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Abstract - We propose to construct hard functions
for genetic algorithms by combining two types of mis-
leading functions. We consider on one hand the tradi-
tional Trap functions defined over the unitation, and
on the other hand new Trap functions based on the
alternation. We recall the performances of GA on
these functions as well as the results on the predic-
tive value of the coefficients of correlation between
distance to the optimum and fitness. We show that
the combination of such functions can generate mis-
leading problems for a genetic algorithm. Moreover,
some of these combinations constitute counterexam-
ples for the predictive value of the coefficient of cor-
relation.

I. Introduction

A central problem consists in characterizing the func-
tions which are difficult to optimize with a genetic algo-
rithm. Many work is based on the concept of deception,
defined relatively to the average fitness of the schema in
competition [5], [6], [L0]. Misleading functions, the so-
called Trap functions, were directly built by synthesizing
their plot in the distance to the optimum/fitness plan in
the form of a piecewise linear function. We start by point-
ing out the traditional definition of these functions based
on the Hamming distance, then we extend this family of
functions by considering a new distance more in connec-
tion with the cross-over operator. Then, we propose to
synthesize new functions by linear combination of Trap
functions. Lastly, we show that this combination can be
used to build counterexamples concerning the predictive
value of the coefficient of correlation between the distance
to the optimum and the fitness, the FDC.

II. Trap Functions

Trap functions represent a well-known family of func-
tions conceived to be misleading for a genetic algorithm.
Such functions exhibit a local optimum towards which
the population converges.

A. U-Trap: Trap on Unitation
A.1 Definition

U-Trap functions are directly characterized by a linear
piecewise function defined in the unitation/fitness plan.
The search space is divided in two basins of attraction
in the Hamming space, leading respectively towards the
global optimum and the local one. These two optima
are represented by complementary bit strings. We will
suppose in the following, without loss of generality, that
0..0 represents the global optimum and 1..1 the local one.
In this case, the unitation of a string (the number of 1)
represents its Hamming distance from the global opti-
mum. Two real parameters in the interval [0,1], b and r,
characterize a U-Trap: b represents the relative width of
the basins of attraction, whereas r measures the ratio of
fitness between the two optima. The function U-Trap is
defined by:

1.0 — wa)
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where u(z) is the normalized unitation (i.e. divided by
strings length).

Using the schema theory, Deb and al. [5], gave theoret-
ical conditions on b and r to make the function U-Trap
completely or partially misleading. Under these condi-
tions, the algorithm is misled while being “trapped” in
the basin of attraction of the local optimum.

A.2 Unitation/Fitness Correlation

Some researchers established a correspondence be-
tween the evolutionary algorithms (EA) and the heuristic
of search in a space of state [6]. The fitness landscape
in the EA corresponds to the space of the states and
the fitness to the search heuristics. In the majority of
search heuristics, like algorithm A*, or Means-Ends An-
alyze, the label is interpreted like a measurement of the
distance to the goal. There are many results which show
that the better it represents a good estimate to the goal,
the better the heuristic is. On the basis of these remarks,



Jones [6] suggested that the ideal fitness function for a
EA should give an indication of the distance which it re-
mains to reach the optimum. Thus, he proposed to use
the correlation between the fitness and the distance to
the nearest optimum to measure the difficulty of a fit-
ness landscape for a genetic algorithm.

The definition of the correlation unitation/fitness
(Fuc, in the following) is quite simple. Given a set
F ={f1, f2,..., fn} of the fitness values of n individuals
and the U = {uy, ug, ..., u,} correspondent distances to
the optimum, the correlation is calculated by:

n

r= cry s where cpy = %Z(f, —?)(ui — H)
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is the covariance between F' and U, and oy, oy, f and
u are respectively the standard deviation and the mean
of F and U. Problems should be divided in 3 classes,
according to the value of their FuC:

1. deceptive problems (Fuc > 0.15) : the fitness gives
wrong information about distance to optimum

2. hard problems (—0.15 < FUC < 0.15) : the fitness
gives no information about distance to optimum

3. easy problems (FUC < —0.15) : the fitness gives
correct information about distance to optimum

The second class corresponds in fact to problems for
which difficulty cannot be predicted : the value of the
FUC brings little information about the structure of the
landscape. In this case, Jones recommends to trace the
scatter plot of the function; he claims that this is useful to
distinguish, for example, a needle in a haystack problem
from a symmetrical problem. Both have a null FUC, but
the first one is hard for GA (for all methods, indeed),
and some instances of the second may be easy.

