
Software Implementation of Synchronous Programs

Charles Andr´e� Frédéric Boulangery Alain Giraultz

� I3S Lab. University of Nice-Sophia Antipolis/CNRS, France. Tel: +33 4 92 94 27 40. Email:andre@unice.fr
y SUPÉLEC, Service Informatique, France. Tel: +33 1 69 85 14 84. Email:Frederic.Boulanger@supelec.fr
z INRIA Rhône-Alpes, BIP project, France. Tel: +33 4 76 61 53 51. Email:Alain.Girault@inrialpes.fr

Abstract
Synchronous languages allow a high level, concurrent,
and deterministic description the behavior of reactive sys-
tems. Thus, they can be used advantageously for the pro-
gramming of embedded control systems. The runtime re-
quirements of synchronous code are light, but several crit-
ical properties must be fulfilled.

In this paper, we address the problem of the software
implementation of synchronous programs. After a brief
introduction to reactive systems, this paper formalizes
the notion of “execution machine” for synchronous code.
Then, a generic architecture for centralized execution ma-
chines is introduced. Finally, several effective implemen-
tations are presented.

1 Introduction

1.1 Reactive Systems
Reactive systems are computer systems that react contin-
uously to their environment, at a speed determined by the
latter [16]. This class of systems contrasts withtrans-
formational systems and interactive systems. Transfor-
mational systems are classical programs whose inputs are
available at the beginning of their execution, and which
deliver their outputs when terminating: for instance com-
pilers. Interactive systems are programs which react con-
tinuously to their environment, but at their own speed: for
instance operating systems. Among reactive systems are
most of the industrial real-time systems: control, supervi-
sion, and signal-processing systems. These systems must
meet the following requirements:

1. Safety requirements. This is perhaps their most im-
portant feature since these systems are often critical
ones. For instance, the consequences of a software

error in an aircraft automatic pilot or in a nuclear
plant controller are disastrous. Therefore these sys-
tems require rigorous design methods and languages
as well as formal verification and validation of their
behavior.

2. Temporal requirements. This concerns both the in-
put rate and the input/output response time. To check
their satisfaction on the implementation, it is neces-
sary to know bounds on the execution time of each
computation as well as on the maximal input rate.

3. Concurrency requirements. It is convenient and
natural to design such systems as sets of components
that cooperate to achieve the intended behavior. Here
we distinguish between thespecification parallelism
and theexecution parallelism. The latter is some-
times required by the implementation, while the for-
mer helps the programmer in specifying his/her sys-
tem clearly and concisely.

4. Determinism. These systems, or at least their most
critical parts, always react the same way to the same
inputs. This property makes their design, analysis
and debugging easier. It must therefore be preserved
by the implementation.

A programming language well suited to the design of
reactive systems should therefore be parallel and deter-
ministic, and allow formal behavioral and temporal veri-
fication.

1.2 The Synchronous Approach
Synchronous languages have been introduced in the 80’s
to make the programming of reactive systems easier [6].
The purpose of these languages is to give the designer
ideal temporal primitives, thus reducing the chance of
programming misconceptions. Instead of the interleaving



paradigm, they are based on the simultaneity principle:
all parallel activities share the same discrete time scale.
Concretely, this means that the parallel statementakb is
viewed as the “package”ab wherea andb are simultane-
ous. Each activity can then be dated on the discrete time
scale; this has the following advantages:

� Time reasoning is made simpler.

� Interleaving-based non-determinism disappears,
which makes program debugging, testing, and
validating easier.

Concerning the implementation, the idea is to project
this discrete time scale onto the physical time. As the
scale is discrete,nothing occurs between two consecu-
tive instants: everything must happen as if the processor
running the program were infinitely fast. This is thesyn-
chrony hypothesis.

Of course, such an infinitely fast processor does not ex-
ist, but it suffices that any input be treated before the next
one. In order to verify this condition, one only needs to
know the minimal input period, and an upper bound on the
execution time of the object program. For this purpose,
synchronous languages have deliberately restricted them-
selves to programs that can be compiled into a finite deter-
ministic interpreted automaton, a control structure whose
transitions are deterministic sequential programs operat-
ing on a finite memory. Each transition, whose execution
time is statically computable, corresponds to the system
reaction to an input.

There are numerous languages based upon the
synchrony hypothesis: ESTEREL [7], L USTRE [14],
SIGNAL [17], STATECHARTS [15], SML [11],
SYNCCHARTS [1], A RGOS[18], and SR [13].

Synchronous languages have recently seen a
tremendous interest from leading companies de-
veloping automatic control software for criti-
cal applications, such as SCHNEIDER ELECTRIC,
DASSAULT AVIATION , AÉROSPATIALE, SNECMA,
CADENCE, TEXAS INSTRUMENTS, THOMSON,. . . For
instance, LUSTREis used to develop the control software
for nuclear plants [5] and AIRBUS planes [?]. ESTEREL

is used to develop DSP chips for mobile phones [?], to
design and verify DVD chips, and to program the flight
control software of RAFALE fighters [?]. And SIGNAL is
used to develop digital controllers for airplane engines.
The key advantage pointed by these companies is that

the synchronous approach has a rigorous mathematical
semantics which allows the programmers to develop
critical software faster and better.

