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Abstract. Discovering Protein-Protein Interactions (PPI) is a new interesting
challenge in computational biology. Identifying interactions among proteins was
shown to be useful for �nding new drugs and preventing several kinds of diseases.
The identi�cation of interactions between HIV-1 proteins and Human proteins
is a particular PPI problem whose study might lead to the discovery of drugs
and important interactions responsible for AIDS. We present the FIST algorithm
for extracting hierarchical bi-clusters and minimal covers of association rules in
one process. This algorithm is based on the frequent closed itemsets framework
to e�ciently generate a hierarchy of conceptual clusters and non-redundant sets
of association rules with supporting object lists. Experiments conducted on a
HIV-1 and Human proteins interaction dataset show that the approach e�ciently
identi�es interactions previously predicted in the literature and can be used to
predict new interactions based on previous biological knowledge.

1 Introduction

Acquired Immune De�ciency Syndrome (AIDS) is the last stage of HIV infection
in human body. At this stage, the human immune system fails to protect the
body from any kind of infections, and this eventually leads to death. HIV is a
member of the retrovirus family (lentivirus) which infects important cells in the
human immune system. This kind of infection is due to the interaction between
proteins of both the virus and the human host in the human cells. Predicting such
interactions is an important goal of PPI research. In particular, analyzing well-
known interactions and �nding new interactions can provide useful information
to �nd new drugs and discover the reasons and mechanisms of this kind of viral
disease [2].

PPI databases contain information about the fact that proteins can interact if
they come into contact. The absence of such information does not imply that they
cannot interact with each other as there is no information about non-interacting
proteins. The HIV-1-Human PPI dataset is a database containing possible viral
and human protein interactions. As stated above, only positive interactions are
shown.



Several approaches for predicting interactions have been studied in the litera-
ture. These approaches are based on Bayesian networks [12], random forest classi-
�ers [14], mixture-of-feature-expert classi�ers [20], kernel methods [24, 5], or deci-
sion trees [28]. Most of them have been used to �nd interactions within a single or-
ganism, like yeast or human (intra-species interactions). Recently, two approaches
have been proposed to predict the set of interactions between HIV-1 and human
host cellular proteins [22, 16]. In particular, in [22] the authors proposed a super-
vised learning framework that integrates heterogeneous biological information to
predict inter-species interactions. However, this approach solves the classi�cation
problem using the random forest classi�er which, like most of the above mentioned
approaches, needs both positive and negative samples of PPIs. Negative samples
here are pairs of human and HIV proteins known not to interact, but such �neg-
ative interactions� (or, better, proven absence of interactions) are not known in
the current state of knowledge in the PPI problem studied here. Negative sam-
ples have then to be prepared, for example by randomly selecting proteins pairs
that are not present in the database, thus leading to a high dependency between
the classi�er performance and the choice of the negative samples. The approach
proposed by Mukhopadhyay et al. [16] uses the well-known Apriori algorithm for
mining association rules. The particularity of such an approach is that only in-
formation based on positive samples is used to predict viral-human interactions
(inter-species interactions). This is also the case for the approach proposed here.

In this paper, we present FIST, a novel approach to integrated bi-clustering and
association rule mining, whose aim is threefold: in a single process, (i) to e�-
ciently mine frequent closed itemsets and generators, (ii) to generate minimal
non-redundant covers of association rules, and (iii) to generate hierarchical con-
ceptual bi-clusters. Moreover, compared to classical association rule mining meth-
ods, the list of objects (rows) of the dataset supporting each association rule is
generated. From the viewpoint of bi-clustering [15], the generated clusters form a
hierarchical lattice structure and can overlap, allowing an object to belong to sev-
eral bi-clusters, if relevant. Another important aim of the FIST approach is to �nd
out interactions between proteins and features in order to extract relationships
between annotations (biological and publication) and interactions.

FIST has been validated by applying it to an HIV-1-Human PPI dataset for �nding
interactions between viral and host proteins. Most existing approaches extract
relationships either between viral proteins or between host proteins. Unlike them,
FIST extracts bi-clusters and association rules that show relationships involving
viral proteins, host proteins, or both at the same time. Results are presented in
the following sections.

The rest of the paper is organized as follows. The integrated frequent closed item-
set based approach is presented in Section 2 and the FIST algorithm is described
in Section 3. In Section 4, we present and discuss experimental results. Finally,
Section 5 concludes the paper.

2 Closure Concept based Integrated Approach

Early approaches to association rule mining showed that the problem can be
divided into two parts: �rst, �nd frequent itemsets with their supports, which is
the most time-consuming part, and then generate association rules from these
itemsets [1]. Then, the frequent closed itemsets (FCIs) framework was de�ned
to improve the e�ciency of the mining in case of non-sparse data [17, 26]. These
frequent closed itemsets, de�ned using the Galois closure [10], are a sub-order of
the subset lattice. This framework was later used to de�ne minimal covers, or



bases, of association rules [3, 18, 27]. This approach relies on the property that
the frequent closed itemsets with supports constitute a non-redundant minimal
representation of the frequent itemsets and their supports. It was experimentally
shown that the set of frequent closed itemsets is on average much smaller for
real-life datasets, thus making this process faster than directly mining frequent
itemsets. Association rules, or association rule bases, are then directly generated
from the frequent closed itemsets. See [6] for a comprehensive survey on association
rule mining.

The FIST approach aims at providing the user with a minimal set of knowledge
patterns representing relationships between data values in the dataset, without
information loss. For this task, two types of patterns are generated: informative
bases for association rules and hierarchical conceptual clusters. These compact
sets of patterns can then be searched for speci�c information such as intra- and
inter-species protein interactions, or relationships between protein interactions
and features (biological annotations and characteristics, publications, etc.).

