
De�nitions of A
tivity MeasuresAlexandre MuzyMay 14, 2013This is only a brief introdu
tion to A
tivity theory for modeling and simu-lation. It aims at providing 
anoni
al (be
ause very simple) de�nitions, in the
ontext of dynami
al and dis
rete event systems.Usually, in simulation, (qualitative) a
tivities of systems 
onsist of phases,whi
h �start from an event and end with another� [2℄. Information about thedynami
s of the system is embedded into phases p ∈ P 
orresponding to strings(�burning�, �waiting�, et
.) Mathemati
ally, an event evi is denoted by a 
ouple
(ti, vi), where ti ∈ R

+,∗ is the timestamp of the event, and vi ∈ V is the value ofthe event. Therefore, usual qualitative a
tivities have values in P . Ea
h a
tivity
onsists of a triple a = (p, evi, evi+1), with vi = p for ti ≤ t < ti+1, with i ∈ N.An example of qualitative a
tivity sequen
e is depi
ted in Figure 1. The set ofqualitative a
tivities 
onsists of: Aq = {(p, evi, evi+1)}.
Figure 1: An example of usual qualitative a
tivity de�nition.All the de�nitions presented hereafter aim at providing di�erent (quanti-tative) de�nitions of a
tivity. The latter is a metri
s of: 
ontinuous 
hanges,number of transitions, number of state 
hanges, et
.1 A
tivity of 
ontinous segmentsConsidering a 
ontinuous fun
tion Φ(t) (
f. in Figure 2) and related extrema

mn, model 
ontinuous a
tivity Ac(T )[4℄ of this traje
tory, over a period of time
T , 
onsists of kind of �distan
e�:
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Figure 2: Continuous traje
tory with extrema.Average 
ontinuous a
tivity 
onsists then of Ac(T ) =
Ac(T )

T
.Now 
onsidering a signi�
ant 
hange of value of sizeD =

∣

∣Φn+1 − Φn
∣

∣, 
alleda quantum, the dis
retization a
tivity Ad(T )[1℄, 
orresponding to the minimumnumber of transitions ne
essary for dis
retizing/appro
hing the traje
tory of
Φ(t) (
f. Figure 3) is:

Ad(T ) =
Ac(T )

DAverage dis
retization a
tivity 
onsists then of Ad(T ) =
As(T )

T
.

Figure 3: Continuous traje
tory with extrema.An event set is de�ned as ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}, where a dis
reteevent evi is a 
ouple of timestamp ti ∈ R
+,∗ and value vi ∈ V .Considering a time interval 〈t0, tn〉 , an event segment is de�ned as ω: 〈t0, tn〉 →V∪

{∅}, with ”∅” 
orresponding to nonevents. Segment ω is an event segment ifthere exists a �nite set of times points t1, t2, t3, ..., tn−1 ∈ 〈t0, tn〉 su
h that
ω (ti) = vi ∈ V for i = 1, ..., n− 1 and ω (t) = ∅ for all other t ∈ 〈t0, tn〉.An a
tivity segment (
f. Figure 4) of a 
ontinuous fun
tion Φ(t) is de�nedas an event segment su
h that ω (ti) =

mi

ti−ti−1

for i = 1, ..., n− 1 and t0 = 0.2



Figure 4: Continuous traje
tory with extrema.2 Envent-based a
tivityWe 
onsider here the a
tivity as a measure of the number of events in an eventset ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}, for 0 ≤ ti < T .2.1 A
tivity in an dis
rete event setEvent-based a
tivity Aξ(T ) [5℄ 
onsists of :
Aξ(T ) = |{evi = (ti, vi) ∈ ξ | 0 ≤ ti < T }|Average event-based a
tivity 
onsists then of Aξ(T ) =

Aξ(T )
T

.For example, assuming the event traje
tory depi
ted in Figure 5, the averageevent-based a
tivity of the system 
orresponds to the following values for di�er-ent time periods: Aξ(10) = 0.3, Aξ(20) = 0.15, Aξ(30) ≃ 0.133, Aξ(40) = 0.175.
Figure 5: An example of event traje
tory.2.2 Event-based a
tivity in a Cartesian spa
eA
tivation and non-a
tivation 
an be used to partition the set of positions p ∈ Pin a Cartesian spa
e. A
tivation is simply de�ned as an event-based a
tivity3



Figure 6: 2D and 3D visualization of event-based a
tivity in a 2D spa
e. x andy represent Cartesian 
oordinates. The event-based a
tivity of ea
h 
oordinateis represented in the third dimension.
Aξ(T ) > 0 while non-a
tivation is de�ned as an event-based a
tivity Aξ(T ) = 0.Related partitions are 
alled a
tivity and ina
tivity regions [5℄:

• A
tivity region in spa
e:
ARP (T ) = {p ∈ P | Aξ,p(T ) > 0}where Aξ,p(T ) 
orresponds to the event-based a
tivity at position p ∈ P .