Finally, all synchronous languages can import and
manipulate external objects (constants, variables, proce-
dures, and functions), specified in ahost language, e.g.,
C, ADA,. . . The compiling model adopted for the vari-
ous synchronous languages consists then in compiling
the source program towards an intermediate format where
parallelism, preemptions, local communications, and so
on, have been transformed into sequential deterministic
code. This intermediate format consists of several tables
and a control part. The tables describe the input/output
signals, the constants, the types, the variables, and so on.
The control part is either a deterministic finite state au-
tomaton (the internal OC format), or a system of Boolean
equations with registers (the internal DC or SSC format).
In both cases, the intermediate code program is compiled
into a transformational function in the host language.

1.3 Problem Statement
When executing synchronous programs, one must deal
with the big difference between the program and its en-
vironment. Indeed, the program is synchronous while its
environment is intrinsically asynchronous, i.e., its evolu-
tionsare not governed by the synchrony hypothesis.

As we have said, a reactive system must react continu-
ously to its environment, at a speed imposed by the latter.
Concretely, the program communicates with its environ-
ment through input/output signals. Input and output sig-
nals are respectively sensed and emitted by the program.
We distinguish two kinds of sensors, and accordingly two
kinds of inputs:

� State sensors: They measure a physical value either
continuous (e.g. the temperature) or discrete (e.g. an
on/off limit switch). They give the current state of
the physical value, sampled in the case of a continu-
ous one.

� Event sensors: They measure both the state changes
of a physical value (e.g., moving above a thresh-
old) and the discrete events (e.g., an alarm). A state
change is by essence discrete, fleeting, and must
therefore be expected specifically in order to be ob-
served. We include in this part messages possibly
coming from other subsystems. In the case of a



large scale system, the designers often divide it into
several subsystems that are programmed separately.
Thus, each subsystem receives inputs from the en-
vironment as well as from other subsystems, via a
local bus (CAN, VAN, FIP, home made bus, and so
on). This was the case of the CO3N4 nuclear plant
controller made by SCHNEIDER ELECTRIC.

The program is synchronous. From the implementa-
tion point of view, this means that it transforms instanta-
neously a tuple of inputs into a tuple of outputs. Anin-
stant of the synchronous program corresponds therefore
to the reception of a new input tuple, the reaction to these
inputs, and the emission of a new output tuple. As a con-
sequence:
� the inputs of a same instant are synchronous since

they belong to the same tuple,
� the outputs are synchronous with the inputs since the

reaction of the program is instantaneous.
It follows an intrinsic mismatch between the syn-

chronous program and the asynchronous environ-
ment. Any implementation, be it software or hard-
ware, must solve this discrepancy, through asyn-
chronous/asynchronous interface, whose precise purpose
remains to be stated.

1.4 Paper Outline
We address in this paper the problem of implementing
synchronous programs. There are two ways of imple-
menting such programs: either software or hardware. We
focus here on their software implementation. We formal-
ize our problem in Section 2 by studying the interactions
between the program, the interface, and the environment.
Then we present in Section 3 some practical implementa-
tions, before concluding in Section 4.

Implementations can be either centralized, or dis-
tributed. This presentation focuses on the former. The
distribution of synchronous programs raises other issues
that are beyond the scope of this paper.

2 Formalization
2.1 The Execution Machine
The purpose of the execution machine is to actually ex-
ecute a synchronous program in an asynchronous envi-
ronment, that is, to observe the current state of the envi-
ronment (sensing phase), to decide what to do (execution

phase), and to act upon the environment (acting phase).
Figure 1 states these interactions and emphasizes the nec-
essary input and output treatments.

image of

the system

state

image of

commands

to the system

execute a reaction

sensors actuators

Environment to control

synchronous code

Execution machine

Figure 1: Interactions between the execution machine and
the environmentWe define an execution machine as the combination
of a reactive machine, a transformational machine, and
a controller [2]:

� The reactive machine is made of the object program
obtained after compiling the synchronous program,
the interface functions for inputs and outputs, and
the run-time specific to the target processor.

� The transformational machine implements the con-
stants, types, procedures, and functions external to
the synchronous program in the chosen host lan-
guage (for instance C).

� The controller coordinates everything together.
As said in Section 1.2, a synchronous program is com-

piled into a function in the host language. This func-
tion, which belongs to the above reactive machine is it-
self transformational and not reactive. This means that it
must be explicitly invoked, possibly with inputs, and that
it terminates, possibly with some results. The role of the
execution machine is precisely to give a reactive behavior
to this transformational function. To this end, the con-
troller must trigger the reactions of the program to make
it reactive to its environment. Hence the controller must
include anexecution loop in charge of invoking the trans-
formational function. Each invocation corresponds to an



instant of the synchronous program. We present in the
next section two strategies for this execution loop.

Finally, the transformational function has strictly
speaking neither inputs nor outputs. The program inputs
are implicit in the sense that they are updated by dedicated
functions. Concretely, to each input signal corresponds
a function in charge of updating the value of the signal
(except if the signal is pure) and marking the signal as
present. These update functions must be invoked by the
execution machine. Concerning the program outputs, they
are explicitly emitted by output functions invoked by the
transformational function. These output functions must
be written by the programmer.

