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Abstract

We consider the situation where one wants to
maximise a function f(θ,x) with respect to x,
with f(θ,x) linear in θ, θ unknown and estimated
from observations yk = f(θ,xk) + εk, where εk is
a random error (linear regression model). Special
attention is given to sequences defined by xk+1 =
argmaxx f(θ̂

k,x)+αkdk(x), with θ̂
k an estimated

value of θ obtained from (x1, y1), . . . , (xk, yk) and
dk(x) a penalty for poor estimation. Asymp-
totic results are given (strong consistency of θ̂k)
for a particular penalty function dk and suitable
weighting sequences {αk}. Approximately opti-
mal rules are suggested for the finite horizon case
where one wants to maximize

∑N
i=1wif(θ,xi),

with {wi} a given weighting sequence. Various
examples are presented.

1 Introduction

We consider an optimisation problem, where one
wants to maximise a function f(θ,x) with respect
to x ∈ X ⊂ IRq, where θ is an unknown vector
of parameters, θ ∈ IRp. We assume that f(θ,x)
is linear in θ (for instance a quadratic function of
x), that is f(θ,x) = r>(x)θ. One observes

yk = f(θ,xk) + εk , k = 1, 2, . . . (1)

with εi an unobservable error such that
E{εk|ε1, . . . , εk−1} = 0 and E{ε2k|ε1, . . . , εk−1} <
∞, k = 1, . . . almost surely (a.s.).

We shall denote Fk the σ-field generated by
y1, . . . , yk, E{·|Fk} the corresponding posterior
expectation and E{·|F0} the prior expectation,
with a prior probability measure µ for θ. The
sequence of design points {xk} and observations
{yk} is used to estimate θ. If the issue were only
to determine the value x∗ that maximises f(θ,x),
one could resort to optimum-design theory for
choosing an appropriate sequence of inputs {xk},
see, e.g., [13, 27, 7, 8, 21, 24, 12]. However, here
the objective is also to have each f(θ,xi) as large
as possible, so that the sequence {xk}must simul-
taneously fulfill two objectives (generally contra-
dictory): (i) help locate x∗, (ii) be close to x∗

in order to maximise f(θ,xk), k = 1, 2, . . . The
problem is thus one of dual control. Note that
the xi’s will be chosen sequentially, that is, xi is
Fi−1-measurable, i = 1 . . . A well–known exam-
ple corresponds to the so–called “self–tuning op-
timiser” or “self–tuning extremum control” prob-
lem, see [26], where the worth f(θ,x) = r>(x)θ is
quadratic in x. In this case, the value xk+1 maxi-
mizing f(θ̂k,x) is obtained analytically. However,
using this value at the next step (which corre-
sponds to “certainty equivalence control”, see [4])
does not guarantee convergence of xk to x∗ that
maximises f(θ̄,x). For instance, using the ODE
method of Ljung [20], Bozin and Zarrop [5] give
the set of values of θ and x to which θ̂k and xk may
converge when f(θ, x) = θ1x+θ2x

2: the set of lim-



iting values for xk contains x∗ = −θ̄1/(2θ̄2) but is
not restricted to it. It has thus been suggested to
randomly perturb the certainty equivalence con-
trol law in order to obtain convergence, see [5].
Another class of example corresponds to regula-
tion problems, where one wishes to minimise the
deviation of the response r>(x)θ̄ from a given tar-
get. Again, the addition of random disturbances
to the certainty equivalence control law can be
used to obtain convergence, see, e.g., [19], where
the problem of how often probing inputs (distur-
bances) should be introduced is considered.

