
1 FEmSys’01

High Level Design using SyncCharts:

A Case Study

Charles André
I3S Laboratory - University of Nice Sophia-Antipolis / CNRS

2000 route des Lucioles, BP 121
06903 Sophia Antipolis cédex - France

andre@i3s.unice.fr

Abstract

This presentation shows how “SyncCharts” can be used in the design of a controller.
“SyncCharts” is a graphical synchronous formalism that inherits from Statecharts in its look and from Esterel in its

foundations. SyncCharts supports hierarchical descriptions, concurrency and preemption. We use it to express the
exepected behavior of control-dominated systems. Choosing the non trivial example of a binary encoder/decoder, we
illustrate high-level description capabilities of this model. Then, thanks to the mathematical semantics of SyncCharts, we
explain how to validate the design, using both interactive simulation and model checking. Finally, with the help of
synthesis tools present in the Esterel software environment, we show how our approach makes the design easier, without
loss of rigour or efficiency.

Keywords:

System specification and modeling, Validation, Synchronous programming.

1. Introduction

State-based models are often used to express expected
behavior of reactive systems. Many people feel more
comfortable with graphical representations. Explicit
representation of states facilitates the understanding of
behaviors; possible animation of the model makes it still
easier. A danger of graphical representations may be a
weak, or even worse, the absence of, semantics. Too
many graphical models are semi-formal, indeed even
informal. Ambiguity disqualifies such models in digital
system design. Mealy machines are mathematically well-
founded models but they are “flat” models, leading to
huge and useless graphs for complex systems. We adopt a
higher-level model, like Statecharts [1], able to deal with
hierarchy, concurrency and pre-emption. The actual
model we use is “SyncCharts” [2], clearly inspired by
Statecharts. The two models differ in their underlying

semantics. The SyncCharts1 semantics is fully
synchronous and perfectly fits Esterel’s semantics [3].
The semantics of Statecharts, such as the one adopted in
Statemate [4], is more complex (micro-step semantics).
Moreover, SyncCharts offers richer constructions for
preemption. Being akin to Esterel, SyncCharts may also
include textual descriptions written in Esterel: the
designer may choose textual or graphical descriptions for
different parts of his/her design.

In fact, SyncCharts is now fully integrated in the
“Esterel Studio” platform, marketed by Simulog [5]. As a
consequence, SyncCharts has direct access the whole
programming platform developed for Esterel: compilers,
simulators(XES), model-checkers (XEVE [6]) and circuit
optimizers that rely on SIS [7] and TiGeR [8] (an efficient
BDD-based tool).

1 “SyncCharts” is the name of the model, whereas a

“syncChart” is an instance of the model.

Behavioral Specification of a Circuit using SyncCharts: a Case Study 2

In this presentation, we revisit the design of a binary
stream encoder/decoder. Through this example we try to
draw advantages of our approach, and contrast it with the
classical approach proposed in Zahnd’s book on
Sequential Machines [9].

2. Example of an Encoder/Decoder

The Encoder/Decoder system, represented on Figure 1,
is classical in the field of data transfer. It has been devised
for electrical transmission by wire. Even if wireless
communication has lessened the significance of this
coding technique, it is still worth studying it because it
raises several interesting algorithmic issues.

Figure 1. Encoder/decoder

Informal presentation

This encoding/decoding system is used to transmit
binary streams. Bits are encoded into a three-level valued
electrical voltage: positive (p=+U), negative (n=-U),
or null (z=0), for a given constant positive voltage U.
Two requirements are imposed:
1. The mean voltage must be 0, and at each instant the

accumulated voltage must stay between –U and +U.
This avoids electronic problems due to bias polarity.

2. The transmitted code shall never contains more than
three consecutive null values. This prevents from
clock de-synchronization and misinterpretation of a
line break as a continuous stream of z’s.

Typically these requirements are imposed for

physical/electrical reasons. The first requirement is easily
captured by a simple encoding technique: z for 0, and
either n or p, in alternation, for 1. The second requirement
is trickier: sub-sequences of four consecutive 0’s are also
encoded with n or p. In order to set apart “true” 1’s from
“false” 1’s (series of four 0’s) “Violation” of polarity is
used, instead of “Alternation”.

Formal specification

This part is omitted in this short document. The important
fact to notice is that the encoding may be either
“standard”, or “exceptional” according to the incoming bit
flow. This frequent dynamic switching between encoding
algorithms is typical of highly reactive system behavior.

3. A classical solution

In his book, Zahnd chose a Mealy machine as a model
to represent the encoder example. The demonstration will
show the great pedagogic interests of this model and also
its drawbacks, making it not easy to modify and reuse.

4. SyncCharts-based design

With SyncCharts, the application is seen as a collection
of interacting agents. These agents are tightly coupled by
instantaneous broadcasting of information and instant-
aneous reactions (synchronous hypotheses). The behavior
of an agent is specified with a macro-state. A macro-state
is translated into a module in Esterel. Figure 2 is the
description of the behavior of the agent in charge of the
effective encoding. Note the mixture of graphical and
textual notation.

