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Abstract. We consider a regression problem, with observations Yk = η(θ,Xk) + εk, where (εk) is a

sequence of independent measurement errors and where the experimental conditions Xk form a sequence

of independent random variables distributed with a probability measure µ, independent of (εk) and

observed sequentially. The length of the sequence (Xk) is N but only n < N observations can be

made. As soon as a new experiment Xk is available, one must decide whether to observe Yk or not,

the objective being to estimate the parameters θ as precisely as possible. The optimal rule for the

on-line selection of the Xk’s can be constructed when θ is scalar, see [1], and suboptimal rules have

been suggested for the case p = dim(θ) > 1 [2, 3]. We propose here a different solution, based on

the construction of an optimal constrained design measure, and show that it is asymptotically optimal

(n = bαNc, α ∈ (0, 1), N → ∞). As a byproduct, we obtain a procedure that asymptotically samples

from an optimal constrained measure ξ∗α ≤ µ/α, without requiring neither the determination of ξ∗α nor

the knowledge of the measure µ.

1. Introduction

Consider a regression model, with observations

(1) Yk = η(θ̄, Xk) + εk ,

where the errors εk are independent with E{εk} = 0, E{ε2k} = 1, and θ̄ ∈ Θ is the unknown true value of
the model parameters to be estimated, with Θ an open subset of IRp. The function η(θ, x) is assumed

continuously differentiable in θ, uniformly in x ∈ X ⊆ IRq. We shall write f(x) = ∂η(θ, x)/∂θθ̂0 , with θ̂0

a given nominal value for θ, and assume that f(·) is continuous in x on X (θ̂0 need not be specified when
η(θ, x) is linear in x).

The experimental conditions Xk ∈ X form a sequence of i.i.d. variables, independent of (εk), of length
N . Only n < N observations can be made. As soon as a value Xk becomes available, one must decide
whether to observe Yk or not, in order to estimate θ as precisely as possible.

Let µ denote the probability measure of X1, with (X , µ,F) a probability space over the σ-field F of
subsets of X ,

∫

X
µ(dx) = 1, and (Fn) denote the family of σ-algebra generated by (Xk), 0 ≤ k ≤ n. We

assume that µ is atomless, that is, for any ∆X exists ∆X ′ ⊂ ∆X such that
∫

∆X ′ µ(dx) <
∫

∆X
µ(dx) (with

measures absolutely continuous w.r.t. the Lebesgue measure as particular cases). The decision sequence
will be denoted by (uk): uk = 1 if we decide to observe Yk, with experimental conditions Xk, and uk = 0
otherwise, with, for any admissible policy,

(2) uj ∈ Uj ⊆ {0, 1} , j = 1, . . . , N ,

N
∑

j=1

uj = n .

Note that Xk is known when uk is chosen.
We consider design criteria Φ(·) for the estimation of θ that are increasing functions of the information

matrix, and we wish to maximise Φ[MN/n], with MN =
∑N

k=1 ukf(Xk)f
>(Xk). Notice that MN

depends on θ̂0 when η(θ, x) is nonlinear in θ (local design). We assume that µ is such that

M(µ) = E{f(X1)f
>(X1)} =

∫

X

f(x)f>(x)µ(dx)
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exists, with −∞ < Φ[M(µ)] < ∞, and that E{Φ(MN/n)} exists for any N and n ≥ p and any Fn-
measurable sequence (un), the expectation E{·} being with respect to the product measure µ⊗N of
X1, . . . , XN . Note that this setup easily extends to the case E{ε2k} = σ2(Xk) with σ

2(x) a known function
such that f(x)f>(x)/σ2(x) is µ-integrable.

We consider generalized designs that are probability distributions on the set X , and denote Ξ the set of
such designs. The subset {ξ / Φ[M(ξ)] ≥ A > −∞} will be denoted Ξ(A). We assume that Φ is a concave
linearly differentiable function on Ξ(A) for any A, that is, the directional derivative FΦ(M1,M2) =
limε→0+{Φ[(1− ε)M1 + εM2]− Φ(M1)}/ε satisfies FΦ(ξ1; ξ2) = FΦ[M(ξ1),M(ξ2)] =

∫

X
FΦ(ξ1, x)ξ2(dx)

for any ξ1, ξ2 in Ξ, with FΦ(ξ, x) = FΦ(ξ; δx) and δx the Dirac measure supported at x. For instance,
in the case of D-optimality where Φ(·) = log det(·), one has FΦ(ξ, x) = f>(x)M−1(ξ)f(x) − p, with
p = dim(θ).

