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ABSTRACT
More and more users are watching online videos produced
by non-professional sources (e.g., gamers, teachers of online
courses, witnesses of public events) and they are using an
increasingly diverse set of devices to access the videos (e.g.,
smartphones, tablets, HDTV). Live streaming service
providers can combine adaptive streaming technologies and
cloud computing to satisfy this demand. In this paper, we
study the problem of preparing live video streams for
delivery using cloud computing infrastructure, e.g., how
many representations to use and the corresponding
parameters (resolution and bit-rate). We present an integer
linear program (ILP) to maximize the average user quality
of experience (QoE) and a heuristic algorithm that can
scale to large number of videos and users. We present two
new datasets: one characterizing a popular live streaming
provider (twitch) and another characterizing the
computing resources needed to transcode a video. We use
both datasets to set some of the parameters of the model,
in order to consider realistic and relevant cases. We
compare the performance of the optimal solution of the
ILP and the heuristic algorithm with current industry
standards, showing that the latter are sub-optimal. The
solution of the ILP shows the importance of the type of
video on the optimal representation set and on the
corresponding QoE. By taking advantage of this, the
proposed heuristic can satisfy a time varying demand by
efficiently exploiting an almost constant amount of
computing resources.

1. INTRODUCTION
The management of live video services is a complex task

due to the demand for specialized resources and to
real-time constraints. To guarantee the QoE for end-users,
live streaming service providers (e.g., TV operators and
multimedia broadcasters) have traditionally relied on
private data-centers (with dedicated hardware) and private
networks. The widespread availability of cloud computing
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platforms, with ever decreasing prices, has changed the
landscape [17]. Significant economies of scale can be
obtained by using standard hardware, Virtual
Machine (VM), and shared resources in large data-centers.
As illustrated in Figure 1, live streaming providers use
these services in combination with widely available content
delivery network (CDN) to build an elastic and scalable
platform that can adapt itself to the dynamics of viewer
demand. The only condition is to be able to use the
standardized cloud computing platforms to prepare the
video for delivery.

The emergence of cloud computing platforms has
enabled some new trends, including: (i) the adoption of
adaptive bit-rate (ABR) streaming technologies to address
the heterogeneity of end-users. ABR streaming requires
encoding multiple video representations, and thus increases
the demand for hardware resources. Modern cloud
computing platforms can meet this demand. And (ii) the
growing diversity of live video streams to deliver. The
popularity of services like Twitch [1] illustrates the
emergence of new forms of live streaming services, where
the video stream to be delivered comes from
non-professional sources (e.g., gamers, teachers of online
courses, witnesses of public events). Instead of a few
high-quality well-defined video streams, live streaming
providers have now to deal with many low-quality
unreliable video streams.

In comparison to the significance of the shift, relatively
few academic studies have been published. The scientific
literature contains papers related to ABR streaming into
CDN (e.g., [2,14]). However, to the best of our knowledge,
the preparation of the streams into data-centers has not
been addressed by the scientific community. The
preparation of a given video channel includes deciding the
number of representations to encode, setting the encoder
parameters, allocating the transcoding jobs to machines,
and transcoding each raw video stream into multiple video
representations.

Existing works address some of these problems
individually. For instance, some papers [7, 9, 11–13] present
algorithms to schedule transcoding jobs on a group of
computers, typically in order to maximize CPU
utilization [7, 11] or to minimize the finishing time [12, 13].
Other researchers have analyzed the performance of video
encoding and the relationship between power, rate and
distortion [8, 21, 25] using analytical models and empirical
studies. In each case the encoding parameters (i.e.,
resolution and rate) are input parameters of these



algorithms, and are assumed to be known. Yet, they can
have a significant impact on the QoE and on the total
bandwidth used, as discussed in [22].

Even though solutions have already been proposed for
these subproblems, it is non-trivial to combine them to
form a single solution and there is no guarantee that a
combination of optimal solutions of each subproblem is an
optimal and feasible solution of the global problem. For
example, selecting the available representations (resolution
and bitrate) without considering the available computing
resources is likely to lead to unfeasible solutions.

In this paper we are interested in maximizing the
average user QoE by selecting the optimal encoding
parameters under given computing and CDN capacity
constraints. More specifically, we make three contributions:

1. We provide three datasets to help the community
study the problem of preparing ABR video in
data-centers. The first dataset is based on a
measurement campaign we have conducted on Twitch
between January and April 2014. The second
dataset, based on [4], gives bandwidth measurements
on real clients downloading ABR streams. The third
dataset is the result of a large number of transcoding
operations that we have done on a standard server,
which is typical of commoditized data-center
hardware. Thanks to this dataset, it is possible to
determine the computing power needed to transcode
a video and the QoE of the output video.

