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Summary. In some nonlinear regression problems with parameterized variance
both the design and the method of estimation have to be chosen. We compare
asymptotically two methods of estimation: the penalized weighted LS (PWLS) es-
timator, which corresponds to maximum likelihood estimation (MLE) under the
assumption of normal errors, and the two-stage LS (TSLS) estimator. We show that
when the kurtosis κ of the distribution of the errors is zero, the asymptotic covari-
ance matrix of the estimator is smaller for PWLS than for TSLS, which may not
be the case when κ is not zero. We then suggest to construct two optimum designs,
one for PWLS under the assumption κ = 0, the other for TSLS (with arbitrary κ),
and compare their properties for different values of κ. All developments are made
under the assumption of a randomized design, which allows rigorous proofs for the
asymptotic properties of the estimators while avoiding the technical difficulties en-
countered in classical references such as Jennrich (1969) (finite tail product of the
regression function and its derivatives, etc.).
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1 Introduction

We consider a nonlinear regression problem, with observations

Yk = η(xk, θ̄) + εk , E{εk} = 0 , k = 1, . . . , N , (1)

where θ̄ denotes the unknown true value of the model parameters. The ob-
servation errors εk = ε(xk) are assumed to be independently distributed. It
frequently happens that the full parameterized probability distribution of the
errors εk is not available, whereas their variance is a known function of the
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design variable x and of (some of) the parameters θ of the mean response,
that is,

E{ε2
k} = λ(xk, θ̄) , k = 1, . . . , N . (2)

The parameter estimation problem in this case is called method of fitting
expectations in Jennrich and Ralston (1979), see also Maljutov (1988). The
(ordinary) LS estimator, which ignores the information contained in the vari-
ance function, is strongly consistent and asymptotically normally distributed
under standard assumptions. However, using the information on θ provided
by the variance may yield a more precise estimation, hence the importance of
choosing a suitable estimation method. We consider two approaches (Section
3), first a penalized weighted least-squares (PWLS) estimator, which corre-
sponds to maximum likelihood estimation under the assumption of normal
errors, second a two-stage least-squares (TSLS) estimator, where ordinary LS
is used at the first stage, and the estimator is plugged in the variance function,
to be used for weighted LS estimation at the second stage. The asymptotic
properties of the estimators are obtained under the assumption of a random-
ized design, introduced in Section 2, which permits to maintain the proofs
relatively simple although rigorous. Section 4 presents a design strategy based
on the asymptotic properties derived in Section 3: we compute an optimum
design for PWLS estimation under the assumption of a zero kurtosis for the
errors εk, together with an optimum design for TSLS estimation; then we com-
pare their performance (and that of the associated estimation methods) when
the kurtosis varies. We show that in some particular situations the conclusion
is design-free: one estimation method is always preferable, independently of
the design, depending on the value of the kurtosis and the magnitude of the
errors.

2 Randomized designs and uniform strong law of large

numbers

Definition 1. We call randomized design with measure ξ on the design space
X ,

∫

X
ξ(dx) = 1, a sequence {xi} of design points independently sampled from

the mesure ξ on X .

The following assumptions will be used throughout the paper.
H1 Θ is a compact subset of IRd, θ̄ ∈ Θ.
H2 η(x, θ) and λ(x, θ) are continuous functions of θ ∈ Θ for any x ∈ X , with
η(x, θ) and λ−1(x, θ) bounded on X × Θ, λ(x, θ̄) bounded on X .
H3 η(x, θ) and λ(x, θ) are two times continuously differentiable with respect
to θ ∈ int(Θ) for any x ∈ X , their derivatives are bounded on X × int(Θ).