For N finite, the problem is

(3) maximise E{Φ(MN/n)}

with respect to (uj) satisfying (2). For any sequence (uj) and any step k, 1 ≤ k ≤ N , ak will denote the
number of observations already made; that is,

(4) ak =

k−1
∑

j=1

uj ,

with a1 = 0. This problem corresponds to a discrete-time stochastic control problem, where k represents
time, (ak,Mk−1, Xk) and uk ∈ Uk ⊆ {0, 1} respectively represent the state and control at time k. A
strategy SN,n is defined by a mapping (k, a,M, X) 7→ u ∈ {0, 1}. For each k ∈ {1, . . . , N}, the optimal
decision at step k is obtained by solving:

max
uk∈Uk

[EXk+1
{ max
uk+1∈Uk+1

[EXk+2
{ max
uk+2∈Uk+1

[. . .

EXN−1
{ max
uN−1∈UN−1

[EXN
{ max
uN∈UN

[Φ(
N
∑

i=1

uif(Xi)f
>(Xi))]}]} . . .]}]}] ,

where EXj
{.} denotes the expectation with respect to Xj , distributed with the measure µ, and,

Uj = Uj(aj) =







{0} if aj = n ,
{1} if aj +N − j + 1 ≤ n ,
{0, 1} otherwise.

The case p = dim(θ) = 1 is considered in [1]: the optimal (closed-loop) solution is given by a backward
recurrence equation, and a simple open-loop solution is constructed, that is asymptotically optimal for
N → ∞ with n fixed (for measures µ absolutely continuous with respect to the Lebesgue measure and
such that the associated distribution function is a von Mises function). The multidimensional case p > 1,
for which the optimal solution cannot in general be obtained in close form, is considered in [2] and [3],
where suboptimal solutions are proposed: open-loop feedback-optimal control is used in [2] and a heuristic
one-step ahead decision rule in [3]. The strategies presented in this paper rely on the construction of an
optimal constrained design measure ξ∗α ≤ µ/α, a problem which is briefly described in Section 2. We
show in Section 3 that from ξ∗α one can easily define a strategy asymptotically optimal for n = bαNc,
α ∈ (0, 1), N → ∞ (we use an approach similar to [4] which corresponds to the case p = 1). This in
turn suggests a method for sampling asymptotically from an optimal constrained measure ξ∗α ≤ µ/α,
without having to determine ξ∗α, or even without knowing µ in advance. This sampling strategy Sα(µ) is
presented in Section 4 where we prove that Φ[M(ξk)]→ Φ[M(ξ∗α)], µ-almost surely, with ξk the empirical
measure of sampled points. A simple adaptation of α as a function of k makes Sα(µ) coincide with the
heuristic rule in [3], which is thus shown to be asymptotically optimal for n = bαNc, α ∈ (0, 1), N →∞.
Illustrative examples are given in Section 5. Section 6 finally concludes and draws some perspectives.
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2. Optimal constrained design measures

We forget for the moment the sequential character of the decisions, and assume that we simply have
to select n design points Xi among N , distributed with the measure µ satisfying

∫

X
µ(dx) = 1. For

n = bαNc, N →∞, 0 < α < 1, this means that only a proportion α of the design points can be accepted,
which puts a constraint of the form

(5) ξ(dx) ≤ µ(dx)/α

on the design measure ξ. We denote by D(µ, α) the set of admissible measures satisfying (5), with
∫

X
ξ(dx) = 1. The issue is to determine a measure ξ∗α in D(µ, α) that maximises Φ[M(ξ)], where M(ξ) =

∫

X
f(x)f>(x)ξ(dx).
Define the following subclass of D(µ, α):

D∗(µ, α) = {ξ ∈ D(µ, α) / ∃A ∈ F , ξ(A) = µ(A)/α , ξ(X\A) = 0} .

The following theorem is proved in [5].