Extracted patterns depict relationships between proteins, which are viral or host
proteins, or both. Let V = {v1, . . . , vN} be the set of viral proteins and H =
{h1, . . . , hM} the set of human host proteins. We consider three possible kinds of
patterns:

� r1 : v1, v2, . . . , vn ⇐⇒ h1, h2, . . . , hm where vi ∈ V , hj ∈ H;

� r2 : v1, v2, . . . , vn =⇒ vn+1, vn+2, . . . , vn+p where {v1, v2, . . . , vn} ∩
{vn+1, vn+2, . . . , vn+p} = ∅ and vi ∈ V ;

� r3 : h1, h2, . . . , hm =⇒ hm+1, hm+2, . . . , hm+q where {h1, h2, . . . , hm} ∩
{hm+1, hm+2, . . . , hm+q} = ∅ and hj ∈ H.

Type r1 relationships capture interactions between some viral proteins and some
host proteins (inter-species PPI). Identifying such rules is similar to the problem
of bi-clustering, that is, in the context of FIST, �nding frequent closed itemsets
with related object identi�ers. Type r2 and r3 relationships are association rule
patterns showing implications among viral proteins and host proteins respectively
(intra-species PPI). Classi�cation methods usually need both positive and nega-
tive examples of the predicted class, e.g., interacting and non-interacting protein
pairs, in order to achieve an optimal supervised classi�cation. However, in the
case of HIV-1-Human PPI, information on non-interacting pairs of proteins is
not available [8, 19]. Hence, descriptive methods, such as unsupervised classi�ca-
tion (clustering) and association rule extraction, seem better suited to this PPI
problem.

FIST was designed both to extract in one process di�erent kinds of knowledge
patterns, bi-clusters and association rules, and to extract additional information
for each of these patterns compared to classical approaches. It can process dis-
crete numerical, boolean, textual and nominal data. As for the majority of similar
methods, in the case of continuous numerical data, a discretization method has
to be applied before processing the data with FIST. This is for example the case
for numerical gene expression data where numerical values must be discretized to
identify �up-regulated�, �unchanged� and �down-regulated� genes (rows) for each
experimental biological conditions (columns). See [25] for a recent discussion on
discretization methods used in data mining.

Consider the example dataset D1 in Figure 1 where H1 to H6 are human proteins,
V1 to V5 are viral proteins and Annot columns represent annotations of human
proteins extracted from biological knowledge bases (Gene Ontology, KEGG, etc.)
and publication bases (Pubmed, Reactome pathways, etc.). These annotations,
represented as nominal data, describe biological knowledge on human proteins
such as biological functions or characteristics (Fn) or bibliographic citation refer-
ences (Bm). A �1� in column Vi for row Hj means that there is a positive (i.e.,



experimentally veri�ed) interaction between Hj and Vi, while �-� means that no
interaction has been reported. For example, we can state that there is a positive
interaction between human protein H1 and viral proteins V1, V3 and V4, while
no interaction between H1, V2 and V5 has been reported. Besides, we can also
state that H1 is annotated by biological annotations F1 and F2 and referenced by
bibliographical annotation B1.

OID V1 V2 V3 V4 V5 Annot Annot Annot

H1 1 - 1 1 - F1 F2 B1

H2 1 - 1 - - F2 B1 B2

H3 - - 1 - 1 B3 - -

H4 1 - 1 1 - F2 F3 B1

H5 - 1 - - - F4 - -

H6 1 - 1 1 1 F2 B1 B3

Fig. 1: Example dataset D1.

Conceptual bi-clusters extracted by FIST form a hierarchical structure and both
HIV and Human proteins can participate to several bi-clusters according to their
co-occurrences in the data. In the context of HIV-1-Human PPI, each hierarchical
conceptual cluster associates a list of HIV proteins and a list of Human proteins
that interact. FIST bi-clusters also associate to each bi-cluster the minimal set of
common properties, called generators, required to construct it [11, 17]. Moreover,
unlike most clustering methods, conceptual clustering does not need to de�ne the
number of clusters before the process as data are grouped according to their co-
occurrences in the dataset. The Hasse diagram of the lattice structure of the four
bi-clusters extracted from D1 for minsupport = 2/6 is shown in Figure 2. The top
bi-cluster in this �gure is irrelevant from the viewpoint of informativeness and is
not generated by FIST; it is represented here for completeness of the lattice. Ex-
amining the rightmost bi-cluster, we can see in this lattice that human proteins H3

and H6 both interact with viral proteins V3 and V5 and are cited in bibliograph-
ical reference B3. The leftmost bi-clusters show that human proteins H1, H2, H4,
and H6 all interact with viral proteins V1 and V3, are all annotated with F2, and
are cited in bibliographical reference B1 and that human proteins H1, H4, and H6

all interact with viral proteins V1, V3, and V4, are all annotated with F2, and are
cited in bibliographical reference B1. We can also see that the viral protein that
interacts with the greatest number of human proteins is V3, which interacts with
H1, H2, H3, H4, and H6, and that this interaction is the only property common
to these �ve human proteins. It should be noted that for this minsupport value,
there are 4 frequent closed itemsets, whereas there are 37 frequent itemsets for
dataset D1. These frequent closed itemsets are reprensented in the left element of
the bi-clusters.

Association rules are implication rules of the form: {r: antecedent =⇒ consequent,
support(r), con�dence(r)} where antecedent and consequent are sets of data val-
ues, support(r) is the number of objects (rows of the dataset) supporting the rule
and con�dence(r) is the proportion of rows verifying the rule in the dataset. FIST
aims at improving the process compared to frequent itemsets based approaches.
First, the number of extracted rules can be reduced by a signi�cant proportion as
redundant rules can represent the majority of extracted rules [3, 26]. Association
rules extracted by FIST are constructed using generators, as antecedents, and
frequent closed itemsets, as consequents. These rules, also called min-max associ-



Fig. 2: Hierarchical bi-clusters extracted from D1 for minsupport = 2/6.

ation rules, constitute the informative base of association rules [18]. FIST extracts
rules in two disctinct sets: exact association rules that have con�dence = 1, i.e.,
with no counter example in the dataset, and approximate association rules, having
con�dence < 1. It also extends the association rules by adding information to each
rule: The list of objects (rows) supporting each one is also generated, allowing the
user to see which objects verify this rule in the dataset as shown in Figure 3.
We can see that for minsupport = 2/6 and mincon�dence = 2/6, 6 exact and 6
approximate min-max association rules are generated by FIST from dataset D1

whereas 117 exact and 75 approximate association rules are generated by classical
Apriori-like approaches. These 192 association rules are shown in Figure 4.