It is clear that no execution machine, no matter how
fast, can react in zero time. This fact may seem red-
hibitory for the execution of synchronous programs. The
remaining of this paper shows how to remove this obstacle
and achieve synchrony in non zero time.

2.2 The Execution Loop
We distinguish two models for the execution loop: the
general model and theperiodic model:

� In the general model, each input event triggers a new
reaction of the program.

� In the periodic model, the program reactions are trig-
gered at each “tick” of a real-time periodic clock.

Here is the code in each case:

� General model:

for each event
read more inputs
compute next state
emit outputs

end for each

� Periodic model:

for each tick
read inputs
compute next state
emit outputs

end for each

In each case, several tasks must be taken into account
besides the program:

� In the general model:

– the sensors for the inputs coming from the en-
vironment,

– the local bus for inputs coming from the other
subsystems.

� In the periodic model:

– the real-time periodic clock,
– the sensors for the inputs coming from the en-

vironment,
– the local bus for inputs coming from the other

subsystems.
For commodity reasons, we call such tasksinterface

tasks. Each interface task is executed concurrently with
the program, and has a higher priority. Their implementa-
tion will be explained in the sequel.

Each interface task, except the real-time periodic clock,
invokes the update function of the corresponding input.
It is important to distinguish between the sensor reading
task and the sensor itself. As we have seen in Section 1.3,
continuous inputs are sampled by a sensor. This sampling
can be periodic, triggered by the program (polling), or
even triggered by the sensor itself (smart sensor). Con-
cerning the discrete inputs, we have said that they are
fleeting and must be expected specifically: this is exactly
the purpose of the interface tasks executed concurrently
with the program.

All these tasks can interrupt the execution loop, which
raises two problems: the consistency between inputs and
the validity of the synchrony hypothesis. We will study
these two problems in the following sections.

Finally, let us mention the fact that the most commonly
used model in industry applications is the periodic one.
It is for instance the case of the nuclear plant controller
CO3N4 of SCHNEIDER ELECTRIC, as well as the flight
controller of the AIRBUS A340 of AÉROSPATIALE.

2.3 Consistency Between Inputs
The problem of the consistency between inputs in a given
instant comes from the possibility for a given input to be
updatedduring the program transition, that is during the
compute next state phase of the execution loop.
For instance, during a reaction, an ESTERELprogram may
read twice the value of an input signal. If, due to an inter-
ruption of the interface task of this input sensor, the input
value is updated, there will be an inconsistency.

Programmable logic controllers already encounter this
problem. In order to prevent the risk of a value change



during their reaction, they set all the input values at the
beginning of a reaction and keep them during the whole
reaction.

We adopt a similar solution for execution machines. All
the inputs received since the previous instant are mem-
orized into buffers, and then, during the reaction each
signal is read at most once from the buffers. Inputs are
thus read exclusively during theread more inputs
or read inputs phase of the execution loop. Besides,
the program has a vector of buffers, one for each of its
inputs. Each buffer contains a value of the entry type and
a Boolean telling whether or not the input has been re-
ceived since the previous instant. As a result, the inputs
are received by the program in the following way:
� When an interface task interrupts the execution loop

because a new input has been received, it writes
this value in the corresponding buffer and sets the
Boolean totrue. Any further interruption of the
same interface task writes a new value in the buffer,
overwrites the previous value, and lets the Boolean
to true. If the considered input is continuous, then
the loss of the overwritten value makes sense since
it is preferable to work with the newest value. If the
considered value is discrete, then the loss of the over-
written value means the loss of an event: we address
this problem in the following section.

� When the program runs theread more inputs
or read inputs phase, it scans the buffer vec-
tor, and for each Boolean set totrue, it invokes the
corresponding update function with the value of the
buffer. At the same time, all the Booleans are set to
false. This scanning of the buffer vector must be
executed within a critical section, so as to be impos-
sible to interrupt. It is the only part of the execution
loop that must be so.

Figure 2 illustrates this behavior. Here, the function
MODULE I X is the update function of the input signalX.
Arrows represent the control, not the data flow.

Figure 2: Theread inputs phase of the execution
loop

2.4 Validity of the Synchrony Hypothesis
Validating the synchrony hypothesis means proving that
the program isfaster than its environment. This is aphysi-
cal interpretation of theideal notion of instantaneity. This

property ensures in particular that no input event can be
lost. The importance of this property comes from the fact
that some input events are fleeting. Without the inter-
face tasks mechanism presented in Section 2.3, in order
to prove that the program is faster than its environment, it
would require to prove that the reaction time of the pro-
gram is systematically lower than the time lag between
any two successive input events. In any case, it is not
possible to establish necessary conditions that validate the
synchrony hypothesis. The conditions that we establish in
this section are thussufficient conditions.

Let us define formally the program reaction time as
well as the input clocks:

� The programbasic reaction time is the maximal time
for running the sequential code obtained after com-
piling the program for the target processor. Since this
code is sequential and deterministic, it is possible to
find an upper bound of this time from the character-
istics of the target processor. This upper bound is
what we call the basic reaction time.