Theorem 1. For any ξ in D(µ, α) there exist a ξ′ in D∗(µ, α) such that M(ξ) = M(ξ′).

Concavity of Φ and convexity of D(µ, α) imply that an optimal design measure ξ∗α exists in D(µ, α).
From Theorem 1, ξ∗α ∈ D

∗(µ, α). Differentiability of Φ gives a characterization of this optimal measure
in terms of a necessary and sufficient condition, see [5, 6, 7, 8].

Theorem 2. A necessary and sufficient condition that ξ∗α maximises Φ[M(ξ)] over D(µ, α) is that exist
a constant c such that FΦ(ξ

∗
α, x) ≥ c for ξ∗α-almost all x, and FΦ(ξ

∗
α, x) ≤ c for (µ− ξ∗α)-almost all x.

In [5, 6], the condition is formulated as: FΦ(ξ
∗
α, x) separates the two sets

(6) X ∗α = supp ξ∗α = {x ∈ X / ξ∗α(x) > 0}

and X\X ∗α . It is shown in [6, 7] that
∫

X∗
α
FΦ(ξ

∗
α, x)µ(dx) =

∫

X
FΦ(ξ

∗
α, x)ξ

∗
α(dx) = 0. An extension to the

case where µ is not necessarily atomless is given in [8] (which also considers design measures bounded
from below). Iterative algorithms of the exchange type for the construction of an optimal constrained
measure ξ∗α are presented in [6, 7]. See also [9] for other steepest ascent algorithms.

3. Asymptotically optimal decisions

For any strategy SN,n used for the maximisation of (3), we denote Ψ(SN,n) = Φ(MN/n). We follow
the same line as in [4], which concerns the case p = 1.

First, we compare the optimal strategy with an infeasible, but better-than-optimal, non sequential
strategy S∗N,n, obtained by selecting the n design points Xk1

, . . . , Xkn that maximise Φ(MN/n) after the
N points X1, . . . , XN have been observed. Obviously, for any N , n and any sequential strategy SN,n

(7) Ψ(SN,n) ≤ Ψ(S∗N,n) .

The strategy S∗N,n also satisfies the following.

Lemma 1. For any α ∈ (0, 1),

(8) lim
N→∞

Ψ(S∗N,bαNc) = Φ[M(ξ∗α)] , µ-a.s.

and

(9) E{Ψ(S∗N,n)} ≤ Φ[M(ξ∗n/N )] , ∀(N,n) ,

with ξ∗α ≤ µ/α an optimal constrained measure.

Proof. Let ŜN,bαNc be the strategy defined as follows. Sample N times from µ, let Nα be the number
of Xi’s that fall in X ∗α . Accept min{bαNc, Nα} such points, and, if bαNc > Nα complete this set by

bαNc−Nα other points from the sample. One has limN→∞Ψ(ŜN,bαNc) = Φ[M(ξ∗α)], µ-a.s. At the same

time, Ψ(ŜN,bαNc) ≤ Ψ(S∗N,bαNc) for any N , which gives

lim inf
N→∞

Ψ(S∗N,bαNc) ≥ Φ[M(ξ∗α)] , µ-a.s.
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On the other hand, for any N the strategy S∗N,bαNc samples from a measure that belongs to D(µ, α), and

thus
lim sup
N→∞

Ψ(S∗N,bαNc) ≤ Φ[M(ξ∗α)] , µ-a.s.

which gives (8).
Let M∗

N,n denote the information matrix generated by S∗N,n,

M∗
N,n =

1

n

N
∑

i=1

f(Xi)f
>(Xi)IN (Xi)

where IN (Xi) = I(X1, . . . , XN ;Xi) equals 1 if Xi is accepted by S∗N,n and equals 0 otherwise. Repeat

m times this strategy, with M∗
N,n(j) the matrix generated at the jth experiment, j = 1, . . . ,m. One has

for any N,n,m

Φ





1

m

m
∑

j=1

M∗
N,n(j)



 ≤ Φ(M∗
mN,mn) ,

where M∗
mN,mn is obtained from the same non sequential strategy S∗mN,mn applied to the full sample

of mN points. Now, let m tend to infinity: Φ(M∗
mN,mn) tends to Φ[M(ξ∗n/N )] µ-a.s., see (8), and

