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Summary. In regression problems with errors having an unknown density f , least
squares or robust M -estimation is the usual alternative to maximum likelihood, with
the loss of asymptotic efficiency as a consequence. The search for efficiency in the
absence of knowledge of f (adaptive estimation) has motivated a large amount of
work, see in particular (Stein, 1956; Stone, 1975; Bickel, 1982) and the review paper
(Manski, 1984). The present paper continues the work initiated in (Pronzato and
Thierry, 2001a,b). The estimator is obtained by minimizing (an estimate of) the
entropy of the symmetrized residuals. Connections and differences with previous
work are indicated. The focus is mainly on the location model but we show how
the results can be extended to nonlinear regression problems, in particular when
the design consists of replications of a fixed design. Numerical results illustrate that
asymptotic efficiency is not necessarily in conflict with robustness.
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1 Introduction

Consider a regression problem, with observations

Yi = η(θ̄, Xi) + εi , i = 1, . . . , n , (1)

where θ̄ is the unknown value of the model parameters θ ∈ Θ ⊂ IRp, (εi) forms
a sequence of i.i.d. random variables with p.d.f. f and η(θ, x) is a known
function of θ and x, the design variable. Most of the paper is devoted to
the simplest case, the location model, where η(θ, x) = θ, but extension to
nonlinear regression is considered in Section 4.

If f is known, Maximum Likelihood (ML) estimation can be used and, un-

der standard assumptions, is asymptotically efficient:
√

n(θ̂n
ML−θ̄)

d→N (0,M−1
F ),
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with MF the Fisher information matrix. Suppose now that the density f is
only known to be symmetric about zero (further regularity assumptions about
f will be used in Section 3). The model can then be termed semi-parametric,
with θ and f respectively its parametric and non-parametric parts, and f can
be considered as an infinite-dimensional nuisance parameter for the estimation
of θ. This corresponds to the approach taken by Stein in his seminal paper
(1956). The absence of knowledge of f usually induces a loss of efficiency. An
estimator that remains asymptotically efficient in these conditions is called
adaptive (see Bickel (1982) for a precise definition and Begun et al. (1983)
for a necessary condition for adaptive estimation). Beran (1974) and Stone
(1975) proved that adaptive estimation in the location model was possible,
using respectively adaptive rank estimates, and an approximation of the score
function based on a kernel estimate of f from residuals obtained with a pre-
liminary

√
n-consistent estimator. It is this second approach which has been

further developed by Bickel (1982), see also Manski (1984). Here we shall fol-
low the approach taken in (Pronzato and Thierry, 2001a,b) (PT-2001a,b in
what follows) and minimise the entropy of a kernel estimate of f based on the
2n symmetrized residuals ei(θ),−ei(θ), i = 1, . . . , n, with ei(θ) = Yi −η(θ, xi)
the ith residual in the regression model (1). The motivation is given in Section
2, where the connections and differences with the Stone-Bickel approach are
detailed. The simplest case of a location problem is considered in Section 3
where adaptivity of a particular minimum-entropy estimator is proved. Ex-
tension to nonlinear regression is considered in Section 4, with an example
illustrating the robustness properties of the estimator.

2 Minimizing entropy

The ML estimator θ̂n
ML (for f known) minimizes

H̄n(θ) = − 1

n

n
∑

i=1

log f [ei(θ)] (2)

with respect to θ. The initial motivation in (PT-2001a,b) comes from the
simple observations that (i) H̄n(θ̄) = −(1/n)

∑n

i=1 log f(εi) is an empirical
version of H(f) = −

∫

log[f(x)]f(x)dx, (ii) the entropy of a distribution is
a measure of its dispersion, (iii) the entropy of the true distribution of the
symmetrized residuals is minimum at θ = θ̄ (symmetrized residuals are used
because the entropy is shift-invariant). A possible construction when f is

unknown is as follows: construct a kernel estimate f̂θ
n from the symmetrized

residuals (which ensures that f̂θ
n is symmetric); compute its entropy, which

forms the estimation criterion Ĥn(θ) to be minimized. In (PT-2001a,b), Ĥn(θ)
is given by

Ĥn(θ) = −
∫ An

−An

log[f̂θ
n(x)]f̂θ

n(x)dx (3)
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with (An) a suitably increasing sequence of positive numbers (to be chosen in

accordance with the decrease of the bandwidth hn of the kernel estimate f̂θ
n).