The figure 1 shows the FUC values for Trap Functions
according to r and b parameters. We notice that the easy
and hard areas predicted by the FUC nearly correspond
to those defined by Deb.

A.3 Performances

We present now the performances of a GA facing to
U-Trap functions. The GA is a simple GA with stan-
dard settings. The performance is defined as the number
of runs which hits the global optimum in less than 200
generations divided by the total number of runs (50).
The chromosomes length is 26 bits, the population size
is set to 50 and we use a tournament selection without
elitism. Figure 2 represents the performance according
to r and b parameters. We notice that the actual diffi-
cult area (where the performance is below 0.05) nearly
corresponds to the one that FUC predicted hard.

Fig. 1. Correlation coefficient Fuc for the U-Trap functions
according to b and r parameters. The isolines allow to
separate the easy, hard and deceptive areas according to
Jones classification.

Fig. 2. Performances of the GA for U-Trap functions accord-
ing to b and r parameters.

B. Trap Functions on Alternation

Some studies address the construction of function over al-
ternation. Culberson [4] showed that its crossover based
GA, GIGA, performs better than a standart GA on max-
imizing alternation. He explained this by exhibiting
an isomorphism between mutation space and crossover
space. According to him, the alternation has the same
role for crossover than unitation for mutation. Naudts
and Naudts [7] introduce the Ising Model, which can be
seen as alternation function, in order to explain the nega-
tive effect of symmetry on the convergence on the simple
genetic algorithm.

In this section, we consider trap functions designed
from alternation. These functions were first proposed by



Collard and Clergue [2] in order to point out a new kind
of GA deceptiveness, more related to crossover.

B.1 Definition

The so-called A-Trap functions are designed in the
same way that the U-Trap, except that alternation is
used instead of unitation. More precisely, A-Trap func-
tions are defined as follow:

a(z) -
A-Trap(z) = {1'(2(@—?;) thale) < o
1.0—zp

where a(z) is the number of alternation divided by
A—1, the maximum number of alternation in a bit string
of length A. The search space is divided in two basins of
attractions; A-Trap functions admit as optima two pairs
of complementary strings, the global one (00..0,111..1)
and the local one (0101..,1010..). Let us notice that, op-
posite to the case of U-Trap functions the global optima
and the local ones are not complementary strings. In-
stead, the Hamming distance between global optima and
local ones is A/2, if the length of the strings is A.

There is a inherent symmetry for A-Trap functions:
two complementary strings have the same fitness. As a
consequence, their FUC is null, so it cannot predict the
difficulty of the function.

elsewhere

B.2 alternation / fitness correlation

An open problem is to characterize the types of fit-
ness landscapes for which crossover will be an effective
operator. Altenberg ([1]) proposed to use the number of
alternations (discontinuities) as a measure of crossover
distance between solutions. His argument is based on the
following fact: considering a sequence of crossover events
on complementary strings that produce a path to the
optimum, as one moves further from the optimum along
the path, the number of alternations increases by one
with each step. So, the number of single-point crossovers
needed to transform a complementary pair into the global
optimum and its complement can be used as a measure
of difficulty to move thought the search space by crossing
over.

Following Altenberg, we define the FAC, the correlation
coefficient between alternation and fitness, in the same
way the FUC is defined. By construction , the FAC of
A-Trap function is equal to the FucC of U-Trap function
(see [2] for details).

B.3 Performances

We evaluate the performances of GA on A-Trap func-
tions with the same settings we used for U-Trap func-
tions. The figure 3 shows the variation of the perfor-
mance according to the value of b and r. Putting this

figure next to the FUC one (figure 1, to be interpreted
here as the FAC in function of b and r), we can see that
the effective misleading zone is nearly the same than the
predicted one. In this case, the FAC removes the ambi-
guity due to the null Fuc.