Association rule supp conf Objects

B1 =⇒ V1, V3, F2 4 1 H1, H2, H4, H6

F2 =⇒ V1, V3, B1 4 1 H1, H2, H4, H6

V1 =⇒ V3, F2, B1 4 1 H1, H2, H4, H6

V4 =⇒ V1, V3, F2, B1 3 1 H1, H4, H6

B3 =⇒ V3, V5 2 1 H3, H6

V5 =⇒ V3, B3 2 1 H3, H6

V3 =⇒ V1, F2, B1 4 0.80 H1, H2, H4, H6

B1 =⇒ V1, V3, V4, F2 3 0.75 H1, H4, H6

F2 =⇒ V1, V3, V4, B1 3 0.75 H1, H4, H6

V1 =⇒ V3, V4, F2, B1 3 0.75 H1, H4, H6

V3 =⇒ V1, V4, F2, B1 3 0.60 H1, H4, H6

V3 =⇒ V5, B3 2 0.40 H3, H6

Fig. 3: Minimal non-redundant association rules extracted from D1 for minsupport
= 2/6 and mincon�dence = 2/6.



# Association rule supp conf # Association rule supp conf # Association rule supp conf

1. V1 =⇒ V3 4 1 65. V4 =⇒ F2 B1 3 1 129. V1 =⇒ V3 V4 3 0.75

2. F2 =⇒ V1 4 1 66. V3 V4 F2 =⇒ V1 3 1 130. V1 F2 =⇒ V4 3 0.75

3. V1 =⇒ F2 4 1 67. V1 V4 F2 =⇒ V3 3 1 131. F2 =⇒ V1 V4 3 0.75

4. B1 =⇒ V1 4 1 68. V1 V3 V4 =⇒ F2 3 1 132. V1 =⇒ V4 F2 3 0.75

5. V1 =⇒ B1 4 1 69. V4 F2 =⇒ V1 V3 3 1 133. V1 B1 =⇒ V4 3 0.75

6. F2 =⇒ V3 4 1 70. V3 V4 =⇒ V1 F2 3 1 134. B1 =⇒ V1 V4 3 0.75

7. B1 =⇒ V3 4 1 71. V1 V4 =⇒ V3 F2 3 1 135. V1 =⇒ V4 B1 3 0.75

8. B1 =⇒ F2 4 1 72. V4 =⇒ V1 V3 F2 3 1 136. V3 F2 =⇒ V4 3 0.75

9. F2 =⇒ B1 4 1 73. V3 V4 B1 =⇒ V1 3 1 137. F2 =⇒ V3 V4 3 0.75

10. V3 F2 =⇒ V1 4 1 74. V1 V4 B1 =⇒ V3 3 1 138. V3 B1 =⇒ V4 3 0.75

11. V1 F2 =⇒ V3 4 1 75. V1 V3 V4 =⇒ B1 3 1 139. B1 =⇒ V3 V4 3 0.75

12. V1 V3 =⇒ F2 4 1 76. V4 B1 =⇒ V1 V3 3 1 140. F2 B1 =⇒ V4 3 0.75

13. F2 =⇒ V1 V3 4 1 77. V3 V4 =⇒ V1 B1 3 1 141. B1 =⇒ V4 F2 3 0.75

14. V1 =⇒ V3 F2 4 1 78. V1 V4 =⇒ V3 B1 3 1 142. F2 =⇒ V4 B1 3 0.75

15. V3 B1 =⇒ V1 4 1 79. V4 =⇒ V1 V3 B1 3 1 143. V1 V3 F2 =⇒ V4 3 0.75

16. V1 B1 =⇒ V3 4 1 80. V4 F2 B1 =⇒ V1 3 1 144. V3 F2 =⇒ V1 V4 3 0.75

17. V1 V3 =⇒ B1 4 1 81. V1 V4 B1 =⇒ F2 3 1 145. V1 F2 =⇒ V3 V4 3 0.75

18. B1 =⇒ V1 V3 4 1 82. V1 V4 F2 =⇒ B1 3 1 146. V1 V3 =⇒ V4 F2 3 0.75

19. V1 =⇒ V3 B1 4 1 83. V4 B1 =⇒ V1 F2 3 1 147. F2 =⇒ V1 V3 V4 3 0.75

20. F2 B1 =⇒ V1 4 1 84. V4 F2 =⇒ V1 B1 3 1 148. V1 =⇒ V3 V4 F2 3 0.75

21. V1 B1 =⇒ F2 4 1 85. V1 V4 =⇒ F2 B1 3 1 149. V1 V3 B1 =⇒ V4 3 0.75

22. V1 F2 =⇒ B1 4 1 86. V4 =⇒ V1 F2 B1 3 1 150. V3 B1 =⇒ V1 V4 3 0.75

23. B1 =⇒ V1 F2 4 1 87. V4 F2 B1 =⇒ V3 3 1 151. V1 B1 =⇒ V3 V4 3 0.75

24. F2 =⇒ V1 B1 4 1 88. V3 V4 B1 =⇒ F2 3 1 152. V1 V3 =⇒ V4 B1 3 0.75

25. V1 =⇒ F2 B1 4 1 89. V3 V4 F2 =⇒ B1 3 1 153. B1 =⇒ V1 V3 V4 3 0.75

26. F2 B1 =⇒ V3 4 1 90. V4 B1 =⇒ V3 F2 3 1 154. V1 =⇒ V3 V4 B1 3 0.75

27. V3 B1 =⇒ F2 4 1 91. V4 F2 =⇒ V3 B1 3 1 155. V1 F2 B1 =⇒ V4 3 0.75

28. V3 F2 =⇒ B1 4 1 92. V3 V4 =⇒ F2 B1 3 1 156. F2 B1 =⇒ V1 V4 3 0.75

29. B1 =⇒ V3 F2 4 1 93. V4 =⇒ V3 F2 B1 3 1 157. V1 B1 =⇒ V4 F2 3 0.75

