstye ey ecution machine is a class library that provides
are monotonic for the partial order on signal tuples. Thige reactive machines with everything they need to run:
property merely ensures that only undetermined signals,eqying, definition of the logical instants, communica-
may change during a partial reaction of the machine. |t petveen reactive machines, and input/output.
implies also that the value of a valued signal cannot be

changed once itis determined. _ 3.3.7 Dynamic Synchronous Behaviors
The main difference between this execution model and

the sequential model is that the output tuple is built i 9&neric execution machine may allow the creation

several steps, and the next state of a machine canno@pd/0r destruction of reactive machines, as well as
computed before the end of the instant. changes in the interconnection of the machines during

This iterative execution model is used in the “SyrF—heir execution. This allows synchronous systems to be
chronous Reactive” (SR) and “Synchronous Reactive c&lnam_c: th(_elr reaction to an input tuple can Igad to_ a
Code Generation” (SRCGC) domains of thedREMY reconfiguration of the system. Dynamic reconfiguration

Classié system developed at the EECS department of tfiY Pe used to switch from a full featured system to a
; ; ; ia at Berkeley. basic system in case a failure makes some resource un-

3http://ptolemy.eecs.berkeley.edu available.

However, a dynamic synchronous system is still a syRefel‘ ences

chronous system, so it cannot charyeing an instant.

Therefore, the execution machine must record the rddl C. André. Representation and analysis of reactive behav-

guests for changes and process them between the end of
the current instant and the beginning of the next instant.

iors: A synchronous approach. GESA’' 96, Lille, France,
July 1996. IEEE-SMC.

Such changes may invalidate the schedule, so the exeddl C. André and M.-A. Rraldi. Effective implementation of

tion machine must compute a new schedule each time it
processes reconfiguration requests between two instants.
It may then discover that the reconfiguration leads to a
invalid system for which no schedule can be found. Such

a case should be signaled through the exception mecha-) o
[4] C. André, A. Ressouche, and J-M. Tanzi. Combining spe-

nism discussed earlier in Section 3.2.3.

4 Conclusion

We have addressed in this paper the problem of executirié]
a synchronous program in an intrinsically asynchronous

environment. The main issue concerns the satisfaction
of the synchrony hypothesis by the implementation. Wg7]

have proposed an implementable model, catbesgution

machines, to solve this problem. The purpose of an exe-
cution machine is to ensure that the synchronous prograf8]
performs atomic reactions and meets the imposed real-

time constraints.

We have shown that for control oriented applications
centralized solutions can be achieved easily and effi-
ciently. We have stated several constraints on the rate
inputs and the reaction time of the synchronous program

that must be satisfied by the implementation.

For applications where the real-time constraints are lg$4]
strict, we have presented more sophisticated solutions that
allow, for instance, the execution of several synchronous
modules that have been compiled separately, even in the
presence of instantaneous communication loops and dy-

namic reconfiguration.

This presentation does not pretend to be exhaustive.
For instance, the class of distributed implementations of
synchronous programs has not been discussed. There
exist such implementations of distributed execution mgr3)
chines. The interested readers may refer to already pub-

lished papers [12, 19].

EsTERELprograms. Irbth Euromicro Workshop on Real-
Time Systems, Oulu, Finland, June 1993.

B3l C. André and M-A. Rraldi. Predictability of ®&Tx2000-

based implementatioriReal-Time System, 10(3):223—-244,
May 1996.

cial purpose and general purpose languages in real-time
programming. In\brkshop on Programming Languages

for Real Time Industrial Applications, Madrid (Spain), De-
cember 1998. IEEE.

J.-L. Bergerand and E. PilaudABA: A software develop-
ment environment for dependability in automatic control.
In SAFECOMP’ 88. Pergamon Press, 1988.

G. Berry and A. Benveniste. The synchronous approach to
reactive and real-time systemBroceedings of the |EEE,
79(9):1270-1282, September 1991.

G. Berry and G. Gonthier. ThedgERELSsynchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87—-152, 1992.

G. Berry and the BTERELTeam.The ESTEREL-V5 Docu-
mentation. CMA/INRIA, Sophia-Antipolis, France, 1998.
Available at http://www.esterel.org.

H. Boufaied. Machines d’exécution pour langages syn-
chrones. PhD Thesis, Universitde Nice-Sophia Antipolis,
November 1998.

F. Boulanger.Intégration de Modules Synchrones dans la
Programmation par Objets. PhD Thesis, UnivergitParis
XI — Orsay, Orsay, France, 1993.

M.C. Browne and E.M. Clarke. SML: A high-level
language for the design and verification of finite state
machines. Ininternational Working Conference from
HDL Descriptions to Guaranteed Correct Circuit Designs,
Grenoble, France, September 1986. IFIP.

P. Caspi and A. Girault. Execution of distributed reactive
systems. In S. Haridi, K. Ali, and P. Magnusson, edi-
tors, 1st International Conference on Parallel Processing,
EURO-PAR' 95, volume 966 o NCS, pages 15-26, Stock-
holm, Sweden, August 1995. Springer-Verlag.

S. Edwards. The Specification and Execution of Hetero-

geneous Synchronous Reactive System. PhD Thesis, UC
Berkeley, Berkeley, CA, 1997.

[14]

[15]

[16]

[17]

(18]

[19]

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming languagestrRE
Proceedings of the IEEE, 79(9):1305-1320, September
1991.

D. Harel. SATECHARTS:. A visual approach to complex
systems . Science of Computer Programming, 8(3), 1987.

D. Harel and A. Pnueli. On the development of reactive
systems. InLogic and Models of Concurrent Systems,
NATO. Springer-Verlag, 1985.

P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire.
Programming real-time applications withGAL. Pro-
ceedings of the IEEE, 79(9):1321-1336, September 1991.

F. Maraninchi. Operational and compositional semantics
of synchronous automaton compositions. In W.R. Cleave-
land, editor3rd International Conference on Concurrency
Theory, CONCUR' 92, volume 630 ofLNCS, pages 550—
564, Stony Brook, USA, August 1992. Springer-Verlag.

Y. Sorel. Massively parallel computing systems with real
time constraints, the “algorithm architecture adequation”
methodology. InMassively Parallel Computing Systems
Conference, Ischia, Italy, May 1994.