In the easy area, it appears that the GA is not com-
pletely successful. The performance rate is around 0.9,
i.,e. 10% of runs fail to find one of the global optima.
Deeper analyze shows that in fact the GA converges close
to the optimum, but is unable to make the last steps to
success.
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Fig. 3. Performances of the GA for A-Trap functions accord-
ing to b and r parameters.

III. How to Combine A-Trap and U-Trap

In this section we define the so-called AU-Trap func-
tions as new deceptive functions based on U-Trap and
A-Trap functions. According to the parameter b, we
present two ways to combine U-Trap with A-Trap func-
tions.

A. Definition
A.1 Type I AU-Trap function

We consider the combination between one U-Trap and
one A-Trap based on the same piecewise linear function,
that is with the same parameters b and r. So,

AU-Trapl(b,r) = a.A-Trap(b,r) + (1 — «).U-Trap(b,r)

where a is a real parameter in the range [0,1]. Accord-
ing to the fitness distance correlation coefficient, FAC for
A-Trap and Fuc for U-Trap, difficulty prediction is the
same for the two functions. So, type I combines two func-
tions with the same level of difficulty but different nature
of hardness.



A.2 Type IT AU-Trap function

For type II functions, we build combination based on
opposite piecewise linear function. To do this, we just
inverse the basin of attraction in such a way that func-
tions difficulties become opposite: when the U-Trap is
easy, the A-Trap is hard and vise versa. So,

AU-Trap2(b,r) = a.A-Trap(b,r)+(1—a).U-Trap(1-0b,r)

where « is a real parameter in the range [0,1].

B. AU-Trap functions and fitness distance correlation

Now, we have a look for the correlation coefficients, FUC
and FAC, for type I and type IT AU-Trap functions. The
parameter r is set to 0.9, b and « vary between 0 and
1. U-Trap functions (resp. A-Trap) are a special case
with FUC varying from —1 to +1 and quasi null FAC
(resp. FAC varying from —1 to +1 and null Fuc). In the
space FUC/ FAC, these two classes of functions are located
on the horizontal axe and the vertical one respectively.
Type I AU-Trap functions (resp. type II) are situated in
northeast or southwest sector (resp. northwest or south-
east); the product FUC.FAC is positive (resp. negative).
During the transitions between type I and type II, there
is a continuity for correlation coefficients (see fig. 4).
(FUC,FAC) points are roughly located on concentric cir-
cles. We can observe that variations of a (i.e. weighting
between U-Trap and A-Trap) correspond to moves on an
arc, while variations of parameter b (i.e. difficulty of the
trap) correspond to moves on a diameter .
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Fig. 4. Fitness distance correlation in the space FUC/ FAC
for the class of AU-Trap functions. Points on a same di-
ameter correspond to functions with the same parameter
b.

C. Performances of AU-Trap functions

We study the performance of a simple genetic algorithm,
with standard setting, applied on AU-Trap functions. We
use chromosome of length 26, one population of size 200
and roulette wheel selection with elitism. The crossover
rate is set to 0.7 and the probability of mutation is 1
per chromosome. Performance is defined as the number
of runs for which the global optimum is reached in less
than 500 generations divised by the total number of runs
(20). Figure 5 (resp. Figure 6) shows the performance
of AU-Trap type I functions (resp. type II) in the space
(FUC,FAC).

We can observe on figure 5 that an AU-Trap type I
function, for which there is no conflict between the dif-
ficulty of each component (FUC.FAC > 0), have perfor-
mances consistent with the ones predicting by the couple
(Fuc,FAC). An AU-Trap function with a positive couple
(FUC,FAC) (resp. negative) is misleading (resp. easy).

AU-Trap type II functions are more interesting to
study because there is a conflict between prediction val-
ues according to the FUC or the FAC (FUC.FAC < 0). On
the other hand (see figure 6) it is difficult to interpret
results. Globally, one observe that the negative correla-
tion coefficient is the more significant in order to predict
deception. One can remark that performance of A-Trap
functions (cf. the line FuCc =0) presents a curious be-
haviour compared to closely related functions in the space
FUC/FAC.