• Ina
tivity region in spa
e:
ARP(T ) = {p ∈ P | Aξ,p(T )= 0}A fun
tion of rea
hable states 
an be 
onsidered in time and spa
e as r : P ×

T → Q , where Q is the set of states of the system. The set of all rea
hablestates in the state set Q, through time and spa
e, 
an be de�ned universe
U = {r (p, t) ⊆ Q | p ∈ P , t ∈ T }. Considering that all rea
hable states in timeand spa
e 
an be a
tive or ina
tive, an a
tivity-based partitioning of spa
e P
an be a
hieved: ∀t ∈ T , P = ARP (T ) ∪ARP (T ).Figure 6 depi
ts a
tivity values for two-dimensional Cartesian 
oordinates
X × Y . This is a neutral example, whi
h 
an represent whatever a
tivity mea-sures in a Cartesian spa
e (�re spread, brain a
tivity, et
.)In spatialized models (
ellular automata, L-systems,...), 
omponents are lo-
alized at Cartesian 
oordinates in spa
e P . Ea
h 
omponent c is assigned to aposition cp ∈ P .Applying the de�nition of a
tivity regions in spa
e to 
omponents, we obtain:

ARC(T ) =
{

c ∈ C | cp ∈ ARP (T )
}4



ARP(T ) spe
i�es the 
oordinates where event-based a
tivity o

urs. Conse-quently, a
tive 
omponents, over time period T , 
orrespond to the 
omponentslo
alized at positions p, with Aξ,p(T ) > 0 , while ina
tive 
omponents have anull event-based a
tivity Aξ,p(T ) = 0 .3 A
tivity in Dis
rete Event System Spe
i�
ation(DEVS)DEVS allows separating model and simulator (
alled the abstra
t simulator).The latter is in 
harge of a
tivating the transitions of the model. This allows
ounting the number of transition exe
utions (a
tivations). This measure is thesimulation a
tivity[6℄. Ea
h transition 
an be also weighted [3℄.3.1 ModelThe dynami
s of a 
omponent 
an be further des
ribed using a Dis
rete EventSystem Spe
i�
ation (DEVS). The latter is a tuple, denoted by DEV S =<
X, Y, S, δ, λ, τ >, where X is the set of input values, Y is the set of outputvalues, S is the set of partial sequential states, δ : Q × (X ∪ {Ø}) → S is thetransition fun
tion, where Q = {(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is the total stateset, e is the time elapsed sin
e the last transition, /O is the null input value,
λ : S → Y is the output fun
tion, τ : S → R

+
0 ,∞ is the time advan
e fun
tion.If no event o

urs in the system, the latter remains in partial sequentialstate s for time τ (s). When e = τ (s), the system produ
es an output λ (s),then it 
hanges to state (δ(s, e, x), e) = (

δ(s, τ (s) , /O), 0
), whi
h is de�ned as aninternal transition δint(s). If an external event, x ∈ X , arrives when the systemis in state (s, e), it will 
hange to state (δ(s, τ (s) , x), 0), whi
h is de�ned as anexternal transition δext(s, e, x).3.2 A
tivity-based abstra
t simulatorModi�
ations of usual abstra
t simulator for atomi
 models [6℄ is presentedhere:

• External a
tivity Aext, related to the 
ounting next of external transitions
δext(s, x) = (δ(s, τ (s) , x), 0), over a time period [t, t′]:

{

s′ = δext(s, e, x) ⇒ n′
ext = next + 1

Aext(t
′ − t) = next

t′−t

• Internal a
tivity Aint, related to the 
ounting nint of internal transitions
δint(s) =

(

δ(s, τ (s) , /O), 0
), over a time period [t, t′]:

