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Abstract 

 
This presentation shows how “SyncCharts” can be used in the design of a controller.  
“SyncCharts” is a graphical synchronous formalism that inherits from Statecharts in its look and from Esterel in its 

foundations. SyncCharts supports hierarchical descriptions, concurrency and preemption. We use it to express the 
exepected behavior of control-dominated systems. Choosing the non trivial example of a binary encoder/decoder, we 
illustrate high-level description capabilities of this model. Then, thanks to the mathematical semantics of SyncCharts, we 
explain how to validate the design, using both interactive simulation and model checking. Finally, with the help of 
synthesis tools present in the Esterel software environment, we show how our approach makes the design easier, without 
loss of rigour or efficiency.  
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1. Introduction  

State-based models are often used to express expected 
behavior of reactive systems. Many people feel more 
comfortable with graphical representations. Explicit 
representation of states facilitates the understanding of 
behaviors; possible animation of the model makes it still 
easier. A danger of graphical representations may be a 
weak, or even worse, the absence of, semantics.  Too 
many graphical models are semi-formal, indeed even 
informal. Ambiguity disqualifies such models in digital 
system design.  Mealy machines are mathematically well-
founded models but they are “flat” models, leading to 
huge and useless graphs for complex systems. We adopt a 
higher-level model, like Statecharts [1], able to deal with 
hierarchy, concurrency and pre-emption. The actual 
model we use is “SyncCharts” [2], clearly inspired by 
Statecharts. The two models differ in their underlying 

semantics. The SyncCharts1 semantics is fully 
synchronous and perfectly fits Esterel’s semantics [3]. 
The semantics of Statecharts, such as the one adopted in 
Statemate [4], is more complex (micro-step semantics). 
Moreover, SyncCharts offers richer constructions for 
preemption. Being akin to Esterel, SyncCharts may also 
include textual descriptions written in Esterel: the 
designer may choose textual or graphical descriptions for 
different parts of his/her design.  

In fact, SyncCharts is now fully integrated in the 
“Esterel Studio” platform, marketed by Simulog [5]. As a 
consequence, SyncCharts has direct access the whole 
programming platform developed for Esterel: compilers, 
simulators(XES), model-checkers (XEVE [6]) and circuit 
optimizers that rely on SIS [7] and TiGeR [8] (an efficient 
BDD-based tool). 

 

                                                           
1 “SyncCharts” is the name of the model, whereas a 

“syncChart” is an instance of the model. 
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In this presentation, we revisit the design of a binary 
stream encoder/decoder. Through this example we try to 
draw advantages of our approach, and contrast it with the 
classical approach proposed in Zahnd’s book on 
Sequential Machines [9]. 

 

2. Example of an Encoder/Decoder  

The Encoder/Decoder system, represented on Figure 1, 
is classical in the field of data transfer. It has been devised 
for electrical transmission by wire. Even if wireless 
communication has lessened the significance of this 
coding technique, it is still worth studying it because it 
raises several interesting algorithmic issues. 

Figure 1. Encoder/decoder 

Informal presentation 

This encoding/decoding system is used to transmit 
binary streams. Bits are encoded into a three-level valued 
electrical voltage: positive ( p=+U ), negative (  n=-U ), 
or null ( z=0 ), for a given constant positive voltage U. 
Two requirements are imposed: 
1. The mean voltage must be 0, and at each instant the 

accumulated voltage must stay between –U and +U. 
This avoids electronic problems due to bias polarity. 

2. The transmitted code shall never contains more than 
three consecutive null values. This prevents from 
clock de-synchronization and misinterpretation of a 
line break as a continuous stream of z’s. 
 
Typically these requirements are imposed for 

physical/electrical reasons. The first requirement is easily 
captured by a simple encoding technique: z for 0, and 
either n or p, in alternation, for 1. The second requirement 
is trickier: sub-sequences of four consecutive 0’s are also 
encoded with n or p.  In order to set apart “true” 1’s from 
“false” 1’s (series of four 0’s) “Violation” of polarity is 
used, instead of “Alternation”.  