A rather general formulation of the problem is
given in [14]:

maximize E{
∞
∑

i=1

wiyi|F0}/
∞
∑

i=1

wi (2)

with respect to x1,x2, . . ., with {wi} a weighting
(discount) sequence. The choice wi = 1 for i =
N + 1 and wi = 0 otherwise corresponds to a
pure design problem, where emphasis is put on
the estimation of x∗ after N observations; wi = 1,
i = 1, . . . , N , wN+1 = K and wi = 0 for i > N+1
corresponds to the case where the best guess for
x∗ at step N is used for the next K steps. The
more classical finite horizon case with no discount
corresponds to wi = 1, i = 1, . . . , N , wi = 0 for
i ≥ N + 1, etc. Since E{yi|θ,xi} = f(θ, xi), (2)
becomes

maximize E{
∞
∑

i=1

wif(θ,xi)|F0}/
∞
∑

i=1

wi . (3)

The stochastic dynamic programming formula-
tion of (3), in the finite horizon case, involves
imbedded expectations and maximisations, which
makes the solution extremely difficult, except in
very particular situations. Simple suboptimal so-
lutions have therefore been proposed, see, e.g.,
[3]. Certainty equivalence control is generally not
satisfactory due to its passive character: xk does
not help estimating θ. The addition of random
disturbances to the certainty equivalence control
law, as mentioned above, is an example of subop-
timal strategy. Another suboptimal active strat-
egy is proposed for instance in [23, 16], and a com-
parison between different strategies is presented

in [1] (note that for the strategies presented in
[23, 16], based on prediction of posterior covari-
ance matrices of θ, the function to be optimized
needs be nonlinear in θ, and therefore they do not
apply directly here). The problem gets even more
complicated when the horizon is infinite, and the
restriction is then to even simpler strategies.

We shall mainly consider design sequences that
are constructed as follows: at step k, xk+1 maxi-
mizes the sum of the predicted value of f , that is,
f(θ̂k,x) with θ̂k the current estimated value of θ,
and a weighted penalty term αkdk(x), with dk(x)
also a function of (xi, yi), i = 1, . . . , k:

xk+1 = argmax
x∈X

f(θ̂k,x) + αkdk(x) . (4)

In Section 2 we give an asymptotic result (infi-
nite horizon, no discount) obtained when dk(x)
is the variance function used in the construction
of D-optimum designs. Other penalty functions
related to L-optimum design are then suggested.
Section 3 is devoted to the finite horizon case: ap-
proximately optimal strategies are suggested, and
particular sequences of weights {αk} and penalty
functions dk(x) in (4) are obtained through se-
ries of approximations of the original problem (3),
based on expansions in the noise variance. Ex-
amples are given in Section 4. Finally, Section 5
concludes and draws some perspectives.

2 Asymptotic results for linear re-

sponse optimisation

2.1 D-optimum penalty

Consider the case where the horizon is infinite
(N = ∞) and there is no discount (wi = 1 for
any i). We use the penalty given by the variance
function used in the sequential construction of D-
optimum designs, see [29, 11],

dk(x) = dDk (x) = r>(x)M−1
k r(x) , (5)

with Mk the design matrix

Mk =
k

∑

i=1

r(xi)r
>(xi) . (6)



We shall denote ξk the design measure generated,
that is, the empirical measure of the xk’s.

Assume that r(x) is continuous on X compact,
that the first K0 regressors r(x1), . . . , r(xK0

) are
such that MK0

is positive definite. Also assume
that θ in (1) takes a deterministic (but unknown)
value θ̄ and that r>(x)θ̄ has a unique global max-
imiser x∗ in X ; that is:

∀β > 0 , ∃ε > 0 such that
r>(x)θ̄ + ε > r>(x∗)θ̄ ⇒ ‖x− x∗‖ < β .

(7)

We estimate θ by least squares (LS):

θ̂k = argmin
θ∈Θ

k
∑

i=1

[yi − r>(xi)θ]
2 , (8)

with Θ a compact subset of IRp such that θ̄ ∈ Θ.
The difficulty is that for suitable weighting se-
quences {αk}, the sequence {xk} accumulates at
the value x∗(θ) that maximises f(θ,x) for some
θ, but, at the same time, when p = dim(θ) > 1, a
sequence too much concentrated yields a singular
design matrix, and thus does not ensure consis-
tency of θ̂k. Using the results in [18] on almost
sure convergence of LS estimates, the following
theorem is proved in [22].