{

s′ = δint(s, e) ⇒ n′
int = nint + 1

Aint(t
′ − t) = nint

t′−t5



Algorithm 1 Modi�ed abstra
t simulator for weighted a
tivity1: variables2: parent � parent 
oordinator3: tl � time of last event4: tn � time of next event5: DEV S � asso
iated model with total state (s, e)6: y � output message bag7: nint � number of internal transitions8: next � number of external transitions9:10: when re
eive i-message (i, t) at time t11: tl = t�e12: tn = tl + ta(s)13: when re
eive *-message (∗, t)at time t14: if (t = tn) then15: y = λ(s)16: send y-message (y, t) to parent 
oordinator17: s = δint(s)18: n′
int = nint + 119: when re
eive x-message (x, t)20: if (x 6= ⊘ and tl ≤ t ≤ tn) then21: s = δext(s, x, e)22: n′
ext = next + 123: tl = t24: tn = tl + τ(s)

• Simulation (total) a
tivity As(t
′ − t) is equal to:

As(t
′ − t) = Aext(t

′ − t) +Aint(t
′ − t)

• Average simulation a
tivity As(t′ − t) is equal to:
As(t′ − t) =

Aext(t
′ − t) +Aint(t

′ − t)

t′ − tHere simulation a
tivity is simply a 
ounter of the number of events. However,when events have di�erent impa
ts, weighted a
tivity is introdu
ed.3.3 Abstra
t simulator for weighted a
tivityWeighted simulation a
tivity Aw(T ) has been de�ned in [3℄. It is related to amodi�ed abstra
t simulator:
• External weighted a
tivity Aext,w, related to the 
ounting next,w of externaltransitions δext(s, x) = (δ(s, τ (s) , x), 0), over a time period [t, t′]:6



Algorithm 2 Modi�ed abstra
t simulator for weighted a
tivity1: variables2: parent � parent 
oordinator3: tl � time of last event4: tn � time of next event5: DEV S � asso
iated model with total state (s, e)6: y � output message bag7: nint � number of internal transitions8: next � number of external transitions9:10: when re
eive i-message (i, t) at time t11: tl = t�e12: tn = tl + ta(s)13: when re
eive *-message (∗, t)at time t14: if (t = tn) then15: y = λ(s)16: send y-message (y, t) to parent 
oordinator17: s = δint(s)18: n′
int,w = nint,w + wtint(s)19: when re
eive x-message (x, t)20: if (x = ⊘ and tl ≤ t ≤ tn) then21: s = δext(s, x, e)22: n′
ext,w = next,w + wtext(s, e, x)23: tl = t24: tn = tl + τ(s)







wtext : X ×Q → N
0

s′ = δext(s, e, x) ⇒ n′
ext,w = next,w + wtext(s, e, x)

Aext,w(t
′ − t) =

next,w

t′−t

• Internal weighted a
tivity Aint,w, related to the 
ounting nint,w of internaltransitions δint(s) =
(

δ(s, τ (s) , /O), 0
), over a time period [t, t′]:







wtint : S → N
0

s′ = δint(s, e) ⇒ n′
int,w = nint,w + wtint(s)

Aint,w(t
′ − t) =

nint,w

t′−t

• Simulation (total) weighted simulation a
tivity Aw(t
′ − t) is equal to:

Aw(t
′ − t) = Aext,w(t

′ − t) +Aint,w(t
′ − t)

• Average weighted simulation a
tivity Aw(t′ − t) is equal to:
Aw(t′ − t) =

Aext,w(t
′ − t) +Aint,w(t

′ − t)

t′ − t7



4 Open Resear
hQuanti�
ation of 
omponent a
tivity opens new resear
h dire
tions, e.g., in:
• Ma
hine Learning, where a
tivity 
orresponds to the usage of 
omponentsin the sear
h spa
e and 
an be 
orrelated to the payo� of 
omponent
ompositions,
• Networks, where a
tivity provides an indi
ation of the frequen
y of nodea

esses as well as information paths,
• Systems-theory, where a
tivity 
ould be used for the spe
i�
ation of dy-nami
 systems (from input-output behaviors to internal stru
tures),
• ...In relation to these theoreti
al dire
tions, many appli
ation domains 
an be
onsidered:
• In Neuros
ien
es, through the mapping between the a
tivity of 
ompo-nents/networks and neurons/brain regions,
• In E
ology, through the analogy between a
tivity and the energy used byorganisms to survive and evolve,
• In E
onomi
s, through the 
omparison of de
ision paths, 
hara
terizedthrough their a
tivity.
• In propagation pro
esses, a
tivatability and a
tivity 
an be used for opti-mization through a
tivity tra
king at run-time, or for a
tivatability pre-pro
essing (e.g., in �re spread, where the vegetation is expe
ted to burn,et
.)
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