30. F2 =⇒ V3 B1 4 1 94. V3 V4 F2 B1 =⇒ V1 3 1 158. V1 F2 =⇒ V4 B1 3 0.75

31. V3 F2 B1 =⇒ V1 4 1 95. V1 V4 F2 B1 =⇒ V3 3 1 159. B1 =⇒ V1 V4 F2 3 0.75

32. V1 F2 B1 =⇒ V3 4 1 96. V1 V3 V4 B1 =⇒ F2 3 1 160. F2 =⇒ V1 V4 B1 3 0.75

33. V1 V3 B1 =⇒ F2 4 1 97. V1 V3 V4 F2 =⇒ B1 3 1 161. V1 =⇒ V4 F2 B1 3 0.75

34. V1 V3 F2 =⇒ B1 4 1 98. V4 F2 B1 =⇒ V1 V3 3 1 162. V3 F2 B1 =⇒ V4 3 0.75

35. F2 B1 =⇒ V1 V3 4 1 99. V3 V4 B1 =⇒ V1 F2 3 1 163. F2 B1 =⇒ V3 V4 3 0.75

36. V3 B1 =⇒ V1 F2 4 1 100. V3 V4 F2 =⇒ V1 B1 3 1 164. V3 B1 =⇒ V4 F2 3 0.75

37. V3 F2 =⇒ V1 B1 4 1 101. V1 V4 B1 =⇒ V3 F2 3 1 165. V3 F2 =⇒ V4 B1 3 0.75

38. V1 B1 =⇒ V3 F2 4 1 102. V1 V4 F2 =⇒ V3 B1 3 1 166. B1 =⇒ V3 V4 F2 3 0.75

39. V1 F2 =⇒ V3 B1 4 1 103. V1 V3 V4 =⇒ F2 B1 3 1 167. F2 =⇒ V3 V4 B1 3 0.75

40. V1 V3 =⇒ F2 B1 4 1 104. V4 B1 =⇒ V1 V3 F2 3 1 168. V1 V3 F2 B1 =⇒ V4 3 0.75

41. B1 =⇒ V1 V3 F2 4 1 105. V4 F2 =⇒ V1 V3 B1 3 1 169. V3 F2 B1 =⇒ V1 V4 3 0.75

42. F2 =⇒ V1 V3 B1 4 1 106. V3 V4 =⇒ V1 F2 B1 3 1 170. V1 F2 B1 =⇒ V3 V4 3 0.75

43. V1 =⇒ V3 F2 B1 4 1 107. V1 V4 =⇒ V3 F2 B1 3 1 171. V1 V3 B1 =⇒ V4 F2 3 0.75

44. V4 =⇒ V1 3 1 108. V4 =⇒ V1 V3 F2 B1 3 1 172. V1 V3 F2 =⇒ V4 B1 3 0.75

45. V4 =⇒ V3 3 1 109. V5 =⇒ V3 2 1 173. F2 B1 =⇒ V1 V3 V4 3 0.75

46. V4 =⇒ F2 3 1 110. B3 =⇒ V3 2 1 174. V3 B1 =⇒ V1 V4 F2 3 0.75

47. V4 =⇒ B1 3 1 111. B3 =⇒ V5 2 1 175. V3 F2 =⇒ V1 V4 B1 3 0.75

48. V3 V4 =⇒ V1 3 1 112. V5 =⇒ B3 2 1 176. V1 B1 =⇒ V3 V4 F2 3 0.75

49. V1 V4 =⇒ V3 3 1 113. V5 B3 =⇒ V3 2 1 177. V1 F2 =⇒ V3 V4 B1 3 0.75

50. V4 =⇒ V1 V3 3 1 114. V3 B3 =⇒ V5 2 1 178. V1 V3 =⇒ V4 F2 B1 3 0.75

51. V4 F2 =⇒ V1 3 1 115. V3 V5 =⇒ B3 2 1 179. B1 =⇒ V1 V3 V4 F2 3 0.75

52. V1 V4 =⇒ F2 3 1 116. B3 =⇒ V3 V5 2 1 180. F2 =⇒ V1 V3 V4 B1 3 0.75

53. V4 =⇒ V1 F2 3 1 117. V5 =⇒ V3 B3 2 1 181. V1 =⇒ V3 V4 F2 B1 3 0.75

54. V4 B1 =⇒ V1 3 1 118. V3 =⇒ V1 4 0.8 182. V3 =⇒ V4 3 0.6

55. V1 V4 =⇒ B1 3 1 119. V3 =⇒ F2 4 0.8 183. V3 =⇒ V1 V4 3 0.6

56. V4 =⇒ V1 B1 3 1 120. V3 =⇒ B1 4 0.8 184. V3 =⇒ V4 F2 3 0.6

57. V4 F2 =⇒ V3 3 1 121. V3 =⇒ V1 F2 4 0.8 185. V3 =⇒ V4 B1 3 0.6

58. V3 V4 =⇒ F2 3 1 122. V3 =⇒ V1 B1 4 0.8 186. V3 =⇒ V1 V4 F2 3 0.6

59. V4 =⇒ V3 F2 3 1 123. V3 =⇒ F2 B1 4 0.8 187. V3 =⇒ V1 V4 B1 3 0.6

60. V4 B1 =⇒ V3 3 1 124. V3 =⇒ V1 F2 B1 4 0.8 188. V3 =⇒ V4 F2 B1 3 0.6

61. V3 V4 =⇒ B1 3 1 125. V1 =⇒ V4 3 0.75 189. V3 =⇒ V1 V4 F2 B1 3 0.6

62. V4 =⇒ V3 B1 3 1 126. F2 =⇒ V4 3 0.75 190. V3 =⇒ V5 2 0.4

63. V4 B1 =⇒ F2 3 1 127. B1 =⇒ V4 3 0.75 191. V3 =⇒ B3 2 0.4

64. V4 F2 =⇒ B1 3 1 128. V1 V3 =⇒ V4 3 0.75 192. V3 =⇒ V5 B3 2 0.4

Fig. 4: Association rules extracted from D1 for minsupport = 2/6 and mincon�-
dence = 2/6.