In order to deeply analyse the performances of
AU-Trap type II functions, we focus our study on
specific functions from cross-section in the space
FUC/FAC/performances according to a diameter: the a
parameter is set to 0.6, and the b parameter varies from
0.1 to 0.9. Figure 7 shows the evolution of FUC and FAC,
and the performance, according to parameter b. Glob-
ally, we observe that only one of the two coefficients have
a predictive value according to b ; this shows that this
class of functions is a potential spring of counterexamples
for each coefficient of correlation.

D. Counter-examples for FDC

There are many works about the search of counterexam-
ple for Fuc [1], [3], [9], [8]. According to Altenberg, the
fact that FUC is only a statistical and static measure,
based on a distance which is apparently only bound to
mutation, implies two assumptions: either Hamming dis-
tance is connected to the way genetic algorithms work,
or this relation exists in a fortuitious way among the
test set chosen by Jones. In which case, counterexamples
exists for which this relation does not hold, and which,
therefore, deceive the FUC. Since it seems that there is
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Fig. 5. Performances of a simple genetic algorithm on the
class of AU-Trap type I functions according to the corre-
lation coefficients FUC and FAC.
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Fig. 6. Performances of a simple genetic algorithm on the
class of AU-Trap type II functions according to the cor-
relation coefficients FUC and FAC.

no relation between recombination operators and Ham-
ming distance, and that mutation is supposed to play
a marginal role in genetic algorithms, Altenberg claims
that it is possible to construct a counterexample. The
one he constructs is GA-easy, but the Fuc is null ; fur-
ther, the observation of the scatter plots gives no more
information [1]. Quick et al. construct easy functions
(ridges functions) with a high positive Fuc [9], [8].
While the Altenberg’s counter example is prone to dis-
cussion, in particular on the definition of GA-easiness,
the one of Quick et al. is clear: there are functions that
the FuC predicts misleading and which are in fact easy.
Nevertheless, all these counter examples exploit known
weaknesses of the FuC: its nullity for symmetrical func-
tions or the low contribution of a particular path in the
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Fig. 7. Performances of a simple genetic algorithm on the

class of AU-Trap type II functions according to the pa-
rameter b ( a is set to 0.6).

global calculation. Beside, Quick et al. recognize that
the FUC calculated with the points actually sampled by
the GA gives better results.

D.1 Fitness/unitation correlation coefficient

We present, as counter examples for the Fuc, GA-
deceptive functions with a high negative FUC. Let us
take into account AU-Trap type II functions for which
the weigth « is set to 0.6, and the parameter b varies
from 0.1 to 0.9 (cf. figure 7). For the values of b higher
than 0.85, the function is deceptive (performances equal
to 0.3 and 0.1). The Fac (+0.80) is a good predictor
while the Fuc (-0.6) provides a bad prediction. So, these
functions are counterexamples for the predictive value of
the fitness/unitation correlation coefficient.

D.2 Fitness/alternation correlation coefficient

We present, as counterexamples for the FAC, functions
GA-deceptive with a high negative value FAC. Let us
consider the class of AU-Trap type II functions with «
set to 0.6 and b lower than 0.35. These functions are
GA-deceptive (performances < 0.1). The FUC is a good
predictor (0.4 <FUC < 0.5) while the FAC (FAC < —0.7)
gives bad prediction. These functions are counterexam-
ples for the FAC.

IV. Conclusion

In this paper we have proposed a new class of GA-hard
functions. These functions are designed from deceptive
trap functions. We have considered two types of trap
functions. First, the well-known U-Trap functions, based
on Hamming distance, for which difficulty relies rather
to mutation ; second, the A-Trap functions associated



to the crossover. At each class of functions, corresponds
its own type of deceptivity. We have shown that each
type can be predict by its own fitness distance correlation
coefficient. Combining these two kind of difficulty in a
same function allows to construct GA-hard functions and
to exhibit counter examples for the correlation coefficient.

In future works, it will be usefull to extend our studies
to the role of genetic operators on the performances of
U-Trap and A-Trap functions, and their influence on the
predictive power of FUC and FAC.
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