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This is only a brief introduction to Activity theory for modeling and simu-
lation. It aims at providing canonical (because very simple) definitions, in the
context of dynamical and discrete event systerms.

Usually, in simulation, (qualitative) activities of systems consist of phases,
which “start from an event and end with another” [2]. Information about the
dynamics of the system is embedded into phases p € P corresponding to strings
(“burning”; “waiting”, etc.) Mathematically, an event ev; is denoted by a couple
(t;,v;), where t; € RT™* is the timestamp of the event, and v; € V is the value of
the event. Therefore, usual qualitative activities have values in P. Each activity
consists of a triple a = (p, ev;, ev;11), with v; = p for t; <t < t;41, with ¢ € N.
An example of qualitative activity sequence is depicted in Figure 1. The set of
qualitative activities consists of: Ay = {(p, evs, eviy1)}.
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Figure 1: An example of usual qualitative activity definition.

All the definitions presented hereafter aim at providing different (quanti-
tative) definitions of activity. The latter is a metrics of: continuous changes,
number of transitions, number of state changes, etc.

1 Activity of continous segments

Considering a continuous function ®(t) (¢f. in Figure 2) and related extrema
My, model continuous activity A.(T)[4] of this trajectory, over a period of time
T, consists of kind of “distance”:
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Figure 2: Continuous trajectory with extrema.

Average continuous activity consists then of A.(T) = A0

Now considering a significant change of value of size D = |®"*! — ®"|, called
a quantum, the discretization activity Aq(T)[1], corresponding to the minimum
number of transitions necessary for discretizing/approching the trajectory of
®(t) (¢f. Figure 3) is:
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Average discretization activity consists then of A4(T) = A#T) .
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Figure 3: Continuous trajectory with extrema.

An event set is defined as £ = {ev; = (t;,v;) | © = 1,2,3, ...}, where a discrete
event ev; is a couple of timestamp ¢; € R™* and value v; € V.

Considering a time interval (to, t,,) , an event segment is defined as w: (to, tn) — VU
{@}, with ”@” corresponding to nonevents. Segment w is an event segment if
there exists a finite set of times points t1,%2,t3,...,tn—1 € (to,t,) such that
w(t)=v € Viori=1,..,n—1and w(t) = & for all other ¢t € (tg, t,).

An activity segment (cf. Figure 4) of a continuous function ®(t) is defined

m;

as an event segment such that w (¢;) = r—— fori=1,...n—1and ty =0.




Figure 4: Continuous trajectory with extrema.

2 Envent-based activity

We consider here the activity as a measure of the number of events in an event
set & ={ev; = (t;,v;) |1 =1,2,3,..}, for 0 <¢; < T.

2.1 Activity in an discrete event set

Event-based activity A¢(T) |5] consists of :

Ae(T) = [{evi = (ti,vi) € £ |0 < t; < T}
Average event-based activity consists then of A¢(T) = AgF}T)
For example, assuming the event trajectory depicted in Figure 5, the average
event-based activity of the system corresponds to the following values for differ-
ent time periods: A¢(10) = 0.3, A¢(20) = 0.15, A¢(30) ~ 0.133, A¢(40) = 0.175.
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Figure 5: An example of event trajectory.

2.2 Event-based activity in a Cartesian space

Activation and non-activation can be used to partition the set of positions p € P
in a Cartesian space. Activation is simply defined as an event-based activity



3D plot:

Figure 6: 2D and 3D visualization of event-based activity in a 2D space. = and
y represent Cartesian coordinates. The event-based activity of each coordinate
is represented in the third dimension.

A¢(T) > 0 while non-activation is defined as an event-based activity A¢(T) = 0.
Related partitions are called activity and inactivity regions [5]:

e Activity region in space:
ARP(T)={pecP | Ae p(T) > 0}
where A¢ ,(T') corresponds to the event-based activity at position p € P .

e Inactivity region in space:

ARP(T) ={p € P | Agp(T)= 0}

A function of reachable states can be considered in time and space as r : P X
T — @, where @ is the set of states of the system. The set of all reachable
states in the state set @, through time and space, can be defined universe
U={r(p,t) C Q|peP,teT} Considering that all reachable states in time
and space can be active or inactive, an activity-based partitioning of space P
can be achieved: V¢t € T, P = AR? (T) U ARP(T).

Figure 6 depicts activity values for two-dimensional Cartesian coordinates
X x Y. This is a neutral example, which can represent whatever activity mea-
sures in a Cartesian space (fire spread, brain activity, etc.)

In spatialized models (cellular automata, L-systems,...), components are lo-
calized at Cartesian coordinates in space P. Each component c is assigned to a
position ¢, € P.

Applying the definition of activity regions in space to components, we obtain:

ARC(T) = {ceC|c, € ART(T)}



ARP(T) specifies the coordinates where event-based activity occurs. Conse-
quently, active components, over time period T, correspond to the components
localized at positions p, with A¢ (7)) > 0, while inactive components have a
null event-based activity A¢ ,(T) = 0.

3 Activity in Discrete Event System Specification
(DEVS)

DEVS allows separating model and simulator (called the abstract simulator).
The latter is in charge of activating the transitions of the model. This allows
counting the number of transition executions (activations). This measure is the
simulation activity[6]. Each transition can be also weighted [3].

