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ABSTRACT

Stochastic gradient algorithms are widely used in signal pro-
cessing. Whereas stopping rules for deterministic descent
algorithms can easily be constructed, using for instance the
norm of the gradient of the objective function, the situa-
tion is more complicated for stochastic methods since the
gradient needs first to be estimated. We show how a sim-
ple Kalman filter can be used to estimate the gradient, with
some associated confidence, and thus construct a stopping
rule for the algorithm. The construction is illustrated by a
simple example. The filter might also be used to estimate
the Hessian, which would open the way to a possible ac-
celeration of the algorithm. Such developments are briefly
discussed.

1. INTRODUCTION

We want to minimize the function f(x), x ∈ R
d, apply-

ing the stochastic gradient method. We assume that f(x) is
bounded from below (and thus has at least one local mini-
mum). For each value of xt proposed by the algorithm, we
observe ∇gt, a noisy realization of ∇ft = ∇f(xt), the gra-
dient of f at xt. The idea is to use the information present
during the progress of the algorithm to estimate the value of
the true gradient ∇ft and construct a stopping rule.

We assume that

∇gt = ∇ft + wt (1)

where (wt) corresponds to a sequence of independent ran-
dom vectors with E(wt) = ~0 and covariance Wt.

One iteration of the stochastic gradient algorithm, see
e.g. [1, 2] is described by

xt+1 = xt − λt∇gt (2)
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where the step-length λt satisfies (i) λt > 0, (ii)
∑

λt = ∞
and (iii)

∑
λ2

t < ∞.
Assume that f(x) can be replaced by its quadratic ap-

proximation at xt, this gives

∇ft+1 = ∇ft + Ht∆xt+1 (3)

where Ht is the Hessian of f at xt, a d × d symmetric ma-
trix, and ∆xt+1 = xt+1 − xt. For f smooth enough, this
quadratic approximation will become more and more valid
as xt gets closer to the (a) minimizing point. Assume, more-
over, that the Hessian is nearly constant so that

Ht+1 = Ht . (4)

Again, this assumption will become more and more reason-
able closer to the optimum.

The idea is to consider (3,4) as the evolution equation,
and (1) as the observation equation for a linear dynamical
system, with state given by ∇ft and Ht and input ∆xt+1.
We can then re-write (3,4) and (1) in a standard state-space
representation, and use Kalman filtering to estimate the part
∇ft of the state (we shall see in Section 2.2 that the part
Ht is not observable). Notice that the system is driven by
the optimisation algorithm through (2), but this (nonlinear)
control is separated from the estimation: the algorithm runs
independently from the filter. Connecting them opens some
perspectives briefly discussed in Section 4.

2. A STATE-SPACE REPRESENTATION AND
FILTER

We replace the Hessian Ht ∈ R
d×d by the vector ht ∈

R
m×1 with m = d(d+1)/2 and (when omitting the index t

for the elements h
(t)
ij of the Hessian Ht to facilitate notation)

ht = (h11 h22 · · · hdd h12 h13 · · · h1d

h23 h24 · · · h2d · · · h(d−1)d)
T . (5)



We thus obtain the state-space representation
(
∇ft+1

ht+1

)

= At

(
∇ft

ht

)

(6)

∇gt = Ct

(
∇ft

ht

)

+ wt (7)

with, as already mentioned, wt the measurement noise sat-
isfying E(wt) = ~0 and Wt = E(wtw

T
t), and

At =

(
Id Xt+1

0m×d Im

)

Ct = C =
(
Id 0d×m

)
.

(The symbol 0d×m stands for the d×m matrix of zeros, Id

for the d × d identity matrix.) The matrix Xt+1 ∈ R
d×m is

constructed to fulfill the condition

Xt+1ht = Ht∆xt+1

when ht is defined as in Equation (5).
We can now apply a Kalman filter on the system (6,7).

The estimated values of ∇f and h at iteration t will be de-
noted ∇̂ft|t and ĥt|t respectively, while ∇̂ft+1|t and ĥt+1|t

will denote their prediction at iteration t + 1. Using (6), we
obtain

(
∇̂ft+1|t

ĥt+1|t

)

= At

(
∇̂ft|t

ĥt|t

)

Pt+1|t = AtPt|tA
T
t ,

with Pt|t and Pt+1|t respectively the covariances of the es-
timation error of [∇ft,ht] and prediction error at iteration
t + 1.