(1/m)
∑m

j=1M
∗
N,n(j) to E{M∗

N,n}, µ-a.s. Concavity of Φ(·) gives (9). ¤

Consider now the strategy defined by

(10) Sε
N,n :

{

accept Xk if Xk ∈ X
∗
α+ε , or N − k + 1 ≤ n− ak

reject Xk otherwise ,

with 0 ≤ ε < 1 − α, ak given by (4) and X ∗α+ε by (6). We simplify this strategy, and consider instead

S̄ε
N,n defined by

S̄ε
N,n :

{

accept Xk if Xk ∈ X
∗
α+ε ,

reject Xk otherwise.

It is non admissible but satisfies Ψ(Sε
N,n) ≥ Ψ(S̄ε

N,n) since S̄ε
N,n may accept less than n design points.

One has

Ψ(S̄ε
N,n) = Φ

[

1

n

Mn
∑

i=1

f(Xi)f
>(Xi)IX∗

α+ε
(Xi)

]

where IA(·) is the indicator function of the set A and Mn = min(Un, N), with

Un = min{K /

K
∑

i=1

IX∗
α+ε

(Xi) = n} .

Now, Prob(X1 ∈ X ∗α+ε) = µ(X ∗α+ε) = α + ε, so that (1/N)
∑N

i=1 IX∗
α+ε

(Xi) → α + ε, µ-a.s. This implies

for ε > 0:

∀δ > 0 , ∃N0 / Prob

[

∀N > N0 ,

N
∑

i=1

IX∗
α+ε

(Xi) > bαNc

]

> 1− δ ,

and thus for n = bαNc,
Prob[∀N > N0 , Mn = Un ≤ N ] > 1− δ .

Therefore,

Prob

{

∀N > N0 , Ψ(S̄ε
N,n) = Φ

[

1

n

n
∑

i=1

f(Xki)f
>(Xki)

]

, Xki ∈ X
∗
α+ε , i = 1, . . . , n

}

> 1− δ ,

Ψ(S̄ε
N,bαNc)→ Φ

[

1

α+ ε
E{f(X1)f

>(X1)IX∗
α+ε

(X1)}

]

= Φ[M(ξ∗α+ε)] , µ-a.s.

and thus

(11) lim inf
N→∞

Ψ(Sε
N,bαNc) ≥ Φ[M(ξ∗α+ε)] µ-a.s.
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We may then let ε tend to zero and use the continuity of Φ[M(ξ∗α)] with respect to α to obtain the
following property directly from (7,8) and (11).

Theorem 3. The strategy S0N,n defined by (10) is asymptotically optimal for n = bαNc, N → ∞,
0 < α < 1:

lim
N→∞

Ψ(S0N,bαNc) = lim
N→∞

Ψ(S∗N,bαNc) = Φ[M(ξ∗α)] , µ-a.s.

where ξ∗α ≤ µ/α is an optimal constrained measure and S∗N,n is an optimal non sequential strategy that
selects n points among N after these N points have been observed.

4. Sampling asymptotically from a constrained measure

Theorem 2 and the fact that Prob(X1 ∈ X
∗
α) = µ(X ∗α) = α imply that the asymptotically optimal

strategy S0N,n is equivalently defined by

S0N,n :

{

accept Xk if µ{x / FΦ(ξ
∗
α, x) > FΦ(ξ

∗
α, Xk)} < α , or N − k + 1 ≤ n− ak

reject Xk otherwise .

This suggests the following procedure for sampling asymptotically from ξ∗α without having to determine
ξ∗α beforehand: we simply substitute ξk for ξ∗α, with ξk the empirical design measure at the current stage.

Strategy Sα(µ):

• (0) Sample X1, X2, . . . , Xn0
from µ, with n0 the first integer such that Φ[

∑n0

i=1 f(Xi)f
>(Xi)] >

−∞. Set k = 1, ak = n0, ξk = (1/n0)
∑n0

i=1 δXi
.

• (i) Sample Xk1 from µ.
• (ii) Compute Pk = P (Xk) = µ{x / FΦ(ξk, x) > FΦ(ξk, Xk)},
{

if Pk < α , accept Xk , set ak+1 = ak + 1 , ξk+1 = [1− 1/(1 + ak)]ξk + 1/(1 + ak) δXk
,

otherwise, reject Xk , set ak+1 = ak , ξk+1 = ξk .

k ← k + 1, return to step (i).