Other estimates of the entropy of f̂θ
n will be used in what follows.

In the location model, this construction can be justified following an ap-
proach similar to Beran (1978). The distribution of the observations Yi has

the density g(y) = f(y − θ̄). Define β̂ = (θ̂, f̂) in the semi-parametric model,

where θ̂ is a postulated value for θ̄ and f̂ a postulated symmetric p.d.f., and
let g

β̂
(y) be the associated density for the observations, g

β̂
(y) = f̂(y − θ̂).

Assume that a kernel estimate ĝn of g has been formed, based on the
observations Y1, . . . , Yn. The estimator in (Beran, 1978) is based on the
Hellinger distance between ĝn and g

β̂
. Here we use the Kullback-Leibler di-

vergence L(ĝn, g
β̂
) =

∫

log[ĝn(y)/g
β̂
(y)]ĝn(y)dy. Straightforward calculation

shows that the symmetric f̂ and parameter θ̂ that minimize L(ĝn, g
β̂
) respec-

tively correspond to f̂n = f̂ θ̂n

n with f̂θ
n(u) = [ĝn(u + θ) + ĝn(−u + θ)]/2 and

θ̂n = arg minθ H(f̂θ
n). One may then notice that f̂θ

n is a kernel estimate based

on the symmetrized residuals Yi − θ,−Yi + θ, and θ̂n minimizes its entropy.
This presents some similarities with the Stone-Bickel approach (1975;

1982), which relies on an approximation of the score function, that is, the
derivative of H̄n(θ), given by (2), with respect to θ. The construction is in

two stages: first, an estimator θ̂n
1 asymptotically locally sufficient (in the sense

of Le Cam) is constructed; second, an approximated score function is used to

perform a Newton-Raphson step from θ̂n
1 . Stone (1975) shows that the con-

struction is adaptive for the location model with symmetric errors; Bickel
(1982) and then Manski (1984) extend the result to other models, including
non linear regression, see also Andrews (1989). Although the construction of
Ĥn(θ) may rely on a similar kernel estimate, there are some key differences be-
tween the Stone-Bickel approach and the minimum-entropy method presented
here. First, the estimation criterion Ĥn, see (3,4), is minimized through a se-

ries of minimization steps, using an optimization algorithm. Second, all the
data are treated similarly, whereas, for technical reasons, the developments
in (Bickel, 1982; Manski, 1984) rely on sample splitting: m observations are

used to construct a preliminary parameter estimate θ̂m to form residuals and
a score function estimate; the n − m remaining observations are used for the
Newton-Raphson step from θ̂n

1 , with the requirement that m→∞ and m/n→0
as n→∞. One may notice that the numerical results presented in (Manski,
1984) show that this sample splitting degrades the performance of the esti-
mator. The estimator proposed by Andrews (1989) does not rely on sample
splitting and is defined to minimize an estimation criterion rather than to be
a one-step estimator. However, the criterion (likelihood) is also constructed

from a
√

n-consistent preliminary estimate θ̂n
1 , used to form a kernel estimate

of f and hence of the likelihood function. On the contrary, Ĥn does not depend
on any preliminary estimate.
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One motivation for minimizing the entropy of the distribution of the resid-
uals is that it allows a lot of flexibility: many methods are available to estimate
the entropy Ĥn(θ), and kernel estimation is only one possibility. One may refer
to Beirlant et al. (1997) for a survey which includes plug-in, sample spacing
and nearest neighbor methods. Studying the application of these methods to
semi-parametric estimation by entropy minimisation is quite challenging.

