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ABSTRACT
We consider a nonlinear regression model with parameter-
ized variance and compare several methods of estimation:
the Weighted Least-Squares (WLS) estimator; the two-stage
LS (TSLS) estimator, where the LS estimator obtained at the
first stage is plugged into the variance function used for WLS
estimation at the second stage; and finally the recursively re-
weighted LS (RWLS) estimator, where the LS estimator ob-
tained after k observations is plugged into the variance func-
tion to compute the k-th weight for WLS estimation. We
draw special attention to RWLS estimation which can be im-
plemented recursively when the regression model in linear
(even if the variance function is nonlinear), and is thus par-
ticularly attractive for signal processing applications.

1. INTRODUCTION

We consider a nonlinear regression problem, with observa-
tions

Yk = y(xk) = η(xk, θ̄)+εk , Exk{εk}= 0 , k = 1, . . . ,N , (1)

where θ̄ denotes the unknown true value of the model pa-
rameters. The observation errors εk = ε(xk) are assumed to
be independently distributed. It frequently happens that the
full parameterized probability distribution of the errors εk is
not available, whereas their variance is a known function of
the design variable x ∈ X⊂ IRd and of (some of) the parame-
ters θ of the mean response, that is,

σ 2(xk) = Exk{ε2
k } = cλ (xk, θ̄) , k = 1, . . . ,N , (2)

with c some positive constant. The (ordinary) LS estima-
tor is strongly consistent and asymptotically normally dis-
tributed under standard assumptions. However, it ignores the
information contained in the variance function. Using this
information may yield a more precise estimation, hence the
importance of choosing a suitable estimation method. The
asymptotic properties of the WLS estimator are recalled in
Section 3: in particular, the asymptotic variance of the esti-
mator is minimum when the weights are proportional to the
inverse of the variance of the observation errors. Since these
optimum weights are unknown (θ̄ is unknown in (2)), we
consider the two-stage least-squares (TSLS) method, where
the WLS estimator obtained at the first stage is plugged in
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the variance function used for WLS estimation at the sec-
ond stage. A third approach, the recursively re-weighted LS
(RWLS) estimation, is considered in Section 4: the LS esti-
mator obtained from k observations is used to compute the
k-th weight (and only this one) to be used for WLS estima-
tion. When the model η(x,θ) is linear is θ (the variance
function λ (x,θ) may be nonlinear), the estimator can be im-
plemented recursively, by combining two recursive LS meth-
ods. In applications with large data sets, or when an on-line
implementation is required, this is a definite advantage over
the TSLS approach.

The asymptotic properties of the estimators are obtained
under the assumption of a randomized design, introduced in
Section 2, which allows rigorous proofs for the asymptotic
properties of the estimators while avoiding the technical dif-
ficulties encountered in classical references such as [2] (fi-
nite tail product of the regression function and its derivatives,
etc.). We show that the asymptotic performances of the TSLS
and RWLS estimators are similar, and coincide with those of
the WLS estimator with optimum weights. The main lines of
the proofs are given in Section 6. Some simulations results
are presented in Section 5.

2. RANDOMIZED DESIGNS

In order to study the asymptotic properties of estimators we
need to specify how the sequence of points x1,x2, . . . is gen-
erated. The following definition is well adapted to situations
where the sequence is not completely under control.

Definition 1 We call randomized design with measure ξ on
the design space X ⊂ IRd ,

∫

X
ξ (dx) = 1, a sequence {xi} of

points independently sampled from the mesure ξ on X.

The following assumptions will be used throughout the
paper.
H1 Θ is a compact subset of IRp such that Θ ⊂ int(Θ).
H2 η(x,θ) and λ (x,θ) are continuous functions of θ ∈ Θ
for any x ∈ X, with η(x,θ) and λ−1(x,θ) bounded on X×Θ
and λ (x, θ̄) bounded on X.
H3 η(x,θ) and λ (x,θ) are two times continuously differen-
tiable with respect to θ ∈ int(Θ) for any x ∈ X, these first two
derivatives are bounded on X× int(Θ).

