
De�nitions of Ativity MeasuresAlexandre MuzyMay 14, 2013This is only a brief introdution to Ativity theory for modeling and simu-lation. It aims at providing anonial (beause very simple) de�nitions, in theontext of dynamial and disrete event systems.Usually, in simulation, (qualitative) ativities of systems onsist of phases,whih �start from an event and end with another� [2℄. Information about thedynamis of the system is embedded into phases p ∈ P orresponding to strings(�burning�, �waiting�, et.) Mathematially, an event evi is denoted by a ouple
(ti, vi), where ti ∈ R

+,∗ is the timestamp of the event, and vi ∈ V is the value ofthe event. Therefore, usual qualitative ativities have values in P . Eah ativityonsists of a triple a = (p, evi, evi+1), with vi = p for ti ≤ t < ti+1, with i ∈ N.An example of qualitative ativity sequene is depited in Figure 1. The set ofqualitative ativities onsists of: Aq = {(p, evi, evi+1)}.
Figure 1: An example of usual qualitative ativity de�nition.All the de�nitions presented hereafter aim at providing di�erent (quanti-tative) de�nitions of ativity. The latter is a metris of: ontinuous hanges,number of transitions, number of state hanges, et.1 Ativity of ontinous segmentsConsidering a ontinuous funtion Φ(t) (f. in Figure 2) and related extrema

mn, model ontinuous ativity Ac(T )[4℄ of this trajetory, over a period of time
T , onsists of kind of �distane�:
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Figure 2: Continuous trajetory with extrema.Average ontinuous ativity onsists then of Ac(T ) =
Ac(T )

T
.Now onsidering a signi�ant hange of value of sizeD =

∣

∣Φn+1 − Φn
∣

∣, alleda quantum, the disretization ativity Ad(T )[1℄, orresponding to the minimumnumber of transitions neessary for disretizing/approhing the trajetory of
Φ(t) (f. Figure 3) is:

Ad(T ) =
Ac(T )

DAverage disretization ativity onsists then of Ad(T ) =
As(T )

T
.

Figure 3: Continuous trajetory with extrema.An event set is de�ned as ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}, where a disreteevent evi is a ouple of timestamp ti ∈ R
+,∗ and value vi ∈ V .Considering a time interval 〈t0, tn〉 , an event segment is de�ned as ω: 〈t0, tn〉 →V∪

{∅}, with ”∅” orresponding to nonevents. Segment ω is an event segment ifthere exists a �nite set of times points t1, t2, t3, ..., tn−1 ∈ 〈t0, tn〉 suh that
ω (ti) = vi ∈ V for i = 1, ..., n− 1 and ω (t) = ∅ for all other t ∈ 〈t0, tn〉.An ativity segment (f. Figure 4) of a ontinuous funtion Φ(t) is de�nedas an event segment suh that ω (ti) =

mi

ti−ti−1

for i = 1, ..., n− 1 and t0 = 0.2



Figure 4: Continuous trajetory with extrema.2 Envent-based ativityWe onsider here the ativity as a measure of the number of events in an eventset ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}, for 0 ≤ ti < T .2.1 Ativity in an disrete event setEvent-based ativity Aξ(T ) [5℄ onsists of :
Aξ(T ) = |{evi = (ti, vi) ∈ ξ | 0 ≤ ti < T }|Average event-based ativity onsists then of Aξ(T ) =

Aξ(T )
T

.For example, assuming the event trajetory depited in Figure 5, the averageevent-based ativity of the system orresponds to the following values for di�er-ent time periods: Aξ(10) = 0.3, Aξ(20) = 0.15, Aξ(30) ≃ 0.133, Aξ(40) = 0.175.
Figure 5: An example of event trajetory.2.2 Event-based ativity in a Cartesian spaeAtivation and non-ativation an be used to partition the set of positions p ∈ Pin a Cartesian spae. Ativation is simply de�ned as an event-based ativity3



Figure 6: 2D and 3D visualization of event-based ativity in a 2D spae. x andy represent Cartesian oordinates. The event-based ativity of eah oordinateis represented in the third dimension.
Aξ(T ) > 0 while non-ativation is de�ned as an event-based ativity Aξ(T ) = 0.Related partitions are alled ativity and inativity regions [5℄:

• Ativity region in spae:
ARP (T ) = {p ∈ P | Aξ,p(T ) > 0}where Aξ,p(T ) orresponds to the event-based ativity at position p ∈ P .