Define θ̂n = arg minθ∈Θ Ĥn(θ), with Θ a compact subset of IRp and Ĥn(θ)
some estimate of the entropy of the distribution of the symmetrized residuals
in the model (1). We assume that θ̄ ∈ int(Θ) and that Ĥn(θ) is two times
continuously differentiable with respect to θ ∈ Θ. Convergence in probability

when n→∞ will be denoted
p→ (

θ,p
 will be used when the convergence is

uniform with respect to θ), and convergence in distribution will be denoted
d→; ∇F (θ) and ∇2F (θ) denote the first and second order derivatives of the

function F with respect to θ. The adaptivity of θ̂n can be proved by following
the steps below (leaving aside some usual measurability conditions, see, e.g.,
Lemmas 1,2 and 3 of Jennrich (1969)):

A) show that Ĥn(θ)
θ,p
 H(θ), with Ĥn(θ) continuous in θ for any n and H(θ̄) <

H(θ) for any θ 6= θ̄;

B) show that ∇2Ĥn(θ)
θ,p
 ∇2H(θ), with ∇2H(θ̄) positive definite (� 0);

C) decompose ∇Ĥn(θ̄) into ∇H̄n(θ̄) + ∆n(θ̄), with
√

n∇H̄n(θ̄)
d→N (0,M1)

and
√

n∆n(θ̄)
p→0 as n→∞.

A proves that θ̂n p→θ̄. A and B imply that ∇2Ĥn(θ̂n)
p→M2 = ∇2H(θ̄) � 0.

Consider the following Taylor development of ∇Ĥn(θ) at θ = θ̂n, simi-

lar to that used in Jennrich (1969) for LS estimation: ∇Ĥn(θ̂n) = 0 =

∇Ĥn(θ̄) + (θ̂n − θ̄)>∇2H[αnθ̂n + (1 − αn)θ̄], for some αn ∈ [0, 1]. C then

implies
√

n(θ̂n − θ̄)
d→N (0,M−1

2 M1M
−1
2 ) and adaptivity is proved provided

that M−1
2 M1M

−1
2 = M−1

F , the inverse of the Fisher information matrix for
the model (1). Step C allows some freedom in the choice of the function
H̄n(θ). However, a natural candidate is (2), for which asymptotic normality
of

√
n∇H̄n(θ̄) holds under standard assumptions, with M1 = MF .

A most important remark at this point is that (uniform)
√

n-consistency of

the entropy estimate Ĥn(θ) is not a prerequisite for
√

n-consistency of θ̂n (we
only need

√
n-consistency of ∆n(θ̄)). It is important because

√
n-consistency

does not seem to be a widespread property among entropy estimation meth-
ods, see Beirlant et al. (1997).

3 Adaptive estimation in the location model

The residuals are given by ei(θ) = Yi − θ. Consider the kernel estimates
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kθ
n,i(u) =

1

(n − 1)hn

n
∑

j=1,j 6=i

K

[

u − ej(θ)

hn

]

, i = 1, . . . , n ,

where the kernel K is a p.d.f. symmetric about 0 that satisfies
∫

|u|K(u)du <
∞, K and its first two derivatives being continuous and of bounded variation,
see Schuster (1969) (the density of the standard normal satisfies these condi-
tions). We assume that f has unbounded support, f and its derivatives f (s)

are bounded for s = 1, 2, 3, H(f) < ∞ and f has a finite Fisher information
for location, i(f) =