The observation equation (7) gives
(
∇̂ft+1|t+1

ĥt+1|t+1

)

=

(
∇̂ft+1|t

ĥt+1|t

)

+ Kt+1

(

∇gt − C

(
∇̂ft+1|t

ĥt+1|t

))

=

(
∇̂ft+1|t

ĥt+1|t

)

+ Kt+1

(

∇gt − ∇̂ft+1|t

)

Pt+1|t+1 = Pt+1|t − Kt+1CPt+1|t , (8)

with Kt+1 the gain of the filter,

Kt+1 = Pt+1|tC
T(Wt+1 + CPt+1|tC

T)−1 . (9)

2.1. Evolution of the covariance of the prediction error

We decompose the covariance matrix Ps|t, s ∈ {t, t + 1},
into four sub-matrices that correspond to the partition of the
state into gradient and Hessian,

Ps|t =

(
Gs|t Es|t

E
T
s|t Fs|t

)

,

with Es|t ∈ R
d×m, Fs|t ∈ R

m×m, and Gs|t ∈ R
d×d.

The evolution of the covariance of the prediction error
then satisfies

Gt+1|t = Gt|t + Xt+1E
T
t|t + Et|tX

T
t+1

+Xt+1Ft|tX
T
t+1

Et+1|t = Et|t + Xt+1Ft|t

Ft+1|t = Ft|t

and

Pt+1|t+1 =

(
Gt+1|t Et+1|t

E
T
t+1|t Ft+1|t

)

−

(
Gt+1|t

E
T
t+1|t

)
(
Wt+1 + Gt+1|t

)−1

︸ ︷︷ ︸

Kt+1

×
(
Gt+1|t Et+1|t

)

Notice that the part Ft|t of the covariance matrix concerning
the Hessian does not change during the step from Pt|t to
Pt+1|t. Further, it can only decrease during the step from
Pt+1|t to Pt+1|t+1.

When the variance of the measurement noise, Wt+1, is
large the Kalman gain Kt+1 is small and the decrease of
the covariance of the prediction error slow, see (9). On the
contrary, for a small Wt+1 the Kalman gain is big and the
covariance of the prediction error quickly decreases. Equa-
tion (9) can also be manipulated as follows, see e.g. [3]:
multiply first by (Wt+1 + CPt+1|tC

T) and then by W
−1
t+1

from the right, and plug in equation (8), this gives

Kt+1 = (Pt+1|t − Kt+1CPt+1|t)C
T
W

−1
t+1

= Pt+1|t+1C
T
W

−1
t+1 .

When the covariance of the prediction error is decomposed
above, we obtain

Kt+1 =

(
Gt+1|t+1

E
T
t+1|t+1

)

W
−1
t+1 ,

and we can see that the larger the variance of the estimation
error for ∇ft and the covariance of the errors for ∇ft and
ht, the larger the Kalman gain.

2.2. Observability

The observability matrix O(A,C)
(t) at iteration t is defined

by

O(A,C)
(t) =










Ct

Ct+1At

Ct+2At+1At

...
Ct+d+m−1At+d+m−2 . . .At












and, for the system to be observable this d(d+m)×(d+m)
matrix must have full rank d + m, see e.g. [4]. Here C does
not vary with t, which gives

O(A,C)
(t) =










Id 0d×m

Id Xt+1

Id Xt+1 + Xt+2

...
...

Id

∑t+d+m−1
j=t+1 Xj










.

It can easily be checked that any sum of matrices Xt is tele-
scopic and therefore the elements of any matrix

∑n

j=t+1 Xt

will either be zero or [xn+1]i−[xt]i for some i ∈ {1, . . . , d},
where [xk]i stands for the i-th component of the vector xk.
Whether or not the matrix O(A,C)

(t) has rank d + m thus
depends on the matrices Xt and hence on the differences
between the vectors xt. Since the iteration (2) is converging
(the stochastic gradient algorithm converges to a local so-
lution), the difference between the vectors xt is tending to
zero and the rank of O(A,C)

(t) is decreasing towards d,

lim
t→∞

O(A,C)
(t) =






Id 0d×m

...
...

Id 0d×m




 .

Since the first d columns of the matrix O(A,C)
(t) are sta-

tionary and non null, the system remains partially observ-
able, that is, the gradient components of the state are ob-
servable. Also, it is observable at the beginning since the
rank of O(A,C)

(t) is d + m before the algorithm converges.