Notice that this procedure does not guarantee that ak/k ≤ α. However, this is easily obtained by
adding the condition ak/k < α at step (ii) for accepting Xk. Other initialisations for ξ, e.g. ξ1 = µ, could
be used too.

Define the second order directional derivative

∇2Φ(M1,M2) =
∂2Φ

∂γ2
[(1− γ)M1 + γM2]|γ=0+ .

Besides the assumptions made in the introduction, we shall need the following.

H1: ∇2Φ(M1,M2) is continuous in M1 and M2 for any finite M1 and
∫

A

∇2Φ[M1, f(x)f
>(x)]µ(dx) > ∆α(A) > −∞

for any set A such that µ(A) ≥ α and any M1 such that Φ(M1/2) > A.
H2: ∃A > −∞ and ε > 0 such that D∗(µ, α− ε) ⊂ Ξ(A).

H1 holds for usual design criteria, for instance when X in bounded, or when η(θ, x) is polynomial in
x and µ has a density φ(·) with respect to the Lebesgue measure, with φ(x) exponentially decreasing
when x → ∞. H2 holds for instance if the functions f(x) are independent on any subset A of X with
µ(A) > α− ε and µ has a density φ(·) such that φ(x) ≥ q > 0 on X .

The difficulty for studying the convergence of the strategy Sα(µ) is that Φ[M(ξk)] is not monotonically
increasing, due to (i) the predetermined step length 1/(1 + ak) and (ii) the stochastic character of Xk.
While (i) is standard in the construction of optimum designs, see [10], (ii) is less usual and forms a
specific feature of the context considered here. Next theorem shows that, under H1 and H2, Φ[M(ξk)]
converges µ-a.s. to Φ[M(ξ∗α)] when k tends to infinity. Notice that H2 eliminates the unboundedness case
encountered in the dichotomous theorem of [10].
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Theorem 4. Consider the strategy Sα(µ) defined by (0)-(ii) above, with ak the number of points selected
from k points sampled, see (4), and ξk the empirical measure of the selected points. Under H1 and H2,
Sα(µ) satisfies

(12) lim
k→∞

ak/k = α , µ-a.s.,

and

(13) lim
k→∞

Φ[M(ξk)] = Φ[M(ξ∗α)] , µ-a.s.,

with ξ∗α ≤ µ/α an optimal constrained design measure.

Proof. Define X ∗α,k = {x / Pk(x) < α}. One has µ(X ∗α,k) = α which proves (12).

Define Φ∗ = Φ(ξ∗α), Φk = Φ[M(ξk)] and TA = inf{k / Φk ≤ A}.
Consider first an iteration when ξk is updated, which occurs when Xk ∈ X

∗
α,k. Denote Ak this event,

which has probability α. We have

Φk+1 = Φk +
1

1 + ak
FΦ(ξk, Xk) +

1

2(1 + ak)2
∇2Φ(ξk, Xk, γ)

with

∇2Φ(ξk, Xk, γ) = ∇
2
Φ[(1− γ)M(ξk) + γf(Xk)f

>(Xk), f(Xk)f
>(Xk)] ,

for some γ ∈ [0, 1/(1 + ak)]. Concavity of Φ(·) implies

FΦ(ξk; ξ
∗
α) ≥ Φ∗ − Φk

that is,
∫

X

FΦ(ξk, x)ξ
∗
α(dx) ≥ Φ∗ − Φk ,

or equivalently, since ξ∗α = µ/α on X ∗α and 0 on X\X ∗α ,
∫

X∗
α

FΦ(ξk, x)µ(dx)/α ≥ Φ∗ − Φk .

Therefore, from the definition of X ∗α,k,

EXk
{FΦ(ξk, Xk)|Ak} =

∫

X∗
α,k

FΦ(ξk, x)µ(dx)/α ≥ Φ∗ − Φk .

Conditionally on (TA =∞), H1 implies

(14) E{Φk+1|Fk−1, Ak} = EXk
{Φk+1|ξk, ak, Ak} > Φk +

1

1 + ak
(Φ∗ − Φk) +

∆α(A)

2α(1 + ak)2
.