∫

[f ′(x)]2/f(x)dx < ∞. Consider the entropy estimate
given by

Ĥn = − 1

n

n
∑

i=1

log{fθ
n,i[ei(θ)]}Un[ei(θ)] (4)

where fθ
n,i(u) = (1/2)[kθ

n,i(u) + kθ
n,i(−u)] and Un(x) = u(|x|/An − 1), with

u(z) = 1 for z ≤ 0, 0 for z ≥ 1 and u(z) varying smoothly in between,
u′(0) = u′(1) = 0, and maxz |u′(z)| = d1 < ∞, maxz |u′′(z)| = d2 < ∞.
Ĥn(θ) is then continuous (and two times continuously differentiable) in θ
for any n. As in (Dmitriev and Tarasenko, 1973), we assume that exists a
(strictly increasing) function B(x) such that for all x, B(x) ≥ sup|y|≤x 1/f(y).
Define Bn = B(2An + L). Using (Dmitriev and Tarasenko, 1973, Theorem

4) and (Newey, 1991, Corollary 3.1) one can then show that Ĥn(θ)
θ,p
 H(θ)

as n→∞, provided that An (and thus Bn) increases slowly enough, and the
bandwidth hn of the kernel estimator decreases slowly enough (Bn = nα, hn =
1/[nα log n] with α < 1/3 is suitable). Here, H(θ) is the entropy of the true
distribution of the symmetrized residuals for θ, H(θ) = −

∫

log[πθ(x)]πθ(x)dx
with πθ(x) = (1/2)[f(x + θ − θ̄) + f(x − θ + θ̄)], which is minimum at θ =

θ̄. This proves point A of Section 2, and thus the consistency of θ̂n that
minimizes Ĥn; the details will be presented elsewhere. Similarly, with slightly

stronger conditions on f one can prove point B, that is, ∇2Ĥn(θ)
θ,p
 ∇2H(θ),

with ∇2H(θ̄) = i(f), e.g. when Bn = nα, hn = 1/[nα log n], α < 1/7. The

adaptivity of θ̂n, i.e. step C, would then follow from

2√
n

n
∑

i=1

(kθ̄
n,i)

′(εi)

kθ̄
n,i(εi) + kθ̄

n,i(−εi)
Un(εi)

d→N (0, i(f)) .

The conditions required on the functions f , K and u for this to hold are
currently under investigation. One may notice that a difficulty which is not
present in the Stone-Bickel approach is due to the fact that (kθ̄

n,i)
′(−x) 6=

−(kθ̄
n,i)

′(x).

Example 1. In this example and Example 2 we take An = ∞ in (3) and
Un(x) ≡ 1 in (4); the bandwidth h of the kernel estimator is chosen by the
double kernel method (Berlinet and Devroye, 1994) and based on residuals
obtained from a robust M -estimator. Table 1 gives the empirical value Ĉn
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of E{v̂nv̂n
>}, with v̂n =

√
n(θ̂n − θ̄), obtained from 100 repetitions of the

estimation procedure, for different choices of the estimator θ̂ and p.d.f. f . The
number of observations is n = 100.

Table 1. Value of Ĉn in the location model for the LS, Minimum Hellinger Distance
(Beran, 1978) and Minimum Entropy estimators ((3) for ME1 and (4) for ME2).
The errors are standard normal, bi-exponential (f(x) = (1/

√
2) exp(−

√
2|x|)), and

Student’s tν with ν = 3, 5 and 10 degrees of freedom

f N (0, 1) exp t3 t5 t10

M−1

F
1 0.5 0.5 0.8 0.9455

LS 1.09 0.94 1.13 0.96 1.03
MHD 1.12 0.72 0.50 0.86 1.0
ME1 1.12 0.71 0.48 0.83 0.99
ME2 1.19 0.74 0.57 0.84 0.98

4 Adaptive estimation in nonlinear regression

We return to the nonlinear regression model (1), and assume that the design
consists of replications at fixed points: the design measure ξ has a finite num-
ber of support points X1, . . . , Xm, Xj receiving the weight ξj . Therefore, for
a total of n observations, nj = nξj are made at X = Xj .