• Inativity region in spae:
ARP(T ) = {p ∈ P | Aξ,p(T )= 0}A funtion of reahable states an be onsidered in time and spae as r : P ×

T → Q , where Q is the set of states of the system. The set of all reahablestates in the state set Q, through time and spae, an be de�ned universe
U = {r (p, t) ⊆ Q | p ∈ P , t ∈ T }. Considering that all reahable states in timeand spae an be ative or inative, an ativity-based partitioning of spae Pan be ahieved: ∀t ∈ T , P = ARP (T ) ∪ARP (T ).Figure 6 depits ativity values for two-dimensional Cartesian oordinates
X × Y . This is a neutral example, whih an represent whatever ativity mea-sures in a Cartesian spae (�re spread, brain ativity, et.)In spatialized models (ellular automata, L-systems,...), omponents are lo-alized at Cartesian oordinates in spae P . Eah omponent c is assigned to aposition cp ∈ P .Applying the de�nition of ativity regions in spae to omponents, we obtain:

ARC(T ) =
{

c ∈ C | cp ∈ ARP (T )
}4



ARP(T ) spei�es the oordinates where event-based ativity ours. Conse-quently, ative omponents, over time period T , orrespond to the omponentsloalized at positions p, with Aξ,p(T ) > 0 , while inative omponents have anull event-based ativity Aξ,p(T ) = 0 .3 Ativity in Disrete Event System Spei�ation(DEVS)DEVS allows separating model and simulator (alled the abstrat simulator).The latter is in harge of ativating the transitions of the model. This allowsounting the number of transition exeutions (ativations). This measure is thesimulation ativity[6℄. Eah transition an be also weighted [3℄.3.1 ModelThe dynamis of a omponent an be further desribed using a Disrete EventSystem Spei�ation (DEVS). The latter is a tuple, denoted by DEV S =<
X, Y, S, δ, λ, τ >, where X is the set of input values, Y is the set of outputvalues, S is the set of partial sequential states, δ : Q × (X ∪ {Ø}) → S is thetransition funtion, where Q = {(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is the total stateset, e is the time elapsed sine the last transition, /O is the null input value,
λ : S → Y is the output funtion, τ : S → R

+
0 ,∞ is the time advane funtion.If no event ours in the system, the latter remains in partial sequentialstate s for time τ (s). When e = τ (s), the system produes an output λ (s),then it hanges to state (δ(s, e, x), e) = (

δ(s, τ (s) , /O), 0
), whih is de�ned as aninternal transition δint(s). If an external event, x ∈ X , arrives when the systemis in state (s, e), it will hange to state (δ(s, τ (s) , x), 0), whih is de�ned as anexternal transition δext(s, e, x).3.2 Ativity-based abstrat simulatorModi�ations of usual abstrat simulator for atomi models [6℄ is presentedhere:

• External ativity Aext, related to the ounting next of external transitions
δext(s, x) = (δ(s, τ (s) , x), 0), over a time period [t, t′]:

{

s′ = δext(s, e, x) ⇒ n′
ext = next + 1

Aext(t
′ − t) = next

t′−t

• Internal ativity Aint, related to the ounting nint of internal transitions
δint(s) =

(

δ(s, τ (s) , /O), 0
), over a time period [t, t′]:

{

s′ = δint(s, e) ⇒ n′
int = nint + 1

Aint(t
′ − t) = nint

t′−t5



Algorithm 1 Modi�ed abstrat simulator for weighted ativity1: variables2: parent � parent oordinator3: tl � time of last event4: tn � time of next event5: DEV S � assoiated model with total state (s, e)6: y � output message bag7: nint � number of internal transitions8: next � number of external transitions9:10: when reeive i-message (i, t) at time t11: tl = t�e12: tn = tl + ta(s)13: when reeive *-message (∗, t)at time t14: if (t = tn) then15: y = λ(s)16: send y-message (y, t) to parent oordinator17: s = δint(s)18: n′
int = nint + 119: when reeive x-message (x, t)20: if (x 6= ⊘ and tl ≤ t ≤ tn) then21: s = δext(s, x, e)22: n′
ext = next + 123: tl = t24: tn = tl + τ(s)

• Simulation (total) ativity As(t
′ − t) is equal to:

As(t
′ − t) = Aext(t

′ − t) +Aint(t
′ − t)

• Average simulation ativity As(t′ − t) is equal to:
As(t′ − t) =

Aext(t
′ − t) +Aint(t

′ − t)

t′ − tHere simulation ativity is simply a ounter of the number of events. However,when events have di�erent impats, weighted ativity is introdued.3.3 Abstrat simulator for weighted ativityWeighted simulation ativity Aw(T ) has been de�ned in [3℄. It is related to amodi�ed abstrat simulator:
• External weighted ativity Aext,w, related to the ounting next,w of externaltransitions δext(s, x) = (δ(s, τ (s) , x), 0), over a time period [t, t′]:6