Theorem 1 Assume that sequence of weights
{αk} in (4) is such that (αk/k) logαk decreases
monotonically and αk/(log k)

1+δ increases mono-
tonically to ∞ for some δ > 0. Then, the se-
quence {xk} generated by (4) and (5) is such
that θ̂k → θ̄, (1/k)

∑k
i=1 r>(xi)θ̄ → r>(x∗)θ̄ and

ξk
w
−→ ξx∗ (in the sense of weak convergence of

measures) almost surely (a.s.) as k → ∞, with
x∗ = x∗(θ̄) = argmaxx∈X r>(x)θ̄ and ξx the dis-
crete measure that puts weight 1 at the point x.

One can note that, from the Lebesgue dominated
convergence theorem, Theorem 1 implies

E{(1/k)
k

∑

i=1

r>(xi)θ̄} → E{r>[x∗(θ̄)]θ̄}

when the prior µ for θ̄ is supported on Θ compact.
Also note that taking a penalty function of the

form dk(x) = λ detMk+1/ detMk, as suggested
in [3], which corresponds to taking αk = α con-
stant in (4), does not guarantee that λmin(Mk)→
∞, one of the conditions in [18]. An example
in [22] illustrates the convergence problems due
to this insufficient penalization of poor estima-
tion. The approach suggested in [2], which cor-
responds to modifying the certainty–equivalence
control law only when traceMk is smaller than
some predefined threshold, suffers the same diffi-
culty, that is, does not guarantee λmin(Mk)→∞.

Using the Bayesian imbedding approach of [25,
17], one can obtain a.s. convergence results with
weaker conditions on {αk} under the assumption
that the errors εi are i.i.d. and Gaussian N (0, σ2).
Indeed, for Θ = IRp and k > K0 the LS estima-
tor θ̂k then coincides with the Bayesian estimator
E{θ|Fk} for the prior µ given by N (θ̂K0 , σ2M−1

K0
)

(MK0
is positive definite by assumption). Let

Q denote the probability measure induced by
{εk}, and write (µ × Q)-a.s. for a property al-
most sure in the sense of the product measure
µ×Q. From the martingale convergence theorem,
θ̂∞ = limk→∞ θ̂k exists and is finite and r>(x)θ̂∞

is bounded on X , (µ×Q)-a.s., and the posterior
covariance matrix Ck tends to some limit C∞,
(µ×Q)-a.s. When the smallest eigenvalue of Mk

satisfies λmin(Mk)→∞, (µ×Q)-a.s., C∞ is the
null matrix and θ̂k converges to θ̄, the value of θ
that generates the observations, (µ × Q)-a.s. A
straightforward extension of Theorem 1 is then as
follows.

Corollary 1 Assume that the errors εi are i.i.d.
N (0, σ2) and that sequence of weights {αk} in (4)
is such that αk → ∞ and αk/k → 0, Then, the
sequence {xk} generated by (4) and (5) is such
that θ̂k → θ̄, (1/k)

∑k
i=1 r>(xi)θ̄ → r>(x∗)θ̄ and

ξk
w
−→ ξx∗ (in the sense of weak convergence of

measures), (µ×Q)-a.s., as k →∞.

The condition on αk is weaker in Corollary 1 than
in Theorem 1, but note that there may be a sin-
gular set (with respect to the Lebesgue measure)
for θ̄ for which θ̂k is not consistent.

Using the results in [15], the assumption of nor-



mality in Corollary 1 can be relaxed, provided
(i) the errors εi are i.i.d. with an almost every-
where strictly positive density h with respect to
the Lebesgue measure, such that h′′ is continuous
and (log h)′′ < 0, (ii) the prior measure µ is ab-
solutely continuous with respect to the Lebesgue
measure and (iii) the LS estimates θ̂k are replaced
by E{θ|Fk}.