Our proofs are based on the uniform convergence with
respect to θ of the criterion function JN(θ) defining the es-
timator θ̂ N = argminθ JN(θ). We shall thus need a uniform
Strong Law of Large Numbers (SLLN). Note that the proper
definition of the estimator as a random variable is ensured by
Lemma 2 in [2] (see also [1], p. 16). In the following θ̂ N



will refer to the measurable choice from argminθ∈Θ JN(θ).
The asymptotic results of the next sections are based on the
following lemma, which is derived from Theorem 2.7.1 in
[1].

Lemma 1 (Uniform SLLN) Let {zi} be a sequence of i.i.d.
random vectors of IRr, and a(z,θ) be a Borel measurable real
function of (z,θ) ∈ IRr ×Θ, continuous in θ for any z, with
Θ a compact subset of IRp. Suppose that

E[max
θ∈Θ

|a(z,θ)|] < ∞ , (3)

then E[a(z,θ)] is continuous in θ ∈ Θ and

1
N ∑N

i=1 a(zi,θ)
θ→→E[a(z,θ)] a.s. when N → ∞, where

θ→→
means uniform convergence with respect to θ .

Once the almost sure uniform convergence of the crite-
rion function JN(·) is obtained, the almost sure convergence
of the estimator will follow from the next lemma. The proof
is a straightforward application of the continuity and uniform
convergence properties.

Lemma 2 Assume that the sequence of functions {JN(θ)}
converges uniformly on Θ to the function J(θ), with JN(θ)
continuous with respect to θ ∈ Θ for any N, Θ a compact set
of IRp, and J(θ) such that for some θ̄ ∈ Θ,

∀θ ∈ Θ , θ 6= θ̄ , J(θ) > J(θ̄) .

Then limN→∞ θ̂ N = θ̄ , where θ̂ N ∈ argminθ∈Θ JN(θ). When
the functions JN(·) are random, and the uniform convergence
to J(·) is almost sure, the convergence of θ̂ N to θ̄ is also
almost sure.

3. WEIGHTED LS AND TWO-STAGE LS

3.1 Weighted LS estimation

The WLS estimator θ̂ N
WLS minimizes

JN(θ) =
1
N

N

∑
k=1

w(xk)[y(xk)−η(xk,θ)]2 (4)

with w(x) ≥ 0 and bounded on X. The following theorem is
a standard property of LS estimation.

Theorem 1 Let {xi} be a randomized design with measure
ξ on X ⊂ IRd . Assume that H1 and H2 are satisfied and that
∀θ ,θ ′ ∈ Θ,

∫

X

w(x)[η(x,θ)−η(x,θ ′)]2ξ (dx) = 0 ⇔ θ = θ ′ . (5)

Then the estimator θ̂ N
WLS that minimises (4) in the model (1,2)

converges a.s. to θ̄ . If, moreover, H3 is satisfied, θ̄ ∈ int(Θ)
and the matrix

M1(ξ , θ̄) =
∫

X

w(x)
∂η(x,θ)

∂θ |θ̄

∂η(x,θ)

∂θ> |θ̄
ξ (dx) (6)

is nonsingular, then θ̂ N
WLS satisfies

√
N(θ̂ N

WLS − θ̄)
d→z ∼ N(0,C(w,ξ , θ̄))

as N → ∞, where C(w,ξ , θ̄) = M
−1
1 (ξ , θ̄) M2(ξ , θ̄)

M
−1
1 (ξ , θ̄) with

M2(ξ , θ̄) =
∫

X

w2(x)σ 2(x)
∂η(x,θ)

∂θ |θ̄

∂η(x,θ)

∂θ> |θ̄
ξ (dx) .

(7)
Moreover, C(w,ξ , θ̄)−M

−1(ξ , θ̄) is non-negative definite
for any choice of w(x), with

M(ξ , θ̄) =
∫

X
σ−2(x)

∂η(x,θ)

∂θ |θ̄

∂η(x,θ)

∂θ> |θ̄
ξ (dx) , (8)

and C(w,ξ , θ̄) = M
−1(ξ , θ̄) for w(x) = α σ−2(x) with α

any positive constant.

3.2 Two-stage LS estimation
The optimum weights w(x) = λ−1(x, θ̄) cannot be used for
WLS estimation since θ̄ is unknown. It is therefore tempt-
ing to use the weights λ−1(x,θ), that is, to choose θ̂ N that
minimises the criterion

JN(θ) =
1
N

N

∑
k=1

[y(xk)−η(xk,θ)]2

λ (xk,θ)
. (9)

However, this approach is not recommended since θ̂ N is gen-
erally not even consistent.