3 FIST: A Novel Integrated Algorithm

In this section, we present the new FIST (Frequent Itemset mining using Su�x-
Trees) algorithm. The FIST algorithm is a three-phase process: (1) preprocessing
the dataset, (2) extracting frequent closed itemsets, (3) �nding bases for associ-
ation rules and hierarchical conceptual bi-clusters. Its general �ow is shown in
Algorithm 1. The input of the algorithm is a dataset represented as a data matrix
in which rows, or lines, are called objects and columns are called attributes. Each
distinct value of an attribute constitutes an item. The FIST algorithm performs
one scan of the input dataset to generate a compressed database that is scanned
once for generating frequent closed itemsets, generators, bases for association rules,
and conceptual bi-clusters.

Algorithm 1 FIST algorithm.

Input: Input dataset, minsupport value, mincon�dence value
Output: Frequent closed itemsets, generators, conceptual clusters, association rules
1: begin

/* Phase 1: Preparing the database */
2: Generate Item Table
3: Generate Sorted Frequent Database

/* Phase 2: Mining frequent closed itemsets */
4: Create frequent Generalized Itemset Su�x-Tree
5: Find frequent closed itemsets

/* Phase 3: Generating knowledge patterns */
6: Find generators of each frequent closed itemsets
7: Find conceptual bi-clusters
8: Generate basis of exact association rules
9: Generate basis of approximate association rules
10: end

3.1 Phase 1: Preparing the Database

The �rst phase of FIST consists in the preparation of the Item Table (IT ) and
the Sorted Frequent Database (SFD) data structures used in the following phases
of the algorithm. These data structures are stored in secondary memory for re-
use. In the SFD database, each row is the list of items, each one representing
an attribute value, contained in the corresponding row of the original dataset.
An example source dataset D2 containing 5 attributes and 5 objects is given in
Figure 5. This preprocessing phase, which aims at optimizing the e�ciency of the
extraction and data accesses, is performed in two steps.

OID C1 C2 C3 A A

O1 - v2 - v5 -

O2 v1 v2 v3 v5 -

O3 v1 - v3 v4 -

O4 - v2 v3 v5 -

O5 v1 v2 v3 v5 v6

Fig. 5: Example dataset D2.



The �rst step consists in constructing the IT table by mapping attribute values
in the dataset, which can be booleans, numerics, nominals or textuals, to items
represented as discrete numbers. This data representation aims at optimizing the
memory space required for data storage and the e�ciency of comparison opera-
tions. This operation, which is performed only once and requires only one read of
the dataset, can be omitted if the dataset contains uniquely discrete numbers. To
create this table, a unique number is created for each pair {attribute, value} using
a mapping function. During this operation, the support of each item in the dataset,
corresponding to its number of occurrences, is counted. Then, using the minimum
support threshold value minsupport provided by the user, the infrequent items,
i.e., those with support less than the minsupport value, are discarded. Finally,
the remaining frequent items are sorted in ascending order of their supports to
optimize the size of the data structure used in the second phase of the algorithm.
During the second step, the SFD database is created to re�ect the occurrences
of frequent items in rows of the original dataset. Rows of the original dataset
containing only infrequent items are not represented in the SFD database. The
example SFD database and the corresponding IT table for dataset D and min-
support = 2/5 are given in Figure 6. In this example, data values A = v4 and A
= v6 with support 1/5 are infrequent and, given their support values, frequent
items are ordered as: {C1 = v1, C2 = v2, A = v5, C3 = v3}. Notice that these
frequent items are ordered �rst on the support and then in order of appearance
in the rows of the dataset. For example, C1 = v1 is in the �rst position in the IT
table because it has a lower support (3), while A = v5 appears before C3 = v3
because it is the second in order of appearence while C3 = v3 appears in the �fth
place.

(A) IT table

Data Support Item

C1 = v1 3 1

C2 = v2 4 2

A = v5 4 3

C3 = v3 4 4

(B) SFD database

Items

2 3

1 2 3 4

1 4

2 3 4

1 2 3 4

Fig. 6: IT table and SFD database for D2 and minsupport = 2/5.

3.2 Phase 2: Mining Frequent Closed Itemsets

During the second phase, which is the core of the FIST algorithm, the frequent
closed itemsets are mined from the SFD database. This phase is carried out in
two steps. The �rst step is the generation of the frequent Generalized Itemset
Su�x-Tree (fGIST ), which is a main memory data structure speci�c to the FIST
algorithm. In the fGIST tree, each internal node represents an item, each branch
from the root to a leaf represents an itemset, and each leaf node represents the
list of numbers of objects (rows) containing this itemset. The second step is the
extraction of the frequent closed itemsets from the fGIST tree. This extraction
is based on inclusion and intersection operations performed on the branches and
the sub-branches of the fGIST tree.

Creating fGIST tree To create the fGIST data structure, each row of the SFD
database is accessed once from the �rst to the last. Each row read is represented



as a vector of items associated with the identi�er number of the row in the SFD
database. Since items were ordered in ascending order of their supports during
the construction of the SFD database, they are also sorted in this order in the
vector. This vector is then inserted into the fGIST tree as a branch, starting from
the root, with a leaf containing the identi�er number of the row. If this vector of
items is already represented as a branch in the tree, that is if an identical row
was read before, then only the leaf is updated by adding the identi�er number
of the row. Then, this process is repeated for all su�xes of the vector of items
that are sub-vectors obtained by deleting successively one item from the �rst to
the last. In our example, the �rst branch to be inserted is {2, 3}, then the branch
corresponding to its unique su�x {3}. The third branch to be inserted into the
tree is {1, 2, 3, 4}, and then the ones corresponding to its su�xes {2, 3, 4}, {3,
4}, and {4}, and so on. The fGIST tree for database SFD is given in Figure 7.