2.2 L-optimum penalty

Using an idea similar to previous section, we can
use a penalty function related to L-optimum de-
sign; that is,

dk(x) = dLk (x) = r>(x)M−1
k HM−1

k r(x) , (9)

with H a non negative definite matrix. It
is shown in [28] that when H is positive def-
inite and the sequence {xk} is generated by
xk+1 = argmaxx∈X dLk (x), the design measure
ξk converges to a L-optimum design measure
ξ∗L that minimises traceHI−1(ξ), where I(ξ) =
∫

X r(x)r>(x)ξ(dx). Further work is required to
check if a property similar to Theorem 1 can be
obtained in this case.

A case that has retained much attention in when
the design objective corresponds to the esti-
mation of the point x∗ where f(θ,x) achieves
its maximum, see [24], especially when f is a
quadratic function on IR, see, e.g., [12]. Assume
that

f(θ, x) = θ0 + θ1x+ θ2x
2/2 , (10)

with x ∈ X , a compact subset of the real line.
One has x∗(θ) = −θ1/θ2, and, in the case where
the errors εi are i.i.d., the asymptotic variance of
x∗(θ̂k), with θ̂k the LS estimator (8), is propor-
tional to c>M−1

k c, with

c = c(θ) =
∂x∗(θ)

∂θ
= (−1/θ2)(0 1 x∗)> .

Choosing the xk’s in order to maximise the ac-
curacy of the estimation of x∗(θ) corresponds to
c-optimum design, that is, to L-optimum design
with H given by the rank-one matrix cc>. Note
that the dependence of c in θ makes the problem
nonlinear. A Bayesian approach is used in [7, 10],

based on the design criterion E{c>M−1
k c}, where

E{·} denotes expectation with respect to θ for a
given prior. Sequential approaches are considered
in [13, 21]. One can also refer to [6] for the use of
c-optimal design in the context of Bayesian esti-
mation and to [9] for a survey on Bayesian exper-
imental design. Following (9), a penalty function
related to c-optimal design is thus

dk(x) = dck(x) = [r>(x)M−1
k c(θ̂k)]2 . (11)

Another approach, used in [24], is to derive
the design criterion from the construction of
a Bayesian risk related to the maximisation of
f(θ,x). Assume that θ has a normal prior
N (θ̂0, σ2Ω), that the errors εi are i.i.d. N (0, σ2)
and that the discount factors wi satisfy wi = 1 for
i = N+1 and wi = 0 otherwise. When x1, . . . ,xN

are all chosen at the same time, this leads to
the following (non sequential) LB-optimal design
problem (B stands for Bayesian):

minimise traceH(θ̂0) (Mk + Ω−1)−1

with

H(θ̂) =
∂2f [θ,x∗(θ)]

∂θ∂θ> |θ̂
.

The matrix H can easily be proved to be non
negative definite when f is linear in θ, see [24],
and

H(θ) =
∂r(x)

∂x> |x∗(θ)

∂x∗(θ)

∂θ>
, (12)

which can be expressed analytically when f is
quadratic in x. For instance, in the case where f
is given by (10) (with θ2 < 0 in order to have a
function concave in x), one gets

H(θ̂0) = (−1/θ̂02)







0 0 0

0 1 x∗(θ̂0)

0 x∗(θ̂0) [x∗(θ̂0)]2







= −θ̂02 c(θ̂0)c>(θ̂0) .

This suggests substitution of H(θ̂k) for H in (9)
in the case of sequential design. Again, in the in-
finite horizon case with no discount, the choice of
a weighting sequence {αk} in (4) ensuring conver-
gence of x∗(θ̂k) to x∗(θ̄) and of ξk to ξx∗(θ̄) remains
an open issue.



3 Linear response optimisation

with finite horizon

Assume that the errors εk in (1) are i.i.d.
N (0, σ2). An expansion in σ2 will be used to de-
rive an approximate solution to the problem (3).
Our result is based on the following Lemma.

Lemma 1 Let g(·) and h(·) be two times con-
tinuously differentiable functions on X , a com-
pact set of IRq. Assume that g(·) has a unique
global maximum at x∗, an interior point of X ,
with ∂2g(x)/∂x∂x>

|x∗ negative definite, and let x̂

denote the point where f(·) = g(·)+uh(·) reaches
its maximum in X . Then, ‖x̂− x∗‖ = O(u) and
|f(x∗)− f(x̂)| = O(u2), u→ 0.