Our proofs are based on uniform convergence with respect to θ of the
criterion function JN (θ) defining the estimator θ̂N = arg minθ JN (θ). We shall
thus need a uniform Strong Law of Large Numbers (SLLN). Note that the
proper definition of the estimator as a random variable is ensured by Lemma
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2 in Jennrich (1969) (see also Bierens (1994), p. 16). In the following θ̂N will
refer to the measurable choice from arg minθ∈Θ JN (θ). The asymptotic results
of the next sections are based on the following lemma, which is a simplified
version of Theorem 2.7.1 in Bierens (1994).

Lemma 1 (Uniform SLLN). Let {zi} be a sequence of i.i.d. random vectors,
and a(z, θ) be a Borel measurable real function of (z, θ) ∈ IRr ×Θ, continuous
in θ for any z, with Θ a compact subset of IRp. Suppose that

E[sup
θ∈Θ

|a(z, θ)|] < ∞ , (3)

then E[a(z, θ)] is continuous in θ ∈ Θ and 1

N

∑N

i=1
a(zi, θ)

θ→→ E[a(z, θ)] a.s.

when N → ∞, where
θ→→ means uniform convergence with respect to θ.

Once the almost sure uniform convergence of the criterion function JN (·)
is obtained, the almost sure convergence of the estimator will follow from the
next lemma. The proof is a straightforward application of the continuity and
uniform convergence properties.

Lemma 2 (Consistency from uniform convergence of the estimation
criterion). Assume that the sequence of functions {JN (θ)} converges uni-
formly on Θ to the function J(θ), with JN (θ) continuous with respect to θ ∈ Θ
for any N , Θ a compact set of IRp, and J(θ) such that

J(θ̄) = min
θ∈Θ

J(θ) and J(θ) > J(θ̄) ∀θ 6= θ̄ ∈ Θ .

Then limN→∞ θ̂N = θ̄, where θ̂N ∈ arg minθ∈Θ JN (θ). When the functions
JN (·) are random, and the uniform convergence to J(·) is almost sure, then

convergence of θ̂N to θ̄ is also almost sure.

3 Penalized weighted LS and two-stage LS estimation

Since the optimum weights w(x) = σ−2(x, θ̄) = λ−1(x, θ̄) cannot be used
for weighted LS estimation (θ̄ is unknown), it is tempting to use the weights

λ−1(x, θ), that is, to choose θ̂N that minimises the criterion

JN (θ) =
1

N

N
∑

k=1

[y(xk) − η(xk, θ)]2

λ(xk, θ)
. (4)

However, this approach in not recommended since θ̂N is generally not consis-
tent. Indeed, using Lemma 1 with zk = (xk, εk), a(zk, θ) = [η(xk, θ̄) + εk −
η(xk, θ)]λ−1(xk, θ) and Lemma 2 we easily obtain the following.
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Theorem 1. Let {xi} be a randomized design with measure ξ on X ⊂ IRd.

Assume that H1 and H2 are satisfied. Then the estimator θ̂N
LS that minimises

(4) in the model (1,2) converges a.s. to the set Θ̄ of values of θ that minimise

J(θ) =

∫

X

λ(x, θ̄)λ(x, θ)−1 ξ(dx) +

∫

X

λ(x, θ)−1[η(x, θ) − η(x, θ̄)]2 ξ(dx) .

Notice that, in general, θ̄ 6∈ Θ̄.

3.1 Penalized weighted LS estimation

Consider now the following modification of the criterion (4),

JN (θ) =
1

N

N
∑

k=1

[y(xk) − η(xk, θ)]2

λ(xk, θ)
+

1

N

N
∑

k=1

log λ(xk, θ) . (5)

θ̂N
PWLS that minimises (5) can be considered as a penalized weighted LS

(PWLS) estimator, where the term (1/N)
∑N

k=1
log λ(xk, θ) penalizes large

variances. It corresponds to maximum likelihood estimation under the as-
sumption that the errors εk are normally distributed. It can be obtained nu-
merically by direct minimization of (5) using a nonlinear optimisation method,
or by solving an infinite sequence of weighted LS problems as suggested in
Downing et al. (2001).