Theorem 2 Let {xi} be a randomized design with measure
ξ on X⊂ IRd . Assume that H1 and H2 are satisfied. Then the
estimator θ̂ N

LS that minimises (9) in the model (1,2) converges
a.s. to the set Θ̄ of values of θ that minimise

J(θ) = c
∫

X

λ (x, θ̄)λ (x,θ)−1 ξ (dx)

+
∫

X

λ (x,θ)−1[η(x,θ)−η(x, θ̄)]2 ξ (dx) .

Notice that, in general, θ̄ 6∈ Θ̄.
Consider now a two-stage approach, where some esti-

mator θ̂ N
1 is constructed at the first stage, and then plugged

into the weight function λ (x,θ). The second-stage estimator
θ̂ N

T SLS is then obtained by minimizing

JN(θ , θ̂ N
1 ) =

1
N

N

∑
k=1

[y(xk)−η(xk,θ)]2

λ (xk, θ̂ N
1 )

(10)

with respect to θ ∈ Θ. We have the following.

Theorem 3 Let {xi} be a randomized design with measure
ξ on X ⊂ IRd . Assume that H1 and H2 are satisfied, that θ̂ N

1
converges a.s. to some θ̄1 ∈ Θ and that for any θ ,θ ′ ∈ Θ,
∫

X

λ−1(x, θ̄1)[η(x,θ)−η(x,θ ′)]2 ξ (dx) = 0 ⇔ θ = θ ′ .

Then the estimator θ̂ N
T SLS that minimises (10) in the model

(1,2) converges a.s. to θ̄ . If, moreover, H3 is satisfied, the
matrix M(ξ , θ̄) given by (8) is nonsingular and the first-
stage estimator θ̂ N

1 plugged in (10) is
√

N-consistent1, with
θ̄ ∈ int(Θ), then θ̂ N

T SLS satisfies
√

N(θ̂ N
T SLS − θ̄)

d→z ∼ N(0,M−1(ξ , θ̄)) , N → ∞ .

1that is, when
√

N(θ̂ N
1 − θ̄) is bounded in probability: ∀ε > 0 ∃A and N0

such that ∀N > N0, Prob{
√

N(θ̂ N
1 − θ̄) > A} < ε



Notice that M
−1(ξ , θ̄) is the asymptotic covariance ma-

trix of the WLS estimator in the ideal case where the vari-
ance function (2) is known, see Theorem 1.

Also note that a natural candidate for the first-stage esti-
mator θ̂ N

1 is the WLS estimator θ̂ N
WLS that minimises JN(θ)

given by (4) with arbitrary weights: under the assumptions
of Theorem 1 θ̂ N

WLS is
√

N-consistent since
√

N(θ̂ N
WLS− θ̄)

d→
z ∼ N(0,C(w,ξ , θ̄)). In particular, one may choose w(x) = 1
for any x, which corresponds to the ordinary LS estimator
θ̂ N

LS.
Increasing the number of stages leads to iteratively re-

weighted LS estimation, which relies on sequence of estima-
tors constructed as follows:

θ̂ N
k = argmin

θ∈Θ
JN(θ , θ̂ N

k−1) , k = 2,3 . . . (11)

where JN(θ ,θ ′) is defined by (10) and where θ̂ N
1 can be taken

equal to θ̂ N
LS. A simple induction shows that, for any fixed k,

θ̂ N
k has the same asymptotic properties as θ̂ N

T SLS. Although
there is apparently no gain in pushing the recursion (11) to
its limit rather than simply using θ̂ N

T SLS, these are only asymp-
totic results and the finite sample behaviors of both methods
may differ.

4. RECURSIVELY RE-WEIGHTED LS

We define the recursively re-weighted LS estimator θ̂ N
RWLS as

the value of θ ∈ Θ that minimises the criterion

JN(θ) =
1
N

N

∑
k=1

[y(xk)−η(xk,θ)]2

λ (xk, θ̂ k
WLS)

, (12)

where the auxiliary estimate θ̂ k
WLS uses arbitrary weights

w(x) and is based on the first k observations Y1, . . . ,Yk and
design points x1, . . . ,xk only. Using Lemmas 1 and 2 we can
show the following.