Proof. For u small enough, x̂ is an interior point
of X so that

∂f(x)

∂x> |x̂
= 0 =

∂g(x)

∂x> |x∗
+ (x̂− x∗)>

∂2g(x)

∂x∂x> |x∗

+u
∂h(x)

∂x> |x̂
+ o(‖x̂− x∗‖)

= (x̂− x∗)>
∂2g(x)

∂x∂x> |x∗

+u
∂h(x)

∂x> |x̂
+ o(‖x̂− x∗‖) ,

and ‖x̂− x∗‖ = O(u). Therefore,

f(x∗) = f(x̂) + (x∗ − x̂)>
∂f(x)

∂x |x̂

+
1

2
(x∗ − x̂)>

∂2f(x)

∂x∂x> |x̂
(x∗ − x̂)

+o(‖x̂− x∗‖2) = f(x̂) +O(u2) .

Next theorem gives an approximation to the op-
timal solution of problem (3).

Theorem 2 Assume that wi > 0, i = 1, . . . , N
and wi = 0 otherwise; that r(·) is two times
continuously differentiable; that the errors εi
are i.i.d. N (0, σ2) and the prior distribution

for θ is normal N (θ̂0, σ2Ω). Denote x∗(θ) =
argmaxx∈X r>(x)θ and θ̃k = E{θ|Fk}, and as-
sume that f(θ̃j,x) has a unique global maxi-
mum at x∗(θ̃j) which lies in the interior of X ,
with ∂2f(θ̃j,x)/∂x∂x>

|x∗(θ̃j)
negative definite, j =

0, . . . , N − 2. Define jk+1(x) as the expected op-
timal gain to go at step k when x is applied:

jk+1(x) = E{wk+1f(θ,x)

+max
z∈X

wk+2jk+2(z)|Fk} ,

k = 0, . . . , N − 2 ,

jN(x) = E{wNf(θ,x)|FN−1} .

It satisfies

jk+1(x) = Jk+1(x) +O(σ4) , k = 0, . . . , N − 2 ,
(13)

where

Jk+1(x) = (wN + · · ·+ wk+2){r
>[x∗(θ̃k)]θ̃k

+
σ2

2
trace [H(θ̃k)(Ω−1 + Mk)

−1]}

−
σ2

2
trace {H(θ̃k)

N−k−2
∑

j=0

wk+j+2[Ω
−1
j,k

+ r(x)r>(x)]−1}+ wk+1r
>(x)θ̃k (14)

with Ωj,k =
{

Ω−1 + Mk + jr[x∗(θ̃k)]r>[x∗(θ̃k)]
}−1

and Mk, H(θ) respectively given by (6),
(12). Moreover, the strategy defined by
xN = x∗(θ̃N−1) and xk+1 = argmaxx∈X Jk+1(x),
k = 0, . . . , N − 2, is equivalently defined by

xk+1 = argmax
x∈X

{wk+1r
>(x)θ̃k

+
σ2

2

N−k−2
∑

j=0

wk+j+2
r>(x)Ωj,kH(θ̃k)Ωj,kr(x)

1 + r>(x)Ωj,kr(x)
} ,

k = 0, . . . , N − 2 , (15)

and satisfies

E{
N

∑

i=k+1

wif(θ,xi)|Fk} = Jk+1(xk+1) +O(σ4) ,

k = 0, . . . , N − 2 , (16)

and

‖x̂k+1 − xk+1‖ = O(σ4) , k = 0, . . . , N − 2 ,

x̂N = xN , (17)



where x̂k+1 = argmaxx∈X jk+1(x) corresponds to
the optimum strategy.