The insertion of a vector of items in the fGIST tree is a recursive procedure
starting from the root node of the tree. Each item of the vector is processed
sequentially from the �rst to last. For each item, we test if there is a sub-node,
of the current node, representing this item. If this is the case, then we go to this
node and repeat the process for the next item of the vector. Otherwise, a new
sub-node is created to represent this item as a child of the current node. When
the last item of the vector was processed, we test if there is a leaf sub-node of
the current node. If this is the case, the row number corresponding to the vector
processed is added to the list of row numbers in this leaf. Otherwise, a new leaf
sub-node is created with a list of row numbers initialized with the row number
corresponding to the vector.

Fig. 7: Frequent Generalized Itemset Su�x-Tree for SFD database.

During this process, the whole SFD database is accessed only once. At the end of
the process, the fGIST tree contains a condensed representation of the frequent
itemsets in the dataset. This data structure is optimized for the following phases
of the process as the most frequent itemsets resulting of intersections of dataset
rows, which are in majority closed itemsets, are represented as branches. This
property is ensured by the fact that items are ordered in ascending order of their
supports.



Creating FCI Table The second step consists in extracting the FCIs, with
the list of objects containing each of them, from the fGIST tree. Each entry in
the FCI table contains two elements: A list of items and the list of numbers of
objects containing that itemset in the database.
First, each branch of the fGIST tree from the root to a leaf is traversed and a new
entry in the FCI table is created for the itemset corresponding to that branch.
The associated list of numbers of objects is initialized using the leaf node of that
branch. The size of this object list corresponds to the support of the itemset in
the database.
Then, the non-closed itemsets in the FCI table are identi�ed using associated
object lists as follows. If an itemset is included in another itemset and both have
identical object lists, then the included itemset is not closed and is dropped from
the table.
Finally, the frequent closed itemsets not already found are identi�ed by performing
intersections between two closed itemsets in the FCI table and verifying if the
resulting itemset is not infrequent or already present in the table. If this is not the
case, that itemset is a new FCI and it is inserted into the table. The associated
object list is the result of the union of the object lists of the two intersected
itemsets. If at least one new frequent closed itemset is generated in such a way,
then the process is repeated for the new generated itemsets. This iterative process
ends when no new frequent closed itemset is generated. At the end, the FCI table
contains all frequent closed itemsets with associated list of objects containing each
of them as shown in Figure 8.

Itemset Object list

{4} {2, 3, 4, 5}

{1, 4} {2, 3, 4}

{2, 3} {1, 2, 4, 5}

{2, 3, 4} {2, 4, 5}

{1, 2, 3, 4} {2, 4}

Fig. 8: FCI Table for SFD database.

3.3 Phase 3: Generating Knowledge Patterns

During the third phase, the conceptual bi-clusters, the generators of frequent
closed itemsets and the association rules are extracted from the FCI table. The
association rules are generated in two distinct sets: a minimal cover for exact asso-
ciation rules and a minimal cover for approximate association rules. These minimal
covers, or bases, contain, respectively, the non-redundant exact and approximate
association rules with minimal antecedent (predictor itemset) and maximal conse-
quent (predicted items) [18]. Minimality is de�ned here according to the inclusion
relation. The pseudo-code of the extraction of these knowledge patterns is given
in Algorithm 2.
First, rows in the FCI table are sorted in increasing order of itemset sizes (step
1) and output sets BIC, GEN, and AR are initialized with the empty set (step
2). Then, each entry FCI[i] in the FCI table is processed successively (steps 3
to 25) for creating hierarchical bi-clusters (step 4) and identifying generators and
association rules (steps 6 to 24) as follows. All subsets S of itemset FCI[i].Itemset
are generated, sorted in increasing order of their sizes (steps 7 and 8) and processed
one by one (steps 10 to 22). For instance, for itemset {2, 3, 4}, the generated



Algorithm 2 Generating knowledge patterns.

Input: FCI table (FCI), mincon�dence value, Item table (IT)
Output: Bi-clusters (BIC), generators (GEN), association rules (AR)
1: sort FCI in increasing size of itemsets
2: GEN, BIC, AR ← ∅
3: for all row FCI[i] in FCI do
4: BIC ← {FCI[i].Itemset, FCI[i].Object_list}
5: M ← FCI[i].Itemset.size()
6: if (M ≥ 2) then
7: SUB ← list of subsets of FCI[i].Itemset
8: sort SUB in increasing size of subsets
9: K ← SUB.size()
10: for all subset S in SUB do
11: if (S /∈ GEN) and (S /∈ FCI.Itemset) then
12: GEN[i] ← S
13: end if
14: for j = 1 to K do
15: if (S.size() + SUB[j].size() = M) and (S ̸= SUB[j]) then
16: create rule R : {S =⇒ SUB[j]}
17: if (con�dence(R) ≥ mincon�dence) and (R /∈ AR) then
18: AR ← {R, support(R), con�dence(R), FCI[i].Object_list}
19: end if
20: end if
21: end for
22: end for
23: SUB ← ∅
24: end if
25: end for
26: map patterns in BIC, GEN, AR to dataset values

subsets are {2}, {3}, {4}, {2, 3}, {2, 4} and {3, 4}. The algorithm �rst determines
if S is a generator of FCI[i].Itemset (steps 11 to 13). Then, all association rules
with S as antecedent are generated if their con�dence is greater than or equal
to the mincon�dence threshold (steps 14 to 21). Considering itemset {2, 3, 4},
generators {2, 4} and {3, 4} are identi�ed, as they are the only minimal itemsets
contained in exactly the same objects as {2, 3, 4}. From these itemsets, rules {2,
4}=⇒{3} and {3, 4}=⇒{2} are generated. Finally, knowledge patterns in the BIC,
GEN, and AR sets are mapped to data values using the Item Table, and object
numbers are mapped to object identi�ers (e.g., gene or protein names) if the source
dataset contained such information, in order to simplify their interpretation by
the end-user (step 26).