2. We formulate an optimization problem for the
management of a data-center dealing with a large
number of live video streams to prepare for delivery
(section 5). Our goal is to maximize the QoE for the
end-users subject to the number of available
machines in the data-center and the CDN delivery
budget. With this problem, we highlight the complex
interplay between the popularity of channels, the
required computing power for video transcoding, the
satisfaction of end-users, and the delivery bandwidth.
We formulate this problem as an ILP. We then use a
generic solver to compare the performances of
standard stream preparation strategies (where all the
channels use the same encoding parameters for the
transcoding operation) to the optimal. Our results
highlight the gap between the standard preparation
strategies and the optimal solution.

3. We propose a heuristic algorithm for the preparation
of live ABR video streams (section 6). This algorithm
can decide on-the-fly the encoding parameters. Our
results (section 6) show that our proposal significantly
improves the QoE of the end-users while using almost
constant computing resources even in the presence of
a time varying demand.

2. RELATED WORKS
Cloud-based transcoding has been the subject of several

papers. Most of these works [7, 9, 11–13] take advantage of
the fact that some modern video compression techniques
divide the video stream into non-overlapping Group of
Pictures (GOPs) that can be treated independently of each
other. The encoding time of each GOP depends on its
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Figure 1: Live streaming in the cloud

duration and on the complexity of the corresponding scene.
The algorithms exploit this fact to increase the utilization
of each computing node at the expense of an increased
complexity, including the time and resources needed to
split the input video into appropriately sized GOP.

One downside of these solutions is that they need to
know the transcoding time of each GOP in order to assign
it to the most suitable computing node. Some
authors [7, 11] propose fairly complicated systems to
estimate the encoding time of each GOP based on
real-time measurements, while others [9,12,13] assume that
this information is directly available, for instance [9] by
profiling the encoding of a few representative videos of
different types, similarly to what we have done (see
section 3.2). Another downside of a GOP-based solution is
that the encoding of each GOP can be completed out of
order and then need to be reordered before being delivered
to the users. This out-of-order problem is especially
important when dealing with live content that requires
real-time constraints. Only Huang et al. [9] explicitly
consider real-time constraints in a GOP-based system.

Lao et al. [12] and Lin et al. [13] deal only with batches
of videos to transcode and present different scheduling
algorithms to minimize the overall encoding time.

Zhi et al. [23] propose to leverage underused CDN
computing resources to jointly transcode and deliver videos
by having CDN servers transcode and store the most
popular video segments. Such a solution can offer
significant gains, especially for non-live popular streams,
but it requires the cooperation of the CDN, which is not
always owned and operated by the cloud provider.

Cheng et al. [6] present a framework for real-time
cloud-based video transcoding in the context of mobile
video conferencing. Depending on the number of
participants and their locations, every video conference
corresponds to one or more transcoding jobs, each one
located in a potentially different data center. They use a
simple linear model to estimate the resources needed by
each transcoding job; if the currently running VMs have
enough spare capacity to handle the new job, they use
them, otherwise they start new VMs, without a constraint
on the total number of VMs used. They assume a linear
relationship between the video encoding rate and CPU



usage, based on some measurements, for which no details
are given. As discussed in section 3.2, this is not consistent
with our experiments using ffmpeg to encode H.264 videos.

The literature on video encoding is vast. A few papers
have studied the relationship between power consumption,
rate and distortion (often abbreviated as P-R-D). The first
paper to investigate the P-R-D model by He et al. [8]
contains a detailed analysis and corresponding model of
the video encoding process. The authors use this model to
define an algorithm that, given rate and power constraints,
minimizes the distortion of the compressed video. Su et
al. [21] use a different definition for the distortion and
propose a different algorithm to solve the same
optimization problem. These works deal with a single video
flow and take the rate as an input parameter, they do not
address how to chose its value.

Yang et al. [25] present the results of an empirical study
based on the H.264 Scalable Video Coding (SVC) reference
software JSVM-9.19 [18]. While non-SVC H.264 can be
considered as a special case consisting of only one layer,
the authors emphasize the results related to the SVC part.
Since the raw data is not publicly available, and since the
figures in the paper do not correspond to the inputs we
need, we run similar experiments leading to the dataset
presented in section 3.2.

3. PROBLEM DEFINITION BY DATASETS
In this Section, we present the three datasets that we use

throughout the paper. In so doing, we are going to
introduce the many parameters that can influence how
video streams are prepared for delivery. The three datasets
cover the chain of actors involved (directly or indirectly) in
the stream preparation: broadcasters, live service provider,
and viewers.