Proof. Straightforward matrix manipulation
shows that xk+1 given by (15) maximises (14).
We prove (13) and (16) by backward induction
on k. For k = N − 2, we have

jN−1(x) = wNE{r
>[x∗(θ̃N−1)]θ|FN−2}

+wN−1r
>(x)θ̃N−2

= wNE{r
>[x∗(θ̃N−1)]θ̃N−1|FN−2}

+wN−1r
>(x)θ̃N−2 .

When x∗(θ̃N−2) is an interior point of X , a
second-order Taylor expansion around θ̃N−2 sim-
ilar to that used in [24] gives

jN−1(x) = wN{r
>[x∗(θ̃N−2)]θ̃N−2

+
σ2

2
trace [H(θ̃N−2)(Ω−1 + MN−2)

−1]}

− wN

σ2

2
trace {H(θ̃N−2)

[

r(x)r>(x)

+ Ω−1 + MN−2

]−1
}

+ wN−1r
>(x)θ̃N−2 +O(σ4) ,

which proves (13) for k = N − 2. Since
E{

∑N
i=N−1 wif(θ,xi)|FN−2} = jN−1(xN−1), it

also proves (16) for k = N − 2.

Assume that (13) is true at step k. At
step k − 1 we have jk(x) = E{wkf(θ,x) +
maxz∈X jk+1(z)|Fk−1}. Using Lemma 1 with u =
σ2, we get

jk(x) = wkr
>(x)θ̃k−1 + E{Jk+1[x

∗(θ̃k)]|Fk−1}

+O(σ4) .

Grouping the terms r>[x∗(θ̃k)]θ̃k and using a
second-order Taylor expansion around θ̃k−1, we
obtain

jk(x) = (wN + · · ·+ wk+2 + wk+1)

× {r>[x∗(θ̃k−1)]θ̃k−1

+
σ2

2
trace [H(θ̃k−1)(Ω−1 + Mk−1)

−1]}

− (wN + · · ·+ wk+2 + wk+1)

×
σ2

2
trace {H(θ̃k−1)[Ω−1 + Mk−1

+r(x)r>(x)]−1}

+ (wN + · · ·+ wk+2)

×
σ2

2
trace {H(θ̃k−1)[Ω−1 + Mk−1

+r(x)r>(x)]−1}

−
σ2

2
trace {H(θ̃k−1)

N−k−2
∑

j=0

wk+j+2

×[Ω−1
j+1,k−1 + r(x)r>(x)]−1}

+ wkr
>(x)θ̃k−1 +O(σ4) .

A simplification of the terms on the last nine
lines gives jk(x) = Jk(x) + O(σ4), which
proves (13). Since xk+1 maximises (14), sim-
ilar arguments using (16) and Lemma 1 give
E{

∑N
i=k wif(θ,xi)|Fk−1} = Jk(xk) + O(σ4), and

(16) is proved by induction.

Finally, since xk+1 maximises Jk+1(x), (13) and
Lemma 1 with u = σ4 give (17).

Remark 1 The assumptions on f(θ̃j,x) and
x∗(θ̃j) for j = 0, . . . , N − 2, in Theorem 2 are
most often difficult, if not impossible, to check
beforehand. Note, however, that it is always pos-
sible to apply the strategy and check the assump-
tions afterwards: if they are satisfied, the theorem
applies and the strategy used is approximately op-
timal in the sense of the theorem.

The property stated in Theorem 2 suggests a sim-
pler suboptimal strategy: in the backward induc-
tion, we substitute r(x) for r[x∗(θ̃k)] in Ωj,k. It
satisfies the following property.

Corollary 2 Under the same conditions, and
with the same notations, as in Theorem 2, the
strategy defined by x′

N = x∗(θ̃N−1) and

x′
k+1 = argmax

x∈X
{wk+1r

>(x)θ̃k

+
σ2

2

N−k−1
∑

j=1

j wk+j+1
r>(x)Ω0,kH(θ̃k)Ω0,kr(x)

1 + jr>(x)Ω0,kr(x)
} ,

k = 0, . . . , N − 2 , (18)



is approximately optimal in the following sense:

max
x∈X

jk+1(x)− E{
N

∑

i=k+1

wif(θ,x
′
i)|Fk} = O(σ4) ,

(19)

and |x̂k+1 − x′
k+1| = O(σ2) , (20)

for k = 0, . . . , N − 1.