3.1 DModel

The dynamics of a component can be further described using a Discrete Event
System Specification (DEVS). The latter is a tuple, denoted by DEVS =<
X, Y, S, 0, \,7 >, where X is the set of input values, Y is the set of output
values, S is the set of partial sequential states, 6 : Q X (X U{@}) — S is the
transition function, where Q = {(s,e)|s € 5,0 <e <7 (s)} is the total state
set, e is the time elapsed since the last transition, @) is the null input value,
A: S =Y is the output function, 7: S — R?)L’OO is the time advance function.

If no event occurs in the system, the latter remains in partial sequential
state s for time 7 (s). When e = 7 (s), the system produces an output A (s),
then it changes to state (6(s, e, z),e) = (6(s, 7 (s), (), 0), which is defined as an
internal transition 0;,:(s). If an external event, z € X, arrives when the system
is in state (s, e), it will change to state (6(s, 7 (s),x),0), which is defined as an
external transition dc.t(S, e, ).

3.2 Activity-based abstract simulator

Modifications of usual abstract simulator for atomic models [6] is presented
here:

o FExternal activity Aeqe, related to the counting ney; of external transitions
dext(s,2) = (8(s,7(s),2),0), over a time period [t,t']:

Aezt (t/ - t) = Deat

! ! —
{ 8" = ext(s,6,0) = nlyy = Negr + 1
Tt

o Internal activity A, related to the counting ng,; of internal transitions
Sint(s) = (0(s,7 (s),®),0), over a time period [t, t]:

{ o= 6int(87 6) = n;nt = Nint + 1

Aint (t/ - t) - Zl—ﬁ;



Algorithm 1 Modified abstract simulator for weighted activity

1: variables

2 parent — parent, coordinator

3 tl — time of last event

4: tn — time of next event

5: DEV S — associated model with total state (s, e)
6 y — output message bag

7 nint — number of internal transitions

8 Nert — number of external transitions

9

10: when receive i-message (i,t) at time ¢
11:  tl=t-e

12: tn = tl + ta(s)

13: when receive *-message (x, t)at time ¢
14: if (t = tn) then

15: y=A(s)

16: send y-message (y,t) to parent coordinator
17: $ = int(8)

18: N = Nint + 1

19: when receive x-message (x, t)
20: if (x # @ and tl <t <tn) then

21: $ = dext(s,x,€)
22: Nhoy = Newt + 1
23: tl =1

24: tn = tl + 7(s)

e Simulation (total) activity As(t' —t) is equal to:

At —t) = Aept (' — 1) + A (' — 1)

e Average simulation activity Ag(t' —t) is equal to:

Aeat (' — ) + Aiu (V' — t)
t—t

A0 1) =

Here simulation activity is simply a counter of the number of events. However,
when events have different impacts, weighted activity is introduced.

3.3 Abstract simulator for weighted activity

Weighted simulation activity A,,(T) has been defined in [3]. It is related to a
modified abstract simulator:

o External weighted activity Acqt ., related to the counting negs ., of external
transitions deqt(s, ) = (8(s,7(s),x),0), over a time period [¢,t']:



Algorithm 2 Modified abstract simulator for weighted activity
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: variables

parent — parent, coordinator

tl — time of last event

tn — time of next event

DEV S — associated model with total state (s, e)
y — output message bag

nint — number of internal transitions

Nert — number of external transitions

when receive i-message (i,t) at time ¢
tl=1t-e
tn = tl + ta(s)
when receive *-message (x,t)at time ¢
if (t = tn) then
y=Als)
send y-message (y,t) to parent coordinator
§ = Oint(s)
n/int,w = Nint,w + wtmt(S)
when receive x-message (x, t)
if (z =0 and tl <t <tin) then

$ = dext(s,x,€)

n/emt,w = Negt,w + Wheqt (8, €, )
tl=1t
tn =tl+7(s)

Wheg © X x Q — NO
s’ = 66115(8, e, J/') = n/ext,w Next,w T wtemt(sa €, JI)

Aemt,’w (tl - t) - n;/zjiw

o Internal weighted activity Aipg ., related to the counting iy ., of internal
transitions Gint(s) = (0(s, 7 (s),?),0), over a time period [t,#']:

wting : S — NO
8" = bint (s, €) = Nipy 1y = Nint,w + Whint(s)

At () — 1) = 752

o Simulation (total) weighted simulation activity A, (t' —t) is equal to:

Ap(t' —t) = Aczt (' — 1) + Ajprw(t' — 1)

o Average weighted simulation activity A, (t' —t) is equal to:

Aext,w(t/ - t) + Aint,w(t/ - t)

At —t) =
(t"—1) v —t




4 Open Research

Quantification of component activity opens new research directions, e.g., in:

e Machine Learning, where activity corresponds to the usage of components
in the search space and can be correlated to the payoff of component
compositions,

e Networks, where activity provides an indication of the frequency of node
accesses as well as information paths,

e Systems-theory, where activity could be used for the specification of dy-
namic systems (from input-output behaviors to internal structures),

In relation to these theoretical directions, many application domains can be
considered:

e In Neurosciences, through the mapping between the activity of compo-
nents/networks and neurons/brain regions,

e In Ecology, through the analogy between activity and the energy used by
organisms to survive and evolve,

e In Economics, through the comparison of decision paths, characterized
through their activity.

e In propagation processes, activatability and activity can be used for opti-
mization through activity tracking at run-time, or for activatability pre-
processing (e.g., in fire spread, where the vegetation is expected to burn,
etc.)
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