4 Experiments and Discussion

The FIST algorithm has been implemented in Java for portability. Experiments
were conducted on a PC with an Intel Core 2 Duo - T5670 Series processor at 1.80
GHz and 4 GB DDR2 of RAM, running under the 32 bits Windows 7 Professional
Edition operating system. The PPI dataset used for performance experiments was
constructed from the HIV-1-Human Protein Protein Interaction Database of the
NIAID [8, 19] available at http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/.
This dataset is a matrix of 19 columns corresponding to the di�erent HIV-1 pro-
teins and 1433 rows corresponding to the human proteins. Each cell of the matrix



contains a 1 if there is a positive interaction between the corresponding pair of
proteins and a question mark if no interaction is reported. To assess the scalability
of FIST when the number of columns increases, a second dataset was constructed
by integrating biological and bibliographical annotations of human proteins with
these interaction data. These two datasets can be downloaded at address removed
for double-blind paper evaluation.

4.1 Algorithmic Performance

Figure 9 compares the execution times of FIST (blue curves) and the Java im-
plementation of Apriori (red curves) in Weka available at http://www.cs.waikato.
ac.nz/ml/weka/. Three minsupport values, 0.001 (0.1%), 0.006 (0.6%) and 0.01
(10%), were used and mincon�dence was varied between 0.001 (0.1%) and 0.6
(60%). We can see that execution times of FIST are always signi�cantly smaller
than those of Apriori even if, as it should be noted, FIST generates more infor-
mation than Apriori: bi-clusters and object lists supporting each association rule
are also generated by FIST, bringing to the end-user more information on ex-
tracted relationship patterns. With object lists supporting each association rule,
the end-user can see precisely the list of objects (human proteins) concerned by
the rule.

Fig. 9: Execution times.

The number of association rules generated by Apriori and FIST is shown in Fig-
ure 10. We can see that FIST reduces this number by a factor up to several tens,
allowing the end-user to concentrate on the most relevant rules. In Figure 11,
the number of association rules generated by FIST for di�erent minsupport and
mincon�dence values is shown. The number of bi-clusters extracted by FIST for
minsupport values ranging from 0.001 (0.1%) to 0.5 (50%) is shown in Table 1.



Fig. 10: Number of association rules.

Table 1: Number of bi-clusters extracted by FIST.

minsupport (%) 0.1 0.5 1 5 10 20 30 40 50

Bi-clusters 342 187 104 22 7 2 2 1 1

4.2 Scalability

To assess the scalability of FIST when the number of attributes increases, a sec-
ond dataset integrating biological annotations and related publications for human
proteins was constructed. GO biological annotations of human proteins from the
UniProtKB-GOA (GO Annotation@EBI) database were collected from the Gene
Ontology web site at http://www.geneontology.org/GO.downloads.annotations.shtml
and GO annotations with evidence code TAS, i.e., annotations manually validated
by biologists and cited in a published biological reference that are the most reliable
biological annotations, were integrated in the data. Publication annotations were
collected from the NCBI web site at http://www.ncbi.nlm.nih.gov/sites/entrez and
Pubmed and Reactome publications related to the GO biological annotations of
human proteins were also integrated in the dataset as new attributes (columns).
This dataset contains overall 1149 distinct GO annotations and 2670 distinct pub-
lication annotations, and up to 40 GO annotations and 88 publication annotations
for each protein. We were unable to run Apriori on this dataset, even for minsup-
port and mincon�dence values as high as 90% and with a maximum java heap size
parameter set to its maximal value, that is 1.5 GB, due to the memory consump-
tion of the approach that requires to identify all frequent itemsets and not only
frequent closed itemsets. Execution times of the execution of FIST on this second
dataset for minsupport values of 0.1 (10%), 0.01 (1%) and 0.006 (0.6%) and for
mincon�dence varying between 0.001 (0.1%) and 0.6 (60%) are depicted in Fig-
ure 12. We can see that even for this very large dataset, execution times remain
reasonable for all threshold values, ranging from a few seconds to a few minutes.
We can also see slight execution time variations for di�erent mincon�dence values
due to other running operating system processes.



Fig. 11: Number of minimal non-redundant rules.

4.3 Discussion

It is interesting to compare our results to the results obtained by Tastan et al.
[22], which are the most comprehensive HIV-Human PPI results available to date.
We focus on the results generated by FIST for minsupport = 0.1% and mincon-
�dence = 0.1%, which are the lowest threshold values tested and thus contain
maximal information.
For each protein pair interaction predicted in [22], we counted the number of FCIs
(and association rules) generated by FIST covering it. Of the 3372 interactions
predicted in [22] by a random forest classi�er, 895 are covered by at least one FCI
generated by FIST. This is 26.5% of their predicted pairs.
Now, the random forest classi�er is reported to achieve a mean average precision
(MAP) of 0.23 on this problem, meaning that around 23% of the predicted in-
teracting pairs should be expected to be true positives. This is just a little below
the percentage of predicted pairs that are �con�rmed� by FIST. Since the random
forest classi�er has little in common with FIST, we believe the two techniques
should be regarded as complementary to one another. By the same argument,
there are good chances that the interacting pairs predicted by [22] and con�rmed
by FIST are indeed true interactions.
In general, it appears that proteins pairs predicted by the random forest classi-
�er with a high score are mostly con�rmed by a large number of FCIs, although
exceptions exist, like the novel high-score predicted pair ⟨env_gp120,CALM1⟩,
which is not covered by any FCI, indicating perhaps that it is a false positive.
Likewise, most low-score predictions are not con�rmed by FIST with some ex-
ceptions, like ⟨env_gp120,EP300⟩ which, however, were known to be indirectly
interacting (the human gene is reported in the siRNA screen in [13]). All in all,
exceedingly few (28) of the 2100 novel predictions by [22], or 1.3%, are con�rmed
by FIST. An exhaustive list thereof is given in Table 2, along with the number of
covering FCIs, approximate, and exact rules. For rules, two separate counts are
provided for rules that have the viral protein in the antecedent (IF part) and in
the consequent (THEN part).
On the other hand, FIST �nds 451 protein pairs that are covered by at least
one FCI among those not included in [22], i.e., for which no explicit indication