On Āk, that is, when ξk is not updated, Φk+1 = Φk. Together with (14), this gives on (TA = ∞) for
any iteration k

(15) E{Φk+1 − Φk|Fk−1} >
α

1 + ak
(Φ∗ − Φk) +

∆α(A)

2(1 + ak)2
,

which implies lim supk→∞ Φk ≥ Φ∗ µ-a.s., and thus from Lemma 1 lim supk→∞ Φk = Φ∗ µ-a.s., on
(TA =∞).

Assume now that lim supk→∞ Φk − lim infk→∞ Φk > ε > 0. This would imply that (Φk) crosses the
interval [Φ∗ − ε,Φ∗ − ε/6] infinitely often. We prove that it is impossible, using an approach similar to
the proof of Doob’s upcrossing Lemma, see [11], p. 106.

First, we construct a previsible process (Ck) from (Φk) as follows. We wait until Φk gets above Φ∗−ε/6
and set C to one until Φk gets below Φ∗ − ε. Formally, this is written as follows:

C2 = I{Φ1≥Φ∗−ε/6} , Ck+1 = CkI{Φk≥Φ∗−ε} + (1− Ck)I{Φk≥Φ∗−ε/6} , k ≥ 2 .
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Figure 1. Top: sequence Φk (stars when Ck = 1, circles when Ck = 0); bottom : Vk
(full line), Zk (dotted line) and Wk (dotted full line).

We then define the martingale transform (Vk) of (Φk) by

Vk =

k
∑

i=2

Ci(Φi − Φi−1) .

One has Vk < −(5ε/6)Uk +[Φk− (Φ∗− ε/6)]+, with Uk the number of downcrossings of [Φ∗− ε,Φ∗− ε/6]
made by the process i 7→ Φi by time k. Therefore,

(16) E{Vk} < −(5ε/6)E{Uk}+ E{[Φk − (Φ∗ − ε/6)]+} .

Next, we construct another martingale transform (Wk) of (Φk), that we shall use as a lower bound on
Vk for k large enough, so that E{Wk} will give a lower bound on E{Vk}. The difficulty is that the bound
given by (15) can be used only when Φk < Φ∗. For that reason we shall use again the threshold Φ∗− ε/6.

We are only interested in time intervals where Ck = 1. First we construct a process Zk that will mimic
Vk when Φk leaves the region above Φ∗ − ε/6:

Z1 = 0 , Zk+1 = Ck+1I{Φk<Φ∗−ε/6}(Zk +Φk+1 − Φk) , k ≥ 2 .

Then we consider the initial part of the time interval when Ck = 1 and Φk fluctuates around Φ∗. We
construct

Q1 = 0 , Qk+1 = Qk − (ε/2)max(Ck+1 − Ck, 0) + Zk max(Ck − Ck+1, 0) , k ≥ 2

and define Wk as Wk = Qk + Zk. This construction guarantees Vk − Vk0
≥ Wk −Wk0

for all k > k0
provided that Φk+1 − Φk > −ε/6 and Φk < Φ∗ + ε/6 when k ≥ k0.

Figure 1 illustrates the construction. The upper part of the figure gives Φk as a function of k. Stars are
for time instants when Ck = 1, circles for Ck = 0. The horizontal lines, from top to bottom, correspond
to the values Φ∗ + ε/6, Φ∗, Φ∗ − ε/6, Φ∗ − ε. The lower part of the figure presents the sequences (Vk)
(full line), (Zk) (dotted line) and (Wk) (dotted full line).
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Define the following quantities

K1 = sup{k / Φk > Φ∗ + ε/6} ,

K2 = sup

{

k /
ε

6

α

1 + ak
+

∆α(A)

2(1 + ak)2
< 0

}

,

K3 = sup {k / Φk+1 − Φk < −ε/6} ,

and K∗ = max{K1,K2,K3} ≤ ∞. On (TA =∞) ∩ (K∗ <∞) we have, for any k > K∗,

Vk ≥ VK∗ +Wk −WK∗ ,

and, by construction, using (15), E{Wk −WK∗} ≥ −(ε/2)E{Uk − UK∗}. Together with (16), this gives,
for any k > K∗,