Theorem 4 Let {xi} be a randomized design with measure
ξ on X a compact set of IRd . Assume that H1 and H2 are
satisfied, that λ (x,θ) is continuous on X×Θ with X compact,
that for any θ ,θ ′ ∈ Θ,
∫

X

λ−1(x, θ̄)[η(x,θ)−η(x,θ ′)]2 ξ (dx) = 0 ⇔ θ = θ ′

and that w(x) is such that (5) is satisfied. Then the estimator
θ̂ N

RWLS that minimises (12) in the model (1,2) converges a.s.
to θ̄ . If, moreover, H3 is satisfied, the matrix M(ξ , θ̄) given
by (8) is nonsingular and θ̄ ∈ int(Θ), then θ̂ N

RWLS satisfies

√
N(θ̂ N

RWLS − θ̄)
d→z ∼ N(0,M−1(ξ , θ̄)) , N → ∞ .

The two estimators θ̂ N
T SLS and θ̂ N

RWLS have therefore the
same asymptotic performance (in terms of covariance ma-
trix) as the WLS estimator with optimum weights (note that
it does not imply that their finite sample behaviors are sim-
ilar). This makes θ̂ N

RWLS particularly attractive when η(x,θ)
is linear in θ , that is, when

η(x,θ) = f>(x)θ . (13)

Indeed, the auxiliary WLS estimator θ̂ k
WLS can be constructed

recursively through

Pk+1 = Pk −
Pk f (xk+1) f>(xk+1)Pk

w−1(xk+1)+ f>(xk+1)Pk f (xk+1)
,

θ̂ k+1
WLS = θ̂ k

LS +
Pk f (xk+1)

w−1(xk+1)+ f>(xk+1)Pk f (xk+1)

×[y(xk+1)− f>(xk+1θ̂ k
WLS] .

Let k0 be the first integer such that f (x1), . . . , f (xk0) span IRp.
The recursion can be initialized at k = k0 by

Pk0 =

[

k0

∑
i=1

w(xi) f (xi) f>(xi)

]−1

.

A similar recursion can be used to compute θ̂ k
RWLS simulta-

neously,

P
′
k+1 = P

′
k −

P
′
k f (xk+1) f>(xk+1)P

′
k

λ (xk+1, θ̂ k+1
WLS)+ f>(xk+1)P

′
k f (xk+1)

,

θ̂ k+1
RWLS = θ̂ k

RWLS +
P

′
k f (xk+1)

λ (xk+1, θ̂ k+1
WLS)+ f>(xk+1)P

′
k f (xk+1)

×[y(xk+1)− f>(xk+1θ̂ k
RWLS] ,

with the initialisation P
′
k0

= Pk0 and θ̂ k0
RWLS = θ̂ k0

WLS. Notice
that θ̂ k

WLS is linear with respect to the observations Y1, . . . ,Yk

but θ̂ k
RWLS is not.

5. EXAMPLE

We take f (x) = (1 x x2)> in (13) and λ (x,θ) = | f>(x)θ |
in (2). We suppose that the true (unknown) value for θ is
θ̄ = (0 0 1)>, so that the variance of the observation error at
x is σ 2(x) = cλ (x, θ̄) = cx2. This gives the value

M(ξ , θ̄) =
1
c

( µ−2 µ−1 1
µ−1 1 µ1

1 µ1 µ2

)

for the matrix (8), with µp =
∫

X
xpξ (dx). For TSLS and

RWLS estimation we use the ordinary LS (w(x)≡ 1) as aux-
iliary estimator. Similar calculation can be done for the ma-
trices M1 and M2 involved in the asymptotic covariance ma-
trix of θ̂ N

LS, see Theorem 1. When ξ is such that x is uniformly
distributed in the interval [0.1,1.1] we obtain the asymptotic
covariance matrices

M
−1(ξ , θ̄) = c

( 0.9698 −5.3891 5.1059
−5.3891 35.2660 −35.5726
5.1059 −35.5726 38.8819

)

for θ̂ N
T SLS and θ̂ N

RWLS and

C(ξ , θ̄) = c

( 3.7434 −18.6593 16.8094
−18.6593 98.8149 −91.6457
16.8094 −91.6457 88.3714

)

for the ordinary LS estimator θ̂ N
LS.