Formal specification 

This part is omitted in this short document. The important 
fact to notice is that the encoding may be either 
“standard”, or “exceptional” according to the incoming bit 
flow. This frequent dynamic switching between encoding 
algorithms is typical of highly reactive system behavior.  
 

3. A classical solution  

In his book, Zahnd chose a Mealy machine as a model 
to represent the encoder example. The demonstration will 
show the great pedagogic interests of this model and also 
its drawbacks, making it not easy to modify and reuse. 

4. SyncCharts-based design  

With SyncCharts, the application is seen as a collection 
of interacting agents. These agents are tightly coupled by 
instantaneous broadcasting of information and instant-
aneous reactions (synchronous hypotheses). The behavior 
of an agent is specified with a macro-state. A macro-state 
is translated into a module in Esterel. Figure 2 is the 
description of the behavior of the agent in charge of the 
effective encoding. Note the mixture of graphical and 
textual notation. 

Compilation 

The outlines of the compilation chain are: 
• SyncCharts compiler: From a syncChart to a 

semantically equivalent Esterel program; 
• Esterel compiler: From an Esterel program to output 

code: 
• C programs for simulation with XES 
• Blif description for optimization (with SIS) and 

verification (XEVE). 
Blif (Berkeley Logic Interchange Format) is a textual 
representation of a circuit. It is an input format to 
SIS. 

 
 
 
 

 
 
 

 

Figure 2. SyncChart of the sequencer 

present  Even  then
      emit  Zero
else
       emit  Alternation
end  present ;  pause;
emit  Zero ;  pause;
emit  Zero ;  pause;
emit  Violation ;  pause

EXCEPTION
loop
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then 
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each tick
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5. Validation and Performance 

To validate the design, we proceed in two steps: 
simulation and formal verification. 

Test of scenarios 

XES is an interactive simulator, which is part of the 
Esterel distribution. Given an Esterel program, XES 
automatically builds simulation panels that show the 
status of input signals (set by the user) and output signals 
(set by the program under test). Execution is traced in the 
source program, so that the user can visualize concurrent 
evolutions and pre-emptions. This possibility is now 
extended to SyncCharts. “Esterel Studio” can do the 
animation of the syncChart of the controller.  

Safety properties 

Even if the design passes successfully all the tests, it is 
not sure that all the cases have been covered. In order to 
establish a safety property, we have to check this property 
in all reachable states of the controller. The size of the 
actual reachability set can make the analysis untractable. 
Fortunately, there exist symbolic computations of the 
reachability set that allow for state abstraction without 
loss of exhaustivity. XEVE, a symbolic model-checker 
available in the Esterel platform, is able to compute 
(symbolically) the state space of a given program. XEVE 
can formally establish whether or not a safety property is 
satisfied. Safety properties can be expressed by temporal 
logic formulas. We prefer to use the same formalism to 
express both behaviors and properties: a property is given 
as an Esterel module or a syncChart.  

The principle of the proof is to associate an observer 
with the property and compose this observer in parallel 
with the controller to check. An observer is a reactive 
agent that “observes” input and output signals of the 
program and emits a “violation signal” as soon as the 
property is not satisfied. XEVE symbolically executes the 
program composed with the observer. If the violation 
signal is never emitted, then the property is satisfied, 
otherwise XEVE returns a sequence leading to the 
counter-example. This is a very effective way to find out 
deeply hidden errors. Of course, several properties can be 
checked at once if you use several observers. Note that 
the safety property observers are used during the 
verification phase (i.e., the symbolic execution of the 
controller augmented with the observers). There are 
needless at run-tine for a guaranteed property.  

 
According to the property to be checked, the observer 

can be written in Esterel or in SyncCharts. We will 

illustrate both methods in order to prove that the two 
requirements above mentioned are satisfied. We will also 
establish that the pair “Encoder Decoder” works correctly, 
i.e., outgoing stream and incoming stream are the same 
(up to a delay). 

Performance 

The translation from SyncCharts to Esterel is 
structural: The translation is fully automatic but not 
always clever. In many cases an expert in Esterel 
language, can find more efficient translations. However, 
this is not a problem because there exist tools able to 
optimize the generated code, at the circuit level. 
Efficiency of the generation will be compared to “hand-
coded” implementations.  
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