� The programtotal reaction time is the sum of the ba-
sic reaction time plus the execution time of all inter-
face tasks during one period of the real-time clock.

� Theclock of an input, be it discrete or continuous, is
the infinite sequence of the instants when the input
events occur.

� Theminimal period of an input is the minimal period
of its clock.

In order to compute the execution time of all interface
tasks, it is necessary to know the minimal period of each
input. These frequencies must therefore be given in the
system specification.

Within the periodic model, it suffices to satisfy two
conditions to be certain that the software implementation
satisfies the synchrony hypothesis. The first one is that
the real-time clock period be greater than the program to-
tal reaction time: this ensures that the program has enough
time to run between two successive ticks of the real-time
clock. The second one is that the smallest of all the in-
puts minimal periods be strictly greater than the real-time
clock period: this ensures that no input event is lost1.

1In order to determine by what margin the smallest of all the inputs
minimal periods must be strictly greater than the real-time clock period,
it is actually necessary to take into account the characteristics of the
sensor hardware: time needed to prepare and maintain the sensed value,
minimal time between two successive acquisitions,. . .



Within the general model, a first approach consists in
requiring that the minimal period of theunion of all input
clocks be greater than the program basic reaction time.
The union clock is the infinite sequence of the instants of
all the input events. A first relaxation consists in exclud-
ing the continuous inputs from the clocks union, and thus
in triggering a sampling of each continuous input during
theread more inputs phase of the execution loop.
Still with this approach, the period of the union clock can
be very small. A second relaxation consists in considering
the infinite sequence of time slots whereonly one input
event occurs. The minimal period of this union clock is
greater.

In conclusion, the general case is much more constrain-
ing to validate than the periodic case. This is one of the
reasons why the periodic model is the most employed in
industry.

3 Practical Implementations
3.1 Introduction
We present in this section some techniques for implement-
ing synchronous execution machines. Besides the formal
aspects seen in Section 2, these techniques allow the tak-
ing into account of the practical aspects of the implemen-
tation, that depend on the programming model, the hard-
ware environment, and the context where the synchronous
program is used.

First, we explain how to satisfy the constraints estab-
lished in Section 2. It consists of a finer description level
where we describe usable mechanisms and techniques.
We also draw the attention on possible problems. Such
dysfunctions must be considered as warnings to the reader
willing to design its own synchronous execution machine.
Finally, we present some effective implementations, re-
stricted to centralized solutions.

Concerning the practical implementations, few de-
tailed documents are available. The documentation of
ESTEREL–V5 [8], given along with the compiler distribu-
tion, includes low level informations on the C/ESTEREL

interface. Of course, these only concern ESTEREL. Yet,
while the problem of the synchronous execution machine
is not specifically treated there, this documentation is very
useful for designers.

3.2 Architecture of an Execution Machine
The architectural description makes it possible to under-
stand what are the main functional components of the ex-
ecution machine, and their interactions.

3.2.1 Information Flows

An execution machine is a reactive system whose purpose
is to react to incoming information by generating output
information. This role has been explained in Section 2.1.
These information flows have to becontrolled: dedicated
control signals are in charge of that. Possible dysfunctions
of the execution machine are indicated by exceptions sig-
nals.

3.2.2 Control

The set of control signals includes:

� An input signalbegin of instant (BoI), which is
compulsory. Its occurrence triggers a new reaction
of the execution machine.

� An output signalend of instant (EoI), which is also
compulsory. This signal is emitted by the execution
machine, after the output image has been updated.
With respect to the environment, the occurrence of
(EoI) indicates the end of the current reaction.

� Optional control signals, which are used for fine con-
trol of the execution machine. They are especially
useful for hierarchical execution machines. They can
stop, suspend, resume, and re-initialize the execu-
tion.

In this section, we consider only the first two signals.
The respective dates of occurrence ofBoI andEoI

must be such that the synchrony hypothesis is satisfied
(see Section 2.3). The simplest case is the periodic activa-
tion: BoI signals are periodically emitted by an external
clock. Of course, theEoI associated with aBoI must be
emittedbefore the end of the clock period.

3.2.3 Monitoring
Observers can be used to monitor the execution machine.
In the case of an abnormal behavior of the machine (not
of the program), an exception signal is emitted.

These exception signals are, above all, warnings sent to
the user of the execution machine. Clearly, raising an ex-
ception signal means that the implementationis no longer



running under the synchronous hypothesis. The usermust
be kept informed of this problem.

In more sophisticated execution machines (e.g., fault-
tolerant execution machines), exception signals can be
handled by a higher-level execution machine. The up-
per machine can then force actions in the lower ma-
chine through the optional above-mentioned control sig-
nals. The user must be cautious with this kind of “control
loop” in execution machines: the handling of an excep-
tion may cause the execution machine to violate timing
constraints. The cure will be worse than the disease!