We take c = 0.01 and repeat 2,000 experiments with
N = 100 observations each, the errors εk are independently
and normally distributed. The empirical mean-squared error
(MSE) matrix obtained for θ̂ N

LS is
( 0.0396 −0.1962 0.1775

−0.1962 1.0343 −0.9645
0.1775 −0.9645 0.9358

)

which is close to C(ξ , θ̄). For the weighted LS estimator
using the true weight function, we obtain the empirical MSE
matrix

( 0.0107 −0.0589 0.0563
−0.0589 0.3798 −0.3849
0.0563 −0.3849 0.4217

)

,

close to M
−1(ξ , θ̄). Finally, we obtain the matrices
( 0.0131 −0.0694 0.0653

−0.0694 0.4277 −0.4269
0.0653 −0.4269 0.4587

)

and
( 0.0158 −0.0795 0.0728

−0.0795 0.4813 −0.4729
0.0728 −0.4729 0.5002

)

for the estimators θ̂ N
T SLS and θ̂ N

RWLS respectively, showing that
(i) the decrease of performance due to the estimation of the
weight function in θ̂ N

T SLS is almost negligible and (ii) the ad-
ditional decrease of performance due to the recursive estima-
tion of the weight function in θ̂ N

RWLS is almost negligible too.
On the other hand, the gain in precision compared to ordinary
LS is quite significative.

6. INDICATIONS OF PROOFS

Consistency. In Theorem 1 we simply apply Lemma

1 to show that JN(θ)
θ→→ J(θ) =

∫

X
w(x)σ 2(x)ξ (dx) +

∫

X
w(x)[η(x,θ) − η(x, θ̄)]2ξ (dx) a.s. as N → ∞ and then

Lemma 2 to get θ̂ N
WLS

a.s.→ θ̄ . The method is similar for Theo-
rem 2 with a different J(θ).

In Theorem 3, we show that JN(θ ,θ ′)
a.s.→ J(θ ,θ ′) =

∫

X
λ−1(x,θ ′)σ 2(x)ξ (dx) +

∫

X
λ−1(x,θ ′)[η(x,θ) −

η(x, θ̄)]2ξ (dx) and the convergence is uniform in θ

and θ ′. Therefore, JN(θ , θ̂ N
1 )

θ→→ J(θ , θ̄1) a.s. and Lemma 2
gives θ̂ N

T SLS
a.s.→ θ̄ .

Concerning Theorem 4, we define JN(θ ,λ N
1 ) =

(1/N)∑N
k=1 λ−1

k [y(xk) − η(xk,θ)]2 with λ N
1 = (λ1, . . . ,λN)

a bounded random sequence of N weights. Using
H1 and H2 we show that |λk − λ̄k| a.s.→ 0 as k →
∞, with λ̄k a deterministic bounded sequence, implies
maxθ∈Θ |JN(θ ,λ N

1 ) − JN(θ , λ̄ N
1 )| a.s.→ 0, N → ∞. When

λk = λ (xk, θ̂ k
WLS) and θ̂ k

WLS
a.s.→ θ̄ , under the assumptions

of the theorem maxx∈X |λ (x, θ̂ k
WLS)− λ (x, θ̄)| a.s.→ 0 so that,

using Lemma 1, JN(θ ,λ N
1 )

θ→→
∫

X
λ−1(x, θ̄)σ 2(x)ξ (dx) +

∫

X
λ−1(x, θ̄)[η(x,θ)−η(x, θ̄)]2ξ (dx) a.s. and Lemma 2 im-

plies θ̂ N
RWLS

a.s.→ θ̄ .