2.3. A stopping criterion for stochastic gradient

The filter constructed above gives an estimate ∇̂ft|t of the
gradient of f at iteration t of the algorithm and a covariance
matrix Gt|t for the estimation error. A natural stopping cri-
terion is then given by

∇̂f T
t|t∇̂ft|t + traceGt|t < ε . (10)

3. EXAMPLE

We take f(x) = (x − a)T
M(x − a), with

M =

(
2 0.2

0.2 1

)

, a = (3 3)T .

The measurement noise wt is normal N (~0, σ2
I2) with σ =

0.3. The stochastic gradient algorithm is initialized at x0 =
~0 and the stopping rule is given by ε = 5 × 10−3 in (10).

The filter can be initialized as follows. Take an arbi-
trary initial estimate of H, here Ĥ0 = 10Im, with a large
associated covariance matrix, here F0|0 = 100Im, to ac-
count for a lack of confidence in Ĥ0. The estimation of
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Fig. 1. Evolution of the empirical mean ∇̃ft (11, dashed
line) and exact gradient (full line) as functions of t.

∇f0 can be based on ∇g0, and we can take ∇̂f0|0 = ∇g0

with F0|0 = W and E0|0 = 0d×m. Numerical experiments
show that the behavior (stopping time ts when (10) is sat-
isfied) is not sensitive to this initialization. One may thus
simply take P0|0 = 100Id+m with a rather arbitrary value
for ∇̂f0|0.

We compare the evolution of the filtered estimates ∇̂ft|t

with the true values ∇ft and also consider the naive esti-
mates

∇̃ft =
1

t + 1

t∑

i=0

∇gt , (11)

which corresponds to the empirical mean of the observed
gradients along the trajectory imposed by the optimisation
algorithm.

Figures 1 and 2 respectively present the evolutions of
∇̃ft,∇ft and ∇̂ft|t,∇ft.

Kalman filtering is well known to be robust with respect
to mis-specifications of the noise characteristics. This is il-
lustrated by Figure 3, where the noise wt satisfies

wt = v
1
t + v

2
t ,

with v
1
t normal N (~0, σ2

I2), σ = 0.3, and v
2
t uniformly

distributed in [−0.2, 0.2]2 whereas the filter uses the covari-
ance matrix W = (1/10)σ2

I2.

4. FURTHER DEVELOPMENTS

We have shown how a Kalman filter could be used to define
a stopping rule in a stochastic gradient algorithm. However,
the benefit of the implementation of this filter may seem
questionable if one observes that restricting the computa-
tion of the empirical mean estimate ∇̃ft given by (11) to a
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Fig. 2. Evolution of the filtered estimate ∇̂ft|t (dashed line)
and exact gradient (full line) as functions of t.
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Fig. 3. Evolution of the filtered estimate ∇̂ft|t (dashed line)
and exact gradient (full line) as functions of t, with mis-
specification of the noise characteristics.

sliding window of suitable fixed length T , that is,

∇̃ft =
1

T + 1

t∑

i=t−T

∇gt , t ≥ T ,

can be expected to also yield a reasonable stopping rule.
The implementation of the filter will thus be of real inter-
est only if it provides a more useful information than the
stopping rule (10). This is discussed below. Also, we as-
sumed that the Hessian Ht was constant. Although Kalman
filtering is robust to modelling errors, it would be more rea-
sonable to replace (4) by

Ht+1 = Ht + Vt

in case f is not quadratic, where Vt represents some process
noise. In this case, since the observability matrix O(A,C)

(t)

tends to become singular as t increases, one may expect nu-
merical difficulties due to the increase of the matrix Ft|t.
A possible way to overcome these difficulties would be to
waste some iterations in terms of optimisation of f , and use
them to help the estimation of Ht; that is, take control of the
∆xt variable, and thus of Xt, to keep control of the rank of
O(A,C)

(t).
The resulting algorithm would then choose xt in order

to fulfill two objectives: minimize f and help the estima-
tion of its important characteristics, gradient and Hessian.
The important benefit would then be the possible accelera-
tion of the algorithm due to the knowledge of H. Designing
such an algorithm with dual features (optimisation and esti-
mation) is closely connected to dual control. The approach
developed in [5] in another context might then reveal appro-
priate.
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