Next theorem shows that this estimator is strongly consistent and asymp-
totically normally distributed without the assumption of normal errors. The
proof follows directly from Lemmas 1 and 2 and the Central Limit Theorem
(CLT).

Theorem 2. Let {xi} be a randomized design with measure ξ on X ⊂ IRd.
Assume that H1 and H2 are satisfied and that for any θ, θ′ in Θ,

∫

X
λ−1(x, θ)[η(x, θ) − η(x, θ′)]2 ξ(dx) = 0

∫

X
|λ−1(x, θ)λ(x, θ′) − 1| ξ(dx) = 0

}

⇔ θ = θ′ . (6)

Then the estimator θ̂N
PWLS that minimises (5) in the model (1,2) converges

a.s. to θ̄. If, moreover, the errors εk have finite fourth-order moment E{ε4
i }

and E{ε3
i } = 0 for all k, θ̄ ∈ int(Θ), H3 is satisfied and the matrix

M1(ξ, θ̄) =

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ |θ̄

∂η(x, θ)

∂θ> |θ̄
ξ(dx)

+
1

2

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ |θ̄

∂λ(x, θ)

∂θ> |θ̄
ξ(dx) (7)

is nonsingular, then θ̂N
PWLS satisfies

√
N(θ̂N

PWLS − θ̄)
d→z ∼ N (0,M−1

1 (ξ, θ̄)M2(ξ, θ̄)M
−1
1 (ξ, θ̄))
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as N → ∞, with

M2(ξ, θ̄) = M1(ξ, θ̄) +
1

4

∫

X

λ−2(x, θ̄)
∂λ(x, θ)

∂θ |θ̄

∂λ(x, θ)

∂θ> |θ̄
κ(x) ξ(dx) (8)

where κ(x) = E{ε4(x)}λ−2(x, θ̄)− 3 is the kurtosis of the distribution of ε(x).

One may notice that when the errors εk are normally distributed, κ(x) = 0,
M2(ξ, θ̄) = M1(ξ, θ̄) and

√
N(θ̂N

PWLS − θ̄)
d→z ∼ N (0,M−1

1 (ξ, θ̄)) , N → ∞ . (9)

3.2 Two-stage LS estimation

By two stage LS, we mean using first some estimator θ̂N
1 , and then plugging the

estimate into the weight function λ(x, θ). The second-stage estimator θ̂N
TSLS

is then obtained by minimizing

JN (θ, θ̂N
1 ) =

1

N

N
∑

k=1

[y(xk) − η(xk, θ)]2

λ(xk, θ̂N
1 )

(10)

with respect to θ ∈ Θ. Again, using Lemmas 1 and 2 and the CLT we can show
that θ̂N

TSLS is consistent when θ̂N
1 converges (it does not need to be consistent,

that is, convergence to θ̄ is not required), and, when θ̂N
1 is

√
N -consistent, that

is, when
√

N(θ̂N
1 − θ̄) is bounded in probability (that is, ∀ε > 0 ∃A and N0

such that ∀N > N0, Prob{
√

N(θ̂N
1 − θ̄) > A} < ε), θ̂N

TSLS is asymptotically
normally distributed.

Theorem 3. Let {xi} be a randomized design with measure ξ on X ⊂ IRd.

Assume that H1 and H2 are satisfied, that θ̂N
1 converges to some θ̂ ∈ Θ and

that for any θ, θ′ in Θ,

∫

X

λ−1(x, θ̂)[η(x, θ) − η(x, θ′)]2 ξ(dx) = 0 ⇔ θ = θ′ . (11)

Then the estimator θ̂N
TSLS that minimises (10) in the model (1,2) converges

a.s. to θ̄. If, moreover, H3 is satisfied, the matrix

M(ξ, θ̄) =

∫

X

λ−1(x, θ̄)
∂η(x, θ)

∂θ |θ̄

∂η(x, θ)