Asymptotic normality. The generic idea goes as follows.
Since θ̄ ∈ int(Θ), when the estimator θ̂ N satisfies θ̂ N a.s.→ θ̄ ,
it implies that exists N0 (with prob. 1) such that θ̂ N ∈ int(Θ)
for all N > N0. We can thus differentiate the criterion JN with
respect to θ , and its derivative ∇JN(θ) is zero at θ = θ̂ N . We
then perform a Taylor series development of ∇JN(θ) at θ =

θ̄ , ∇JN(θ̂ N) = ∇JN(θ̄) + ∇2JN(β N)(θ̂ N − θ̄) = 0 for some
β N = (1−αN)θ̄ +αN θ̂ N , αN ∈ (0,1) (and β N is measurable,
see Lemma 3 of [2]), and consider the convergence of the
different terms in ∇2JN(β N)[

√
N(θ̂ N − θ̄)] = −

√
N∇JN(θ̄).

In Theorem 1, we use Lemma 1 to show

that ∇2JN(θ)
θ→→ 2M1(ξ ,θ) − 2

∫

X
w(x)[η(x, θ̄) −

η(x,θ)]∂ 2η(x,θ)/∂θ∂θ>ξ (dx) a.s. Since θ̂ N
WLS

a.s.→ θ̄ ,
β N a.s.→ θ̄ and ∇2JN(β N)

a.s.→ 2M1(ξ , θ̄), which is nonsin-
gular by assumption. The Central Limit Theorem (CLT)
then shows that −

√
N∇JN(θ̄) is asymptotically normal

N(0,4M2(ξ , θ̄)), which completes the proof.
The proof for Theorem 3 is based on a Taylor

development of ∇θ JN(θ ,θ ′), the first derivative of
JN(θ ,θ ′) with respect to θ , at θ = θ ′ = θ̄ . It gives
∇2

θ ,θ JN(β N , θ̂ N
1 )[

√
N(θ̂ N

T SLS − θ̄)] = −
√

N∇θ JN(θ̄ , θ̄) −
∇2

θ ,θ ′JN(θ̄ ,γN)[
√

N(θ̂ N
1 − θ̄)], with β N ,γN measurable and

tending a.s. to θ̄ , and ∇2
θ ,θ JN(θ ,θ ′), ∇2

θ ,θ ′JN(θ ,θ ′) the
derivatives of ∇θ JN(θ ,θ ′) with respect to θ and θ ′ respec-
tively. Lemma 1 shows that ∇2

θ ,θ JN(β N , θ̂ N
1 )

a.s.→ 2M(ξ ,θ)

and ∇2
θ ,θ ′JN(θ̄ ,γN)

a.s.→ 0. Since θ̂ N
1 is

√
N-consistent,

√
N∇2

θ ,θ ′JN(θ̄ ,γN)(θ̂ N
1 − θ̄)

p→ 0. Finally, the CLT
shows that −

√
N∇θ JN(θ̄ , θ̄) is asymptotically normal

N(0,4M(ξ , θ̄)), which completes the proof.
In Theorem 4, let θ̂ N

λ be the value of θ ∈ Θ that min-
imises JN(θ ,λ N

1 ). We obtain ∇2JN(β N ,λ N
1 )[

√
N(θ̂ N

λ − θ̄)] =

−
√

N∇JN(θ̄ ,λ N
1 ) for some measurable β N tending to

θ̄ a.s. Define λ̄k = λ (xk, θ̄) for all k. As in the proof
of consistency, we show that |λk − λ̄k| a.s.→ 0 implies

∇2JN(θ ,λ N
1 )−∇2JN(θ , λ̄ N

1 )
θ→→ 0 a.s. and then use Lemma 1

to show that ∇2JN(β N ,λ N
1 )

a.s.→ 2M(ξ , θ̄). Finally, we write√
N∇JN(θ̄ ,λ N

1 ) =
√

N∇JN(θ̄ , λ̄ N
1 ) +

√
N[∇JN(θ̄ ,λ N

1 ) −
∇JN(θ̄ , λ̄ N

1 )]. The first term on the right-hand side is
asymptotically normal N(0,4M(ξ , θ̄)). The second equals
∆N = (2/

√
N)∑N

k=1[λ
−1
k − λ̄−1

k ]εk∂η(xk,θ)/∂θ|θ̄ . We
compute E{∆2

N} for λk = λ (xk, θ̂ k
WLS). The expectation

of any cross-product term in ∆2
N equals zero, and we get

E{∆2
N} → 0 as N → ∞. Chebyshev’s inequality then implies

∆N
p→ 0 and the proof is complete.
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