E{Uk} <
3

ε

(

E{[Φk − (Φ∗ − ε/6)]+} − E{VK∗}
)

<∞ ,

and thus Prob(U∞ = ∞) = 0. Now, lim supk→∞ Φk = Φ∗, µ-a.s., and (12) imply Prob(K1 < ∞) =
Prob(K2 <∞) = 1. Also, on (TA =∞) H1 implies

Φk+1 > Φk −
hα(A)

1 + ak

for some hα(A) > 0, so that Prob(K3 < ∞) = 1. Therefore, on (TA = ∞), Prob(U∞ < ∞) = 1 and
lim infk→∞ Φk = lim supk→∞ Φk = Φ∗, µ-a.s.

Finally, (12) and H2 imply Prob{∪−∞A=−1(TA =∞)} = 1, which completes the proof. ¤

When only n points can be accepted among N , which corresponds to the original problem of Section
1, we can adapt α and take α = (n− ak)/(N − k) at step k. This corresponds to the strategy

(17) SN,n :

{

accept Xk if Pk <
n−ak
N−k

reject Xk otherwise

which coincides with the one-step-ahead rule suggested in [3]. Theorem 4 shows that it is asymptotically
optimal when n = bαNc, α ∈ (0, 1), N →∞.

When µ is unknown, the probability Pk in (17) or step (ii) of Sα(µ) can be replaced by P̂k evaluated
from the empirical measure of the Xi’s, say µ̂k at step k, with the initial measure µ̂1 obtained from n0
initial samples. Since the random variables Xk are observed whatever the strategy is, P̂k converges a.s.
to Pk, which permits to asymptotically sample from ξ∗α, without knowing µ. Illustrative examples are
presented in the next section. Kernel estimation of µ, or a parametric representation µβ , with β to be
estimated from the sequence (Xk), could also be considered.

Finally note that if θ can be estimated on line, then θ̂0 can be replaced at step k by θ̂k estimated
by least squares from the observations collected so far. If the criterion Φ(·) is such that Φ(M) > A

implies λmin(M) > γ > 0, consistency and asymptotic normality of θ̂k will hold under H2 (and additional
conditions on higher order derivatives of η(θ, x) with respect to θ and their tail cross product, see [12])
and the strategy Sα(µ) is such that Φ[M(ξk)] converges µ-a.s. to Φ{M[ξ∗α(θ̄)]}, with ξ∗α(θ̄) ≤ µ/α the
optimal constrained design measure for the true value θ̄ of the model parameters in (1).

5. Examples

We consider the quadratic regression model η(θ, x) = θ0 + θ1x + θ2x
2, with the design criterion

Φ(·) = log det(·).

5.1. Example 1. The experimental variables Xk are normally distributed N (0, 1) and α = 0.5. Easy
calculations show that the optimal constrained measure ξ∗α ≤ µ/α is equal to µ/α on X ∗α = (−∞,−a] ∪
[−b, b]∪ [a,∞), with a ' 1.028, b ' 0.2482. Figure 2 presents a plot of the sensitivity function d(ξ∗α, x) =
f>(x)M−1(ξ∗α)f(x) and illustrates Theorem 2. An histogram of the 10, 000 first samples Xk accepted
by the strategy Sα(µ) of Section 3, with µ replaced by the empirical measure µ̂k (µ̂1 is constructed from
n0 = 3 initial samples), is presented in Figure 3. Figure 4 gives Φk as a function of k, the value Φ[M(ξ∗α)]
is indicated by a dashed line.
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Figure 2. Sensitivity function d(ξ∗α, x) for ξ
∗
α in Example 1.
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Figure 3. Histogram of the 10, 000 first samples Xk accepted by Sα(µ) in Example 1.

5.2. Example 2. Assume now that the experimental variables Xk are uniformly distributed in [−1, 1],
again with α = 0.5. It is shown in [7] that the optimal constrained measure ξ∗α is supported on X ∗α =
[−1,−a]∪ [−b, b]∪ [a, 1], with b = a− 1/2, a ' 0.7098. Figure 5 presents an histogram of the 10, 000 first
samples Xk accepted by the strategy Sα(µ) of Section 3, with µ replaced by the empirical measure µ̂k

(µ̂1 is constructed from n0 = 3 initial samples).