∂θ> |θ̄
ξ(dx) (12)

is nonsingular and the first-stage estimator θ̂N
1 plugged in (10) is

√
N -

consistent, with θ̄ ∈ int(Θ), then θ̂N
TSLS satisfies

√
N(θ̂N

TSLS − θ̄)
d→z ∼ N (0,M−1(ξ, θ̄)) , N → ∞ .
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Note that a natural candidate for the first-stage estimator θ̂N
1 is the or-

dinary LS estimator, which is
√

N -consistent under the assumptions of The-
orem 3. Also note that M−1(ξ, θ̄) is the asymptotic covariance matrix of the
weighted LS estimator in the case where the variance function (2) is known.

Increasing the number of stages leads to iteratively re-weighted LS esti-
mation, which relies on sequence of estimators constructed as follows:

θ̂N
k = arg min

θ∈Θ
JN (θ, θ̂N

k−1) , k = 1, 2 . . . (13)

where JN (θ, θ′) is defined by (10) and where θ̂N
1 can be taken equal to the LS

estimator. Using Theorem 3, a simple induction shows that, for any fixed k,
θ̂N

k is strongly consistent and asymptotically normally distributed,
√

N(θ̂N
k −

θ̄)
d→z ∼ N (0,M−1(ξ, θ̄)). We simply mention the following property, which

relies on a classical result in fixed point theory, see Stoer and Bulirsch (1993)
p. 267, and states that the recursion (13) converges a.s. for N large enough.

Theorem 4. If the conditions of Theorem 3 are satisfied, the iteratively re-
weighted LS estimator defined by (13) in the model (1,2) converges a.s. for N

large enough: Pr{∀N > N0 , limk→∞ θ̂N
k = θ̂N

∞} → 1 when N0 → ∞ .

When the errors εk are normally distributed, the asymptotic covariance
matrix of the two-stage LS estimator, see (12), is larger than that of the pe-

nalized WLS estimator, see (7). This advantage of θ̂N
PWLS over θ̂N

TSLS may
disappear when the distribution of the errors has a positive kurtosis. In gen-
eral, the conclusion depends on the design ξ, which raises the issue of choosing
simultaneously the method of estimation and the design. This is discussed in
the next section.

4 Choosing the design and the estimator

In the rest of the paper we assume that the kurtosis κ is constant (it does
not depend on x). It corresponds to the rather common situation where the
distributions of the errors at different x are similar and only differ by a scaling
factor.

We start by a simple example where the choice between θ̂N
PWLS and θ̂N

TSLS

does not depend on the design: depending on the kurtosis and the magnitude
of the errors, one estimation method is uniformly better than the other.

Example 1. Suppose that in the model (1) the variance of the errors satisfies
Var(εk) = λ(xk, θ) = α[η(xk, θ) + β]2, for any k. In particular, when β = 0 it
corresponds to the situation where the relative precision of the observations
is constant (and equal to α > 0). Direct calculations then gives for θ̂N

PWLS

M−1
1 (ξ, θ̄)M2(ξ, θ̄)M

−1
1 (ξ, θ̄) = ρ(κ, α)M−1(ξ, θ̄) ,
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where ρ(κ, α) = (1 + 2α + κα)/(1 + 2α)2 , M1(ξ, θ̄) and M2(ξ, θ̄) are given by

(7) and (8), and M−1(ξ, θ) is the asymptotic covariance matrix for θ̂N
TSLS , see

(12). Whatever the design ξ, TSLS should thus be preferred to PWLS when
ρ(κ, α) > 1, that is, when κ > 2 and α < α∗ = (κ − 2)/4, and vice-versa
otherwise. Generally speaking, it means that for observations with constant
relative precision the two-stage procedure is always preferable when κ > 2,
provided that the errors are small enough. For instance, when the errors have
the exponential distribution ϕ(ε) = (1/2) exp(−|ε|), κ = 3 and the limiting
value for α is α∗ = 1/4. Figure 1 gives the evolution of ρ(κ, α) as a function
of α for κ = 3.
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Fig. 1. Evolution of ρ(κ, α) as a function of α in Example 1: κ = 3 and θ̂N