Below, we list some typical dysfunctions; this list is not
exhaustive:

1. Violation of a relation. Suppose that the user has de-
clared in his/her program thatA andB are two exclu-
sive signals (i.e., never simultaneously present). This
assertion may be violated during a reaction. The rea-
son for this violation may be either a lack of knowl-
edge about the environment, or a sensor failure. The
latter is a chance event that can be detected only
while the system is operating. The former is a mis-
conception and should be avoided by rigorous de-
sign methodologies. In both cases, since violations
may lead to unpredictable executions, the execution
machinemust not ignore this violation. A possible
conservative strategy is to “filter” faulty signals, so
that onlyacceptable events are considered for execu-
tions. There exist several filtering techniques; none
is fully satisfactory. Whatever the recovering politic
adopted, all violations must be reported by the exe-
cution machine.

2. Lasting transition. An execution machine can arm
a watchdog at each beginning of a reaction. If the
transition is not terminated before the deadline, an
exception is raised. This exception can be due to
a transient overloading of the system or to errors in
the user’s program. The latter is often due to exe-
cution of the transformational parts of the program
(e.g., calls to external functions or procedures). It is
the responsibility of the designer to ensure that ex-
ternal transformational parts of his/her program have
a bounded and known duration. When this property
cannot be guaranteed, asynchronous executions must
be considered for this data processing (see below the
notion of “task” in ESTEREL).

3. Data overwriting. Observers can be attached to ac-
quisitions and actuations. Overwriting a value means
that the application is no longer run in real-time.

3.2.4 Structure

The various functionalities of the execution machine can
be assigned to dedicated modules (Figure 3). Dashed lines
are flows of control, whereas solid lines are data flows.
I is the input tuple presented to thesynchronous kernel.
The kernel computes the reaction and generates the output
tupleO.

Thecontroller ensures the correct synchronous behav-
ior: atomic reaction and bounded reaction time. In its sim-
plest form, the controller is a sequencer whose behavior
can be expressed by the following ESTEREL-like pseudo-
code:

synchronous
kernelINPUTS OUTPUTS

observers

controller

control

exceptions

�!
E

�!
S

inputs outputs

Figure 3: Execution Machine: Structure

initialization
every BoI do

read inputs; build I;
react;
build O; write outputs;

end every

This pseudo-code is compatible with the one presented
in Section 2.2. Auxiliary variables have been introduced



and some phases refined. For instance, theread in-
puts phase of the execution loop is refined into a sub-
phase of input acquisition (read inputs) and a sub-
phase of input tuple construction (build I).

3.2.5 Inputs / Outputs

The consistency of inputs has been analyzed in Sec-
tion 2.3. ModulesInput andOutput in Figure 3 make
the necessary interfacing between the synchronous kernel
and the environment. They are, themselves, reactive sys-
tems with their own control flows and data flows. Figure 4
shows a possible refinement of the input module.

� Modules A are interface tasks described in Sec-
tion 2.2. They may be interruption handlers or pe-
ripheral drivers. A signalR (for “Reading”) triggers
the sending of a valuea.

� This information is consumed by an optional filter-
ing moduleF that produces signals (with the syn-
chronous language meaning of this word). These
filtering modules are useful for imperative syn-
chronous languages since they give greater impor-
tance to events instead of values. Consider for in-
stance an ESTEREL program. Leta be the logi-
cal level 0 or 1 at a push button. When pressed,
the button changes from 0 to 1. Now, suppose the
ESTEREL program has a pure input signal2 called
Button Pressed. In this case, the filtering mod-
ule will generate signalButton Pressed at in-
stantk, if and only if,a was 0 at instantk � 1 and 1
at instantk (i.e., the Boolean expressionak�1 ^ ak).
For a declarative language like LUSTRE, this “edge
detection” would have been done by the program it-
self.

� Thetuple builder module consumes possibly
filtered signals and generates the current input tuple
I. This generator, in the simplest cases, does a con-
catenation of signals. In the case of a relation viola-
tion, it can also perform extra filtering operations.

2In ESTEREL, a pure signal is a signal that conveys no value. Only
its presence or absence is of interest.

a
F

a

builder

Event
�!
E

R

R

FA

A

Figure 4: Execution Machine:Input Module

3.2.6 Asynchronous Execution: ESTERELTasks

Among synchronous languages, ESTERELis the only one
to supportlasting activities, through theasynchronous
task mechanism. Since this mechanism interferes with
the synchronous/asynchronous interface, we address it
specifically in this section. Contrary to functions or pro-
cedures that are supposed to take no time (synchrony hy-
pothesis), an ESTERELtask may have any non null dura-
tion. A task can perform heavy data processing or activ-
ities not directly controlled by the synchronous program
(e.g., moving a robot). The body of the task is executed
asynchronously with respect to the synchronous program.
Interactions with the ESTERELprogram are very limited.
Without entering into details:

� The task is launched by anexec statement;

� When the task terminates, areturn signal is sent
to the synchronous kernel;

� In order to respect the semantics of the language,
when a task is executed within the scope of an abort
or a suspend, the asynchronous task has to be killed,
suspended, and resumed under the control of the syn-
chronous kernel.

All these events exchanged by the synchronous kernel
and the asynchronous tasks, are also controlled by the ex-
ecution machine. See [9] for a detailed description of task
execution and possible solutions.