5.3. Example 3. This example corresponds to a situation where the assumptions used in Theorem 4 do
not hold: µ is a mixture of the normal measure µn for N (0, 1) and the discrete measure µd supported
at {−1,−1/2, 0, 1/2, 1} with respective weights (1/8, 1/4, 1/4, 1/4, 1/8), µ = 0.5µn + 0.5µd. We take
α = 0.1. Easy calculations then show that the optimal constrained measure ξ∗α is equal to µ/α on
X ∗α = (−∞,−a] ∪ [a,∞), with a ' 1.5625, and puts the rest of its weight at zero. Figure 6 presents
a plot of the sensitivity function d(ξ∗α, x) = f>(x)M−1(ξ∗α)f(x) and illustrates the optimality of ξ∗α, see
Corollary 1 in [8]. We modify step (ii) of the strategy Sα(µ) and accept Xk only when Pk < α and
ak/k < α. Figure 7, left, gives an histogram of the first 10,000 samples accepted (µ is replaced by the
empirical measure µ̂k and µ̂1 is constructed from n0 = 3 initial samples). The right part of the figure
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Figure 4. Φk generated by Sα(µ) as a function of k in Example 1; Φ[M(ξ∗α)] corresponds
to the dashed line.
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Figure 5. Histogram of the 10, 000 first samples Xk accepted by Sα(µ) in Example 2.

presents Φk as a function of k, with the optimal value Φ[M(ξ∗α)] indicated by the dashed line. Although
we do not have a proof for convergence, simulations indicate that Φk → Φ∗ as k →∞.

6. Conclusions and further developments

Two simple open-loop strategies for the sequential selection of n experiments Xk1
, . . . , Xkn among

N i.i.d. Xi’s have been shown to be asymptotically optimal for n = bαNc, α ∈ (0, 1), N → ∞, and
rather general design criterion Φ. The first one is based on the construction of an optimum constrained
design measure ξ∗α ≤ µ/α, with µ the probability measure for X1. The second does not rely on the prior
construction of ξ∗α, but asymptotically samples from it, that is, Φ[M(ξk)] → Φ[M(ξ∗α)], µ-a.s., k → ∞,
where ξk denotes the empirical measure of the points accepted by the strategy. In the one dimensional
case (dim(θ) = 1), asymptotic optimality of a similar strategy is proved in [1] for N → ∞ with n fixed,
provided the tail of µ is thin enough (von Mises distribution). In the case dim(θ) > 1, extending Theorem
3 to the situation where n is fixed and N →∞ remains an open issue.
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Figure 6. Sensitivity function d(ξ∗α, x) for the optimal constrained measure ξ∗α in Ex-
ample 3.
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Figure 7. Left: histogram of the 10, 000 first samples Xk accepted by Sα(µ) in Example
3. Right: Φk as a function of k; Φ[M(ξ∗α)] corresponds to the dashed line.

We assumed throughout the paper that µ was atomless. However, as illustrated by Example 3, this
condition does not seem essential. A natural extension of Theorem 4 would concern the case of measures
with atoms, with an atomic part small enough for H2 to hold.

Important extensions of these results, that will be the subject of future work, include the following
situations.

First, there are cases where the design variables are not directly observed: an example is when one
observes covariates Zk, with (Zn) the family of σ-algebra generated by (Zk), 0 ≤ k ≤ n, and the condi-
tional probability measure µ(·|Zk) for the experimental conditions Xk is known for any k. Addressing
this situation would be of interest e.g. in survey sampling, for the sequential selection of participants.

Second, applications to parameter estimation in dynamical systems call for an extension to correlated
design variables Xk. A simple example is when Xk = (Uk, Uk−1, . . . , Uk−m), with (Ui) a random input
sequence for the system. Note, however, that when the model contains an autoregressive part, that
is, when Xk = (Uk, Uk−1, . . . , Uk−m, Yk−1, . . . , Yk−l), the decision not to observe Yk implies that l future
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experimental conditions are unknown, which makes the problem much different from the one we considered
here and will require specific developments.
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mental design held in Cardiff in April 2000, see [3]; he is gratefully acknowledged for pointing out the
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