Fig. 12: Execution times for integrated dataset.

of possible interaction was pointed out. This is 2.2% of the pairs not included in
[22].
The most covered of these protein pairs is ⟨NEF, IFNG⟩, covered by 70 FCIs.
The NEF protein occurs in the antecedent of 755 approximate rules, in the con-
sequent of 779 approximate rules, in the antecedent of 28 exact rules and in the
consequent of 30 exact rules. Lagging far behind this pair, we �nd the four pairs
⟨TAT,ACTG1⟩, covered by 45 FCIs. ⟨NEF, IL6⟩, covered by 45 FCIs, ⟨TAT, IL2⟩,
covered by 44 FCIs, and ⟨TAT, IL6⟩, covered by 44 FCIs. There are a number of
other pairs covered by 35 or fewer FCIs.
The ⟨NEF, IFNG⟩ pair, to begin by the most covered novel suggestion, although
not previously signaled, looks like a promising candidate for further investigation:
NEF is the viral negative regulatory factor, associated with the early stages of
HIV infection, and the IFNG gene encodes for the interferon-γ protein, an impor-
tant immune response stimulator and modulator; the suggestion of some kind of
relationships between these two proteins may be corroborated by recent research
on HIV vaccines [9].
The same negative regulatory factor is involved in the ⟨NEF, IL6⟩ pair: IL6 is the
gene encoding for interleukin-6, a pro-in�ammatory cytokine secreted by T-cells
and macrophages to stimulate immune response. Indeed, the interaction between
NEF and interleukin-6 has been recognized quite early in the study of AIDS [7].
Other two novel pairs suggested by FIST, namely ⟨TAT, IL2⟩ and ⟨TAT, IL6⟩, in-
volve interleukins. IL2 is the gene of interleukin-2, a signaling molecule normally
produced during an immune response: an antigen binding to a T-cell receptor
stimulates the secretion of interleukin-2, which in turn stimulates the growth of
antigen-selected cytotoxic T-cells. TAT, for trans-activator of transcription, is a
key protein of HIV-1, the �rst to be transcribed, causing the subsequent massive
increase in the transcription levels of the HIV dsRNA. Both interactions are men-
tioned in the literature: the interaction between TAT and interleukin-6 in [21] and
the one between TAT and interleukin-2 in [23].
As for pair ⟨TAT,ACTG1⟩ suggested by FIST, we are not aware of any work in
the literature mentioning it. However, the suggestion does not look completely



Table 2: Novel predicted interacting pairs con�rmed by FIST.

HIV-1 Human #FCI #approx rules #exact rules

IF THEN IF THEN

ENV_GP160 APOBEC3G 1 0 0 0 0

REV CXCR4 4 5 5 0 0

ENV_GP120 FURIN 1 0 0 0 0

VPR MAPK3 34 186 197 7 0

ENV_GP120 PAK1 1 0 0 0 0

TAT PAK2 2 1 1 0 0

NEF PIK3R2 8 19 19 0 0

TAT PPARG 1 0 0 0 0

NEF PRKCD 34 275 300 17 5

NEF PRKCG 34 275 300 17 5

NEF PRKCZ 18 77 83 4 0

TAT RAF1 3 2 2 0 0

VPR RAF1 3 2 2 0 0

ENV_GP120 RAN 2 1 1 0 0

TAT RPA2 4 5 5 0 0

TAT SDCBP 2 1 1 0 0

GAG_PR55 SHC1 1 0 0 0 0

ENV_GP120 SLC3A2 1 0 0 0 0

TAT SREBF2 2 1 1 0 0

NEF STAT5A 4 5 5 0 0

NEF SUMO1 1 0 0 0 0

TAT TCEB1 1 0 0 0 0

ENV_GP120 TUBB1 1 0 0 0 0

ENV_GP120 UBB 2 1 1 0 0

NEF UBB 2 1 1 0 0

TAT UBE2I 1 0 0 0 0

TAT WT1 1 0 0 0 0

REV XRCC5 3 2 2 0 0

implausible, for TAT functions also as a cell-penetrating peptide that acts as a
toxine, causing the apoptosis of uninfected T-cells, and the γ-actin 1, encoded for
by gene ACTG1, is a component of the cytoskeleton of T-cells.

5 Conclusion

We presented the new FIST algorithm for mining association rules and conceptual
bi-clusters that is based on the concept of closure. The main advantages of FIST
are that it generates:
� A minimal non-redundant cover for association rules, from which all rules
generated by Apriori can be deduced if required, that is much smaller;

� For each association rule, the list of objects (rows) supporting the rule instead
of the support (corresponding to the number of such rows) of the rule only;

� The bi-clusters, which are concepts (intension and extension) and form a dual
lattice structure de�ned by inclusion relation;

� For each frequent closed itemset, the generators, which are the minimal sets
of properties required to construct the closed itemset.



The method has been validated by applying it to the prediction of HIV-1 protein-
human protein interactions. Besides proving faster than traditional association
mining methods, the results obtained by FIST con�rm and improve the predic-
tions by existing methods, and suggest novel possible interactions to be further
investigated.
In the future, we plan to apply the FIST method to data integrating additional in-
formation about proteins, like structural and sequential similarities, with protein-
protein interactions to improve the results. Indeed, the integration of di�erent
kinds of biological information is an essential consideration to fully understand
the underlying biological processes [4].
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