Compilation

The outlines of the compilation chain are:
• SyncCharts compiler: From a syncChart to a

semantically equivalent Esterel program;
• Esterel compiler: From an Esterel program to output

code:
• C programs for simulation with XES
• Blif description for optimization (with SIS) and

verification (XEVE).
Blif (Berkeley Logic Interchange Format) is a textual
representation of a circuit. It is an input format to
SIS.

Figure 2. SyncChart of the sequencer

present Even then
 emit Zero
else
 emit Alternation
end present ; pause;
emit Zero ; pause;
emit Zero ; pause;
emit Violation ; pause

EXCEPTION
loop
 present DelayedX
then
 emit Alternation
 else
 emit Zero
 end present
each tick

NORMAL

FourZeros

SEQUENCER

Transmitter Receiv er
Bin Bout

+U

-U
0

z p n z z n z p z

010000010 010000010

time

3 FEmSys’01

5. Validation and Performance

To validate the design, we proceed in two steps:
simulation and formal verification.

Test of scenarios

XES is an interactive simulator, which is part of the
Esterel distribution. Given an Esterel program, XES
automatically builds simulation panels that show the
status of input signals (set by the user) and output signals
(set by the program under test). Execution is traced in the
source program, so that the user can visualize concurrent
evolutions and pre-emptions. This possibility is now
extended to SyncCharts. “Esterel Studio” can do the
animation of the syncChart of the controller.

Safety properties

Even if the design passes successfully all the tests, it is
not sure that all the cases have been covered. In order to
establish a safety property, we have to check this property
in all reachable states of the controller. The size of the
actual reachability set can make the analysis untractable.
Fortunately, there exist symbolic computations of the
reachability set that allow for state abstraction without
loss of exhaustivity. XEVE, a symbolic model-checker
available in the Esterel platform, is able to compute
(symbolically) the state space of a given program. XEVE
can formally establish whether or not a safety property is
satisfied. Safety properties can be expressed by temporal
logic formulas. We prefer to use the same formalism to
express both behaviors and properties: a property is given
as an Esterel module or a syncChart.

The principle of the proof is to associate an observer
with the property and compose this observer in parallel
with the controller to check. An observer is a reactive
agent that “observes” input and output signals of the
program and emits a “violation signal” as soon as the
property is not satisfied. XEVE symbolically executes the
program composed with the observer. If the violation
signal is never emitted, then the property is satisfied,
otherwise XEVE returns a sequence leading to the
counter-example. This is a very effective way to find out
deeply hidden errors. Of course, several properties can be
checked at once if you use several observers. Note that
the safety property observers are used during the
verification phase (i.e., the symbolic execution of the
controller augmented with the observers). There are
needless at run-tine for a guaranteed property.

According to the property to be checked, the observer

can be written in Esterel or in SyncCharts. We will

illustrate both methods in order to prove that the two
requirements above mentioned are satisfied. We will also
establish that the pair “Encoder Decoder” works correctly,
i.e., outgoing stream and incoming stream are the same
(up to a delay).

Performance

The translation from SyncCharts to Esterel is
structural: The translation is fully automatic but not
always clever. In many cases an expert in Esterel
language, can find more efficient translations. However,
this is not a problem because there exist tools able to
optimize the generated code, at the circuit level.
Efficiency of the generation will be compared to “hand-
coded” implementations.

References

[1] D. Harel. “Statecharts: a Visual Formalism for Complex
Systems”, Science of Computer programming, 1987, vol 8, pp
231-274.

[2] C. André. “Representation and Analysis of Reactive
Behaviors: A Synchronous Approach” IEEE-SMC
Computational Engineering in Systems Applications (CESA),
Lille (F), July 1996, pp 19—29.

[3] G. Berry, G. Gonthier. “The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation” Science
of Computer Programming, 1992, vol. 19, n°2, pp 87-152.
(current version of Esterel v5_21:
 http://www.inria.fr/meije/verification/esterel)

[4] I-Logix, “Statemate MAGNUM”, http://www.ilogix.com

[5] Simulog. “Esterel Studio”, http://www.simulog.fr

[6] A.Bouali. “Xeve: an Esterel Verification Environement”,
Int'l Conference on Computer-Aided Verification (CAV'98),
june/july 1998, Vancouver, BC Canada. Also available as a
technical report INRIA RT-214, 1997.

[7] E.M Sentovitch, K.J Singh, et al. “SIS: a System for
sequential circuit synthesis”. Technical report, UCB/ERL
M92/41, U.C. Berkeley, May 1992.

[8] O. Coudert, J.C Madre, H. Touati. “TiGeR version 1.0, User
Guide”, Digital Paris Research Lab. Dec 93, commercialized by
Xorix.

[9] J. Zahnd. “Machines séquentielles“. Presses Polytechniques
Romandes. 1987.