3.2.7 Some Implementations

An execution machine can be small yet very efficient.
This is the case for micro-controller-based implementa-
tions. For instance, an execution machine for ESTEREL

programs has been implemented on the Harris’ RTX2000
micro-controller [3]. Implementations on PC usually re-
lies on some real-time operating system (RTOS). The
authors have developed applications running under RTC
(Real-Time Craft) and CHORUS [4]. More generic ma-
chines, but for soft real-time applications are presented
in the Boufa¨ıed’s thesis [9]. With these machines, easy
configuration of inputs/ouputs and module reuses, are the
main concern.

The next section develops the implementation of a cen-
tralized execution machine composed of several “reactive
machines”.

3.3 Centralized Execution Machines
As seen in Section 2.1, an execution machine is composed
of a reactive machine, a transformational machine and of
a controller that coordinates their operation. Acentral-
ized execution machine is an execution machine with only
one controller. This controller manages the synchronous
code, input and output operations, and the transforma-
tional code. Adistributed execution machine has several
controllers that work together for synchronously execut-
ing several reactive machines.

The centralized execution machine is the simplest to
implement since it has global control over input, output
and synchronous code. Two cases arise:

� the execution machine has only one reactive ma-
chine: it must provide it with a clock and inputs, and
must drive its outputs to the outer world (see the pre-
vious subsection);

� the synchronous code is composed of several reac-
tive machines: it must provide them with a mecha-
nism for communicating synchronously.

The second case is the most general and encompasses
the first one. It allows, with some restrictions, to link sev-
eral synchronous modules that were compiled separately.
We discuss in this section the case of several reactive ma-
chines.

There are two limitations when using several reac-
tive machines (for instance, several separately compiled

ESTEREL modules or LUSTRE nodes). The first limita-
tion is that instantaneous communication loops between
reactive machines areforbidden. Such loops can be han-
dled by the synchronous compiler since it knows the in-
ternal details of each module and is able to determine
whether the loops are causal or not, and if so, to compute
the behavior of the synchronous system. However, from
the point of view of an execution machine, a reactive ma-
chine is a black box, and it is not possible to know if an
instantaneous communication loop between several reac-
tive machines is causal without more information about
the internals of the boxes. The second limitation is that
the topology of the connections between the reactive ma-
chines must bestatic, that is it is not possible to create
dynamically new reactive machines or new connections.
We address first the basic case (no instantaneous loops
and no dynamic reconfigurations), before relaxing these
two limitations in Sections 3.3.6 and 3.3.7.

3.3.1 Logical Instants

A logical instant is defined to be the reaction of the exe-
cution machine to a tuple. This leads to the following:

� At the beginning of a logical instant, every signal has
the same value and is in the same state for all the
reactive machines.

� At the beginning of a logical instant, each reactive
machine is in a completely determined state. There
is no state transition during a logical instant, only the
computation of the next state of the machine.

3.3.2 Sequential Execution of Reactive Machines

When there is no instantaneous communication loop be-
tween the synchronous compilation units, there always
exists a partial order induced by the dependencies be-
tween the corresponding reactive machines. Thus, the ex-
ecution machine is able to chose an activation schedule
that is compatible with this partial order. The execution
machine must also propagate the signals that were emit-
ted during the reaction of a reactive machine so that they
are seen in the same instant by the reactive machines that
follow it in the schedule.

The schedule is determined once for all the instants
since the connections between the machines do not
change. At each instant, the execution machine sends the
BoI control signal to each reactive machine so that they



are all in the same logical instant. When the machines are
ready to process the new instant, the execution machine
activates them according to the schedule. The activation
of a reactive machine consists of three steps: build its in-
put tuple, compute its state for the next instant, and build
its output tuple. Last, when all the reactive machines have
been activated, the execution machine sends them theEoI
control signal that marks the end of the instant.

The input and output tuples are built during the activa-
tions because some inputs of a machine may be produced
by another machine which is activated earlier in the sched-
ule, so the input tuple of each machine cannot be built at
the beginning of the instant.

The inputs and outputs of the system must be handled
separately because, to preserve the synchronous seman-
tics, the reactive machines must have the same view of
the outer world: if a signal is present at a given instant, it
must be present at this same instant for all the reactive ma-
chines. Therefore, we cannot allow each reactive machine
to sample the inputs of the system during its activation.

3.3.3 Input / Output Machines

One method of ensuring the consistency of the inputs for
all the reactive machines in a system while preserving this
execution model, is to use reactive machines to handle the
inputs and the outputs of the system. From the point of
view of the execution machine, an input reactive machine
has only outputs, so its does not depend on any other ma-
chine and will be executed at the beginning of the sched-
ule. Conversely, an output reactive machine has only in-
puts, so no other machine depends on it and it will be at
the end of the schedule.

These input/output machines are a way to implement
theInput andOutput modules of Figure 3. Although
they are reactive, these machines are seldom written in
a synchronous language but rather in the implementation
language of the execution machine. They are similar to
drivers in an operating system: they provide an abstract
view of the environment of the synchronous system in the
form of tuples.