Proof. We first prove that, for k = N − 2, . . . , 1,

E{
N

∑

i=k+1

wif(θ,x
′
i)|Fk} = Jk+1(x

′
k+1) +O(σ4) .

For k = N − 2 we have again

E{
N

∑

i=N−1

wif(θ,x
′
i)|FN−2} = jN−1(x

′
N−1)

which equals JN−1(x
′
N−1) +O(σ4) from Theorem

2. Assume that the property is true at step k. At
step k − 1 we have

E{wkf(θ,x) +
N

∑

i=k+1

wif(θ,x
′
i)|Fk−1} =

wkr
>(x)θ̃k−1 + E{Jk+1(x

′
k+1)|Fk−1}+O(σ4) ,

and easy matrix manipulation using (18) and (14)
shows that x′

k+1 = argmaxx∈X [Jk+1(x)+σ2h(x)],
for some h(x). Lemma 1 with u = σ2 gives
Jk+1(x

′
k+1) = Jk+1[x

∗(θ̃k)] + O(σ4), and simi-
larly to the proof of Theorem 2, E{wkf(θ,x) +
∑N

i=k+1 wif(θ,x
′
i)|Fk−1} = Jk(x) +O(σ4).

Finally, since the optimal strategy x̂k+1 max-
imises jk+1(x) = Jk+1(x) + O(σ4), whereas
x′
k+1 maximises a function that takes the form

Jk+1(x) + σ2h(x), Lemma 1 gives (19-20).

Remark 2 It is clear from the proof of Corol-
lary 2 that properties similar to (19-20) can be
obtained for other strategies than (18). What
makes this strategy attractive is that r(x′

k+1) can

be expected to be close to r[x∗(θ̃k)] and the de-
crease of performance can be expected to be small.
The rule (18) is, however, suboptimal compared
to (15) that directly maximises Jk+1(x) (compare
(20) to (17)).

Assume that wi = 1, i = 1, . . . , N and wi = 0
otherwise. One can write (18) as

x′
k+1 = argmax

x∈X
{r>(x)θ̃k

+
σ2

2

r>(x)Ω0,kH(θ̃k)Ω0,kr(x)

r>(x)Ω0,kr(x)

N−k−1
∑

j=1

j

ak + j
,

k = 0, . . . , N − 2 ,

with ak = 1/[r>(x)Ω0,kr(x)]. When ak = 0,
SN =

∑N−k−1
j=1 j/(ak + j) = N − k − 1 and when

N →∞ with k fixed, SN = N−k−1−ak log(N−
k − 1) + akΨ(ak + 1) + O(1/N), with Ψ(·) the
digamma function, Ψ(x) = d log Γ(x)/dx, and
Ψ(x) = log x − 1/(2x) + O(1/x2), x → ∞. A
reasonable approximation of the strategy (18) is
thus as follows:

x′′
k+1 = argmax

x∈X
{r>(x)θ̃k

+(N − k − 1)
σ2

2

r>(x)Ω0,kH(θ̃k)Ω0,kr(x)

r>(x)Ω0,kr(x)
} ,

k = 0, . . . , N − 2 , (21)

which has the form (4).

4 Examples

We assume that f(θ, x) is given by (10), with
X = [−1, 1], and that the observations yk are
generated by (1) with θ = θ̄ = (0 3.2 − 8)>

and errors εk i.i.d. N (0, σ2). The prior for θ is
N (θ̂0, σ2Ω), with Ω = 106 I3, where I3 is the 3-
dimensional identity matrix. We take wi = 1,
i = 1, . . . , N and wi = 0 otherwise. We shall
compare four different strategies: S1 corresponds
to (4) with the penalty (5) and αk = σ2(log k)2,
and S2, S3 and S4 correspond respectively to (21),
(18) and (15). The parameters θ are estimated by
recursive least-squares, that is, θ̂k = E{θ|Fk}.