Algorithm 2 Modi�ed abstrat simulator for weighted ativity1: variables2: parent � parent oordinator3: tl � time of last event4: tn � time of next event5: DEV S � assoiated model with total state (s, e)6: y � output message bag7: nint � number of internal transitions8: next � number of external transitions9:10: when reeive i-message (i, t) at time t11: tl = t�e12: tn = tl + ta(s)13: when reeive *-message (∗, t)at time t14: if (t = tn) then15: y = λ(s)16: send y-message (y, t) to parent oordinator17: s = δint(s)18: n′
int,w = nint,w + wtint(s)19: when reeive x-message (x, t)20: if (x = ⊘ and tl ≤ t ≤ tn) then21: s = δext(s, x, e)22: n′
ext,w = next,w + wtext(s, e, x)23: tl = t24: tn = tl + τ(s)







wtext : X ×Q → N
0

s′ = δext(s, e, x) ⇒ n′
ext,w = next,w + wtext(s, e, x)

Aext,w(t
′ − t) =

next,w

t′−t

• Internal weighted ativity Aint,w, related to the ounting nint,w of internaltransitions δint(s) =
(

δ(s, τ (s) , /O), 0
), over a time period [t, t′]:







wtint : S → N
0

s′ = δint(s, e) ⇒ n′
int,w = nint,w + wtint(s)

Aint,w(t
′ − t) =

nint,w

t′−t

• Simulation (total) weighted simulation ativity Aw(t
′ − t) is equal to:

Aw(t
′ − t) = Aext,w(t

′ − t) +Aint,w(t
′ − t)

• Average weighted simulation ativity Aw(t′ − t) is equal to:
Aw(t′ − t) =

Aext,w(t
′ − t) +Aint,w(t

′ − t)

t′ − t7



4 Open ResearhQuanti�ation of omponent ativity opens new researh diretions, e.g., in:
• Mahine Learning, where ativity orresponds to the usage of omponentsin the searh spae and an be orrelated to the payo� of omponentompositions,
• Networks, where ativity provides an indiation of the frequeny of nodeaesses as well as information paths,
• Systems-theory, where ativity ould be used for the spei�ation of dy-nami systems (from input-output behaviors to internal strutures),
• ...In relation to these theoretial diretions, many appliation domains an beonsidered:
• In Neurosienes, through the mapping between the ativity of ompo-nents/networks and neurons/brain regions,
• In Eology, through the analogy between ativity and the energy used byorganisms to survive and evolve,
• In Eonomis, through the omparison of deision paths, haraterizedthrough their ativity.
• In propagation proesses, ativatability and ativity an be used for opti-mization through ativity traking at run-time, or for ativatability pre-proessing (e.g., in �re spread, where the vegetation is expeted to burn,et.)
• ...Referenes[1℄ A. Muzy, J.J. Nutaro, B.P. Zeigler, P. Coquillard. Modeling and simula-tion of �re spreading through the ativity traking paradigm. EologialModelling, 219(1):212 � 225, 2008.[2℄ Osman Bali. The implementation of four oneptual frameworks for sim-ulation modeling in high-level languages. In WSC '88: Proeedings of the20th onferene on Winter simulation, pages 287�295, New York, NY, USA,1988. ACM.[3℄ X. Hu and B.P. Zeigler. Linking information and energy - ativity-basedenergy-aware information proessing. SIMULATION, page to appear, 2013.8



[4℄ Alexandre Muzy, Rajanikanth Jammalamadaka, Bernard P. Zeigler, andJames J. Nutaro. The ativity-traking paradigm in disrete-event mod-eling and simulation: The ase of spatially ontinuous distributed systems.Simulation, 87(5):449�464, 2011.[5℄ Alexandre Muzy, Lu Touraille, Hans Vangheluwe, Olivier Mihel, MamadouKaba Traoré, and David R. C. Hill. Ativity regions for the speiation ofdisrete event systems. In Spring Simulation Multi-Conferene SymposiumOn Theory of Modeling and Simulation (DEVS), pages 176�182, 2010.[6℄ Alexandre Muzy and Bernard P. Zeigler. Ativity-based Credit Assignment(ACA) in Hierarhial Simulation. In IEEE/ACM/SCS: SpringSim Multi-onferene, Symposium On Theory of Modeling and Simulation, page a-epted, Orlando, USA, Marh 2012.
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