3.3.4 Behavior of a Reactive Machine

The behavior of a reactive machine can be seen as made
of three phases: processing the beginning of the instant,
activation, and processing the end of the instant.

Processing the beginning of the instant is generally a
matter of setting the outputs absent. But for an input ma-
chine, the outputs are set according to the data coming
from the interface tasks (A modules in Figure 4). Sim-
ilarly, a “delay” reactive machine will set its output ac-
cording to the input it has received at the previous instant.

During the activation, the machine builds its input tu-
ple, then determines its next state and the output tuple.
For an input machine, the output tuple was built when
processing the beginning of the instant. However, such
a machine may compute its next state if its method for
generating tuples depends on the data it receives from the
interface tasks.

In most cases, processing the end of the instant is
merely setting the state of the machine to the state that
was computed during the activation. For output machines,
processing the end of the instant consists in propagating
the output of the system to the outer world.

3.3.5 Iterating Reactive Machines
If the execution machine knows some information con-
cerning the dependencies between the outputs and the in-
puts of the reactive machines, and if these machines are
able to compute some of their outputs without knowing all
their inputs, instantaneous communication loops between
reactive machines may be allowed. For this, we need to
consider two kinds of reactive machines:

� strict machines, that need to know all their input to
be able to compute any of their outputs,

� non-strict machines, that may compute some of their
outputs without knowing all their inputs.

When all reactive machines are strict, instantaneous
loops are forbidden, and the execution machine uses se-
quential execution as discussed above.

When some reactive machines are non-strict, they are
allowed to appear in instantaneous loops. Edwards proved
that if these machines aremonotonic, that is if they com-
pute more of their outputs when they are provided with
more of their inputs, the behavior of the synchronous sys-
tem is the unique fixed point reached by iterating the re-
action of the machines [13]. Moreover, the number of
iterations and the sequence of the activations in each it-
eration can be statically determined from the topology of
the synchronous system.

The key idea is to consider the tuple of all inputsi and
outputso of the system, and to consider the system as a



function that produces a new tuple(i,o) from the one it
receives, as shown on Figure 5:

e S
s

S

�
e

s

� �
e

s

�

Figure 5: System with a loop ; equivalent tuple systemLet us represent a not yet determined signal by?, a
present signal byP and an absent signal byA. These val-
ues are partially ordered, the corresponding partial order
being shown in Figure 6(a). Such a partial order can be
extended to two signals, as shown in Figure 6(b): accord-
ing to this order,(A;P ) is more determined than(?; P ),
but (A;P ) may not be compared to(P;?). By general-
izing ton signals, it is possible to sort the possible values
of the(i,o) tuple from the less determined to the most
determined.

?P P? A? ?A

PAAPPP

??

AA

Figure 6: (a) Partial order on a single signal tuple (b) Par-
tial order on a two signal tupleWhen reactive machines are considered as functions
that compute signal tuples, the condition for the existence
and uniqueness of the fixed point is that these functions
are monotonic for the partial order on signal tuples. This
property merely ensures that only undetermined signals
may change during a partial reaction of the machine. It
implies also that the value of a valued signal cannot be
changed once it is determined.

The main difference between this execution model and
the sequential model is that the output tuple is built in
several steps, and the next state of a machine cannot be
computed before the end of the instant.

This iterative execution model is used in the “Syn-
chronous Reactive” (SR) and “Synchronous Reactive C
Code Generation” (SRCGC) domains of the PTOLEMY

Classic3 system developed at the EECS department of the
University of California at Berkeley.

3http://ptolemy.eecs.berkeley.edu

3.3.6 Generic Execution Machines and Synchronous
Objects

An execution machine may be designed specifically for
a set of reactive machines, but it is possible to design a
generic execution machine that may execute any set of
reactive machines with known properties: is the system
dynamic, are there instantaneous communication loops...
We have developed in [10] such a generic execution ma-
chine.

This scheme requires a standard interface for the reac-
tive machines so that the execution machine may manage
them without knowing their internal details: we need an
abstract notion of a reactive machine.

Object oriented languages allow the definition of ab-
stract entities and the refinement of their behavior for
more concrete entities. Once we have defined the abstract
reactive machine as a class, we are able to implement a
particular reactive machine as a subclass. Such subclasses
are named “synchronous classes”, and instances of these
classes are “synchronous objects” [10].

Any synchronous class must be able to process the be-
ginning of the instant, the activation, and the end of the
instant. It may be useful to be able to get the list of sig-
nals and the dependencies between outputs and inputs for
such a class. Each synchronous class implements these
services according to its intended behavior, but what is
important is that the execution machine does not need to
know the details: it is enough for it to know that a syn-
chronous objet will answer its request to process the be-
ginning of the instant for instance.

The execution machine is a class library that provides
the reactive machines with everything they need to run:
scheduling, definition of the logical instants, communica-
tions between reactive machines, and input/output.

3.3.7 Dynamic Synchronous Behaviors

A generic execution machine may allow the creation
and/or destruction of reactive machines, as well as
changes in the interconnection of the machines during
their execution. This allows synchronous systems to be
dynamic: their reaction to an input tuple can lead to a
reconfiguration of the system. Dynamic reconfiguration
may be used to switch from a full featured system to a
basic system in case a failure makes some resource un-
available.