TSLS

should be preferred to θ̂N

PWLS for α < 1/4

In more general situations the estimator and the design must be chosen
simultaneously. The following approach may be used: (i) determine the opti-
mum designs ξ∗PWLS for the PWLS estimator under the assumption of zero
kurtosis and ξ∗TSLS for the TSLS estimator; (ii) compare the values of the
design criteria for both estimators at different values of the kurtosis κ. Note
that the asymptotic covariance matrix of θ̂PWLS is linear in κ. Therefore, for
any design criterion φ(·) such that φ(M) is monotonic in M, a value κ∗ exists

such that (ξ∗TSLS , θ̂TSLS) should be preferred to (ξ∗PWLS , θ̂PWLS) for κ > κ∗.
The optimum design for TSLS estimation corresponds to a standard de-

sign problem with homoscedastic errors where the derivative ∂η(x, θ)/∂θ is
replaced by (1/

√

λ(x, θ))∂η(x, θ)/∂θ, see (12). In the case of PWLS with
κ = 0, the information matrix to be used is M1(ξ, θ), see (9). Optimum
designs for such situations can be constructed with the same algorithms
as for the standard case, see Downing et al. (2001). In particular, when
λ(x, θ) = g[η(x, θ)], where g(·) is a differentiable function from IR into IR+

with derivative g′(·), M1(ξ, θ) =
∫

X
G(x, θ)[∂η(x, θ)/∂θ][∂η(x, θ)/∂θ>]ξ(dx)

with G(x, θ) = λ−1(x, θ)+ {g′[η(x, θ)]}2λ−2(x, θ)/2, and standard approaches
for optimum design with homoscedastic errors can be used.
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Example 2. We take η(x, θ) = θ0 + θ1x + θ2x
2, λ(x, θ) = 5/η(x, θ)2, x ∈

X = [−1, 1]. Although this is a linear regression model, heteroscedasticity
implies that numerical values must be specified for the parameters θ to de-
sign an optimum experiment. We take θ> = (θ0, θ1, θ2) = (2, 1, 1/2). The
design criterion is D-optimality. The D-optimum design ξ∗TSLS for the TSLS
estimator has three support points −1, 0.256, 1 that receive equal weight 1/3.
The D-optimum design ξ∗PWLS for the PWLS estimator with normal errors is
supported at −1, 0.078, 1, with weight 1/3 at each point. Figure 2 shows that
TSLS estimation with ξ∗TSLS should be preferred to PWLS estimation with
ξ∗PWLS when κ > κ∗ ' 4.09.
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Fig. 2. Evolution of log det[M−1

1
(ξ∗PWLS , θ)M2(ξ

∗

PWLS , θ)M−1

1
(ξ∗PWLS , θ)] as a

function of κ (dashed line) and log detM−1(ξ∗TSLS , θ) (full line) in Example 2

References

H.J. Bierens. Topics in Advanced Econometrics. Cambridge University Press,
Cambridge, 1994.

D. Downing, V.V. Fedorov, and S. Leonov. Extracting information from the
variance function: optimal design. In A.C. Atkinson, P. Hackl, and W.G.
Müller, editors, mODa6 – Advances in Model–Oriented Design and Analy-
sis, pages 45–52. Physica Verlag, Heidelberg, 2001.

R.I. Jennrich. Asymptotic properties of nonlinear least squares estimation.
Annals of Math. Stat., 40:633–643, 1969.

R.I. Jennrich and M.L. Ralston. Fitting nonlinear models to data. Annals
Rev. Biophys. Bioeng., 8:195–238, 1979.

M.B. Maljutov. Design and analysis in generalized regression model F. In V.V.
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