3.1 The Broadcasters
We will interchangeably use the terms channel and

broadcaster to indicate the people using the live streaming
system to deliver a video. At any given time, a channel can
be either online, when the broadcaster emits the video
stream, or offline when the broadcaster is disconnected.
Each online period is called a session. During a session, a
broadcaster captures a video, encodes it, and uploads it to
the service provider. We say that this video stream is the
source or the raw video stream. The service provider is
then in charge of transcoding this video into one or
multiple video representations, and of delivering these
representations to the viewers, or end-users. The number
of viewers watching a session can change over time.
Figure 2 shows the evolution of the popularity of a given
channel over time, this channel containing two sessions.

Today’s channels in cloud-based live streaming services
are mostly “non-professional.” We focus here on the
thousands of broadcasters who use live streaming services
such as ustream,1 livestream,2 twitch,3 and dailymotion4

to broadcast live an event that they are capturing from
their connected video device (e.g., camera, smartphone,
and game console). As opposed to the traditional TV

1http://www.ustream.tv/
2http://new.livestream.com/
3http://www.twitch.tv/
4https://www.dmcloud.net/features/live-streaming
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Figure 2: A life in a channel

providers and the content owners from the entertainment
industry, these broadcasters usually do not emit ultra-HD
video streams (2160p also known as 4k) and they tolerate a
short lag in the delivery. However, these broadcasters are
less reliable. First, a channel can switch from offline to
online and vice versa at any time. Second, the emitted
video streams have various bit-rates and resolutions, as
well as various encoding parameters. Third, the
broadcasters do not give much information about their
video streams. Even the category metadata are not
trustworthy.

In this paper, we use a dataset based on Twitch, a
popular live streaming systems. Twitch provides an
Application Programming Interface (API) that allows
anybody to fetch information. We used a set of
synchronized computers to obtain a global state every five
minutes (in compliance with API restrictions) between
January, 6th and April, 6th 2014. We fetched information
about the total number of viewers, the total number of
concurrent online channels, the number of viewers per
session, and some channel metadata. We then filtered the
broadcasters having abnormal behavior (no viewer or
online for less than five minutes during the last three
months). The dataset is publicly available.5 We summarize
the main statistics in Table 1.

Data Statistics

total nb. of channels 1,536,492
total nb. of sessions 6,242,609
“online less than 5 min. overall” channels 25%
“no viewer” channels 11%
filtered nb. of channels 1,068,138 (69%)
filtered nb. of sessions 5,221,208 (83%)

Table 1: The Twitch dataset

Figure 3 shows the average number of concurrent online
channels, which is a useful metric to estimate the
computing power needed and thus the data-center
dimensions. Between 4,000 and 8,000 concurrent sessions
always require data-center processing.

To illustrate the diversity of the raw videos, Figure 4
shows the cumulative density function (CDF) of the
bit-rates of sessions for the three most popular resolutions.
The key observation is the wide range of the bit-rates, even
for a given resolution. For example, the bit-rates of 360p
sources range from 200 kbps to more than 3 Mbps.

3.2 The Live Streaming Service Provider
5http://dash.ipv6.enstb.fr/dataset/videonext-2014/
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One of the missions of the live streaming service is to
transform the raw video into a multimedia object that can
be delivered to a large number of users. We call
preparation this phase. In this paper, we focus on the task
of transcoding the raw video stream into a set of ABR
video streams for delivery, and we neglect other tasks such
as content sanity check and the implementation of the
digital right management policy. For each session, our goal
is twofold:

• To decide the set of video representations to be
transcoded. The decision includes the number of
representations, and, for each representation, the
bit-rate and the resolution;

• To assign the transcoding jobs to the machines of the
data-center.

A key information for our study is the amount of central
processing unit (CPU) cycles that are required to transcode
one raw video into a video stream in a different format. This
quantity depends on various parameters, but mostly on (i)
the bit-rate and the resolution of the source, (ii) the type
of the source, and (iii) the bit-rate and the resolution of
the target video stream. To obtain a realistic estimate, we
have performed a set of transcoding operations from multiple
types of sources encoded at different resolutions and rates to
a wide range of target resolutions and rates. For each one of
the transcoding operations, we have estimated the QoE of
the transcoded video, and measured the CPU cycles required
to perform it. This dataset as well is publicly available.6

6http://dash.ipv6.enstb.fr/dataset/videonext-2014/

Source Types. We consider four types of video content,
corresponding to four test sequences available at [24]. Each
of these four test sequences corresponds to a representative
video type as given in Table 2.