However, a dynamic synchronous system is still a syn-
chronous system, so it cannot changeduring an instant.
Therefore, the execution machine must record the re-
quests for changes and process them between the end of
the current instant and the beginning of the next instant.
Such changes may invalidate the schedule, so the execu-
tion machine must compute a new schedule each time it
processes reconfiguration requests between two instants.
It may then discover that the reconfiguration leads to an
invalid system for which no schedule can be found. Such
a case should be signaled through the exception mecha-
nism discussed earlier in Section 3.2.3.

4 Conclusion

We have addressed in this paper the problem of executing
a synchronous program in an intrinsically asynchronous
environment. The main issue concerns the satisfaction
of the synchrony hypothesis by the implementation. We
have proposed an implementable model, calledexecution
machines, to solve this problem. The purpose of an exe-
cution machine is to ensure that the synchronous program
performs atomic reactions and meets the imposed real-
time constraints.

We have shown that for control oriented applications,
centralized solutions can be achieved easily and effi-
ciently. We have stated several constraints on the rate of
inputs and the reaction time of the synchronous program
that must be satisfied by the implementation.

For applications where the real-time constraints are less
strict, we have presented more sophisticated solutions that
allow, for instance, the execution of several synchronous
modules that have been compiled separately, even in the
presence of instantaneous communication loops and dy-
namic reconfiguration.

This presentation does not pretend to be exhaustive.
For instance, the class of distributed implementations of
synchronous programs has not been discussed. There
exist such implementations of distributed execution ma-
chines. The interested readers may refer to already pub-
lished papers [12, 19].

References
[1] C. André. Representation and analysis of reactive behav-

iors: A synchronous approach. InCESA’96, Lille, France,
July 1996. IEEE-SMC.

[2] C. André and M.-A. Péraldi. Effective implementation of
ESTERELprograms. In5th Euromicro Workshop on Real-
Time Systems, Oulu, Finland, June 1993.

[3] C. André and M-A. Péraldi. Predictability of aRTX2000-
based implementation.Real-Time System, 10(3):223–244,
May 1996.

[4] C. André, A. Ressouche, and J-M. Tanzi. Combining spe-
cial purpose and general purpose languages in real-time
programming. InWorkshop on Programming Languages
for Real Time Industrial Applications, Madrid (Spain), De-
cember 1998. IEEE.

[5] J.-L. Bergerand and E. Pilaud. SAGA: A software develop-
ment environment for dependability in automatic control.
In SAFECOMP’88. Pergamon Press, 1988.

[6] G. Berry and A. Benveniste. The synchronous approach to
reactive and real-time systems.Proceedings of the IEEE,
79(9):1270–1282, September 1991.

[7] G. Berry and G. Gonthier. The ESTERELsynchronous pro-
gramming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[8] G. Berry and the ESTERELTeam.The ESTEREL-V5 Docu-
mentation. CMA/INRIA, Sophia-Antipolis, France, 1998.
Available at http://www.esterel.org.

[9] H. Boufaı̈ed. Machines d’exécution pour langages syn-
chrones. PhD Thesis, Universit´e de Nice-Sophia Antipolis,
November 1998.

[10] F. Boulanger.Intégration de Modules Synchrones dans la
Programmation par Objets. PhD Thesis, Universit´e Paris
XI – Orsay, Orsay, France, 1993.

[11] M.C. Browne and E.M. Clarke. SML: A high-level
language for the design and verification of finite state
machines. InInternational Working Conference from
HDL Descriptions to Guaranteed Correct Circuit Designs,
Grenoble, France, September 1986. IFIP.

[12] P. Caspi and A. Girault. Execution of distributed reactive
systems. In S. Haridi, K. Ali, and P. Magnusson, edi-
tors,1st International Conference on Parallel Processing,
EURO-PAR’95, volume 966 ofLNCS, pages 15–26, Stock-
holm, Sweden, August 1995. Springer-Verlag.

[13] S. Edwards.The Specification and Execution of Hetero-
geneous Synchronous Reactive System. PhD Thesis, UC
Berkeley, Berkeley, CA, 1997.



[14] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, September
1991.

[15] D. Harel. STATECHARTS: A visual approach to complex
systems.Science of Computer Programming, 8(3), 1987.

[16] D. Harel and A. Pnueli. On the development of reactive
systems. InLogic and Models of Concurrent Systems,
NATO. Springer-Verlag, 1985.

[17] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire.
Programming real-time applications with SIGNAL. Pro-
ceedings of the IEEE, 79(9):1321–1336, September 1991.

[18] F. Maraninchi. Operational and compositional semantics
of synchronous automaton compositions. In W.R. Cleave-
land, editor,3rd International Conference on Concurrency
Theory, CONCUR’92, volume 630 ofLNCS, pages 550–
564, Stony Brook, USA, August 1992. Springer-Verlag.

[19] Y. Sorel. Massively parallel computing systems with real
time constraints, the “algorithm architecture adequation”
methodology. InMassively Parallel Computing Systems
Conference, Ischia, Italy, May 1994.