Consider first a 2-stage estimation method, with m minimum entropy es-
timations at the first step and one (weighted) LS estimation at the second.
For each Xj , j = 1, . . . ,m, let Yji

denote the observations made at X = Xj ,
i = 1, . . . , nj , and η̂j denote the estimated response at X = Xj obtained by

an adaptive estimator: we have
√

nj [η̂
j − η(θ̄, Xj)]

d→N (0, i−1(f)) as nj→∞.
Having solved m such location problems, we form a LS estimation problem
by considering the estimated responses η̂j as pseudo-observations, and min-
imize JWLS

n (θ) =
∑m

j=1 ξj [η(θ,Xj) − η̄j ]2. Assume that θ̄ ∈ int(Θ), with Θ

a compact subset of IRp, that η(θ,Xj) is two times continuously differen-
tiable with respect to θ ∈ Θ for any j, that the Fisher information matrix
MF (θ̄) = i(f)

∑m
j=1 ξj∇η(θ̄, Xj)[∇η(θ̄, Xj)]> is definite positive and that the

identifiabilty condition {[η(θ,Xj) = η(θ̄, Xj) , j = 1, . . . ,m] ⇒ θ = θ̄} is sat-

isfied. One can then show that the 2-stage LS estimator θ̂n
LS that minimizes

JWLS
n (θ) satisfies

√
n(θ̂n − θ̄)

d→N (0,M−1
F (θ̄)).

Although θ̂n
LS is asymptotically efficient, one can expect a one-stage adap-

tive estimator to exhibit a better finite sample behavior. Using a justification
similar to that given in Section 2 for the location model, we suggest the
following procedure: (i) form kernel estimates f̂ j,θ of the distribution of (sym-
metrized) residuals for each design point Xj separately and compute their

respective entropies H(f̂ j,θ), (ii) compute
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θ̂n = arg min
θ∈Θ

Eξ{Ĥn(θ,X)} with Ĥn(θ,Xj) = H(f̂ j,θ) , j = 1, . . . ,m . (5)

The adaptivity of the method would then follow from adaptivity in the loca-
tion model.

This approach does not extend to more general designs (whereas, for in-
stance, randomized designs are considered in (Bickel, 1982) and in (Manski,
1984) the empirical distribution of design points converges a.s. at rate

√
n

to some distribution with non singular variance; see also the conditions im-
posed on the design in (Jennrich, 1969)). The difficulty comes from the fact
that estimating the entropy of the symmetrized residuals at each design point
X is not possible without replications of observations. One possibility, which
is used in (PT-2001a,b), is to mix all (symmetrized) residuals together and
estimate the entropy Ĥn(θ) of their distribution by (3) or (4). Replace ξ by
ξn in (5), where ξn is empirical measure of the design points Xi. Let U be

a random variable with distribution conditional on X given by f̂ j,θ of (5).
Then, Eξn

{Ĥn(θ,X)} = H(U |X) the conditional entropy of U given X. From

a standard result in information theory, H(U |X) ≤ H(U) = Ĥn(θ). The en-
tropy Ĥn(θ) obtained by mixing up all residuals, which can be constructed
for any design, is thus an upper bound on the criterion Eξn

{Ĥn(θ,X)} mini-
mized in (5). Studying the adaptivity of the corresponding estimator will form
the subject of further work. Some preliminary numerical results are presented
below.

Example 2. Consider the regression model η(θ, x) = θ1 exp(−θ2x), with θ̄ =
(100, 2)>, the design measure is supported at Xj = 1+(j−1)/9, j = 1, . . . , 10,
with ξj = 1/10 for all j. The results are in Table 2, with the same notations
as in Example 1. We use 100 repetitions with 100 observations for each. ME
uses (3), both MHD from (Beran, 1978) and ME mix all residuals together.
In the last three lines of the table we introduce q outliers εk (N (2, 10), ran-
domly allocated among the Xj ’s) in addition to the n observations (Ĉn is still
computed for n = 100, f is the bi-exponential).
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