First we illustrate Theorem 2 and Corollary 2.
Since we do not know the optimal sequences {x̂k}
and {j(x̂k)}, we take θ̂

0 = θ̄ and compare the val-
ues of (1/N)

∑N
i=1 f(θ̄, xi) to f [θ̄, x

∗(θ̄)] = 0.64 for
the three strategies S2, S3 and S4. Figure 1 gives
the empirical mean of (1/N)

∑N
i=1 f(θ̄, xi), ob-

tained from 500 independent repetitions for these
three strategies, as a function of σ2, with N = 4



(the same values of observations errors εk are used
for the three strategies in each of the 500 exper-
iment). The full line corresponds to S4. Strate-
gies S2 and S3 are indistinguishable (dashed line).
The figure indicates that the decrease of perfor-
mance of the strategies varies as σ4.
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x 10
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0.590.59

0.6
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Figure 1: Empirical means of (1/N)
∑N

i=1 f(θ̄, xi)
for strategies S2, S3 and S4 as functions of σ2

(N = 4, θ̂0 = θ̄, 500 repetitions). Full line for S4,
dashed line for S2 ' S3.

Assume now that σ = 1, N = 100 and take θ̂0 =
(2 −4 −1)>. Note that this gives a prior guess for
x∗ at −4, whereas the true location is at 0.4. Also
notice the large amplitude of the measurement
noise. Table 1 presents the results obtained for
100 independent repetitions of the experiment (in
each experiment, the same values of observations
errors εk are used for the four strategies). As
expected, performances improve from S1 to S4.

mean std
S1 0.1793 0.0445
S2 0.3759 0.0278
S3 0.4263 0.0260
S4 0.4773 0.0454

Table 1: Empirical means and standard devia-
tions (std) of (1/N)

∑N
i=1 f(θ̄, xi) for strategies

S1, . . . , S4 (N = 100, θ̂0 = (2 − 4 − 1)>, 100
repetitions).

Figure 2 (resp. 3) presents a typical realization of

the sequences {xk} (resp. {f(θ̄, xk)}) generated
by the four strategies. One can notice in Figure
2 that xk converges to x∗ = −θ̄1/θ̄2 = 0.4 for
S1 (see Theorem 1), which does not seem to be
the case for the three other strategies. However,
the performance measured in terms of (3) is much
better for these strategies, in particular S4 that
makes a particularly good compromise between
estimation and optimisation, see Figure 3 where
the optimum value f [θ̄, x∗(θ̄)] is indicated by the
dashed line.
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Figure 2: Sequences {xk} generated by strategies
S1 to S4 (N = 100, σ = 1, θ̂0 = (2 − 4 − 1)>).
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Figure 3: Sequences {f(θ̄, xk)} generated by
strategies S1 to S4 (N = 100, σ = 1, θ̂0 =
(2 − 4 − 1)>). The optimum value f [θ̄, x∗(θ̄)]
is indicated by the dashed line.



5 Conclusions

We considered the problem of choosing a se-
quence of values xk that maximize a function
f(θ,x) = r>(x)θ observed with errors (linear
regression model), with θ unknown. Different
strategies have been suggested.

Approximately optimal strategies have been con-
structed when the horizon is finite, using an ex-
pansion in the noise variance σ2. Simulation re-
sults confirm that the loss of optimality is negligi-
ble when σ2 is small. In more general situations,
we considered sequences constructed according
to the rule xk+1 = argmaxx f(θ̂

k,x) + αkdk(x),
with θ̂k an estimated value of θ obtained from
(x1, y1), . . . , (xk, yk) and dk(x) a penalty for poor
estimation. The asymptotic behavior of such
strategies is difficult to study, due to the intri-
cate connection between estimation of θ and op-
timisation. Only the linear regression case, with
a penalty related to D-optimum design, seems
to have been considered so far, see [22]. Exten-
sions to other penalty functions, e.g., related to
L-optimality, and to nonlinear regression prob-
lems will require further developments.
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