Video Type Video Name

Documentary Aspen, Snow Mountain
Sport Touchdown Pass, Rush Field Cuts
Cartoon Big Buck Bunny, Sintel Trailer
Video Old Town Cross

Table 2: Test videos and corresponding type.

Source Encoding. In current live streaming systems,
the encoding of the source is done at the broadcaster side.
As shown in Figure 4, the raw video that is emitted by the
broadcaster can be encoded with different parameters.
Based on our analysis of the Twitch dataset, we consider
only four resolutions, from 224p to 1080p, and we let the
analysis of 4k raw videos for future works. We also restrict
the video bit-rates to be in ranges covering 90% of the
sources that we observe in the Twitch dataset. See Table 6
in the Appendix for more details.

Target Videos. The format of the target videos depends
on the source video. For each input video we consider all the
resolutions that are smaller than or equal to the input video
and for each resolution we consider all the rates that are
smaller or equal to the rate of the input video (see Table 6
in the Appendix for more details).

Transcoding. We perform the transcoding on a standard
server, similar to what can be found in most public
data-centers. The debate about whether graphics
processing unit (GPU) can be used in a public cloud is still
acute today. Those who do not believe in a wide
availability of GPU in the cloud emphasize the poor
performance of standard virtualization tools on GPU [19]
and the preferences of the main cloud providers for low-end
servers (the so-called wimpy servers) in data-centers [3].
On the other hand, new middleware have been developed
to improve GPU sharing and VM-GPU matching in
data-centers [16], so it may be possible to envision a wider
deployment of GPU in a near future. Nevertheless, in this
paper, we stick to a conservative position, which is the one
adopted by today’s live streaming service providers, and we
consider only the availability of CPU in the servers.

As for the physical aspect of the CPU cycles
measurements, we consider that the virtualization has no
impact on the performances, i.e. a transcoder running in a
VM on a shared physical machine is as fast as if the same
transcoder ran directly on the physical machine. The
server that we used is an Intel Xeon CPU E5640 at
2.67GHz with 24 GB of RAM using Linux 3.2 with Ubuntu
12.04.

Figure 5 shows the experimental results for all the target
videos generated from a source of type “movie,” 1080p
resolution and encoded at 2,750 kbps. The empirical CPU
cycles measurements are depicted as circles. Section A.2 in
the Appendix, gives more details on how these curves have
been generated. Overall, 588 curves similar to these ones
were prepared to cover the 12,168 transcoding operations.
For the sake of brevity, we show only these four. The
interested reader can consult the full set of curves in the



publicly available dataset, as mentioned above.
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Figure 5: CPU cycles needed to transcode source 1080p,
2750 kbps, and type movie

Estimating QoE. We evaluate the QoE by means of the
Peak Signal to Noise Ratio (PSNR) score [20], which is a full-
reference metric commonly used due to its simplicity. We
apply the PSNR filter7 provided by ffmpeg in two different
cases illustrated in Figure 6.

source
360p
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source
720p

3 Mbps

target
360p

1.6 Mbps

upscaled
720p

1.6 Mbps

estimating

QoE

estimating

QoE

up-scaling

Figure 6: Estimating the QoE for a target video. On top,
a target video at 360p and 1.6 Mbps watched on a 360p
display. On the bottom, the same target video upscaled to
be watched on a 720p display.

The first case, depicted on top of Figure 6, corresponds
to the scenario where a target (transcoded) video at a
given spatial resolution is watched on a display of the same
size. The PSNR filter compares the target video against a
reference video. The reference is the source encoded at the
same resolution as the target but with the largest encoding
bit rate considered in this study (3,000 kbps). We repeat
this measurement as many times as target videos, i.e.,
12,168 times. As in the case of the live-transcoding CPU
curves, we only depict in Figure 7 the PSNR curves
corresponding to one example. We provide the remaining
set of curves in the public site hosting the dataset.

The second scenario, shown on bottom of the Figure 6,
refers to the situation when a target (transcoded) video at
a given resolution need to be upscaled to be watched on a
display with a higher size. This up-scaling introduces a
penalty on the final QoE for the viewer. To estimate these
penalties, we carry out a new battery of transcoding
operations, using the same ffmpeg command as before, but
the input and output video are the target and the upscaled
video, respectively. The upscaled video is compared
against a reference with an encoding rate of 3,000 kbps but
with the same resolution as the upscaled target. The
penalty, using the example of up-scaling from 360p to 720p

7https://www.ffmpeg.org/ffmpeg-filters.html#psnr
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in Figure 6, can simply be computed by subtracting from
the PSNR measure on top of the Figure the PSNR
measurement on the bottom. In Figure 8, we depict the
up-scaling penalties for a 224p source of type movie.
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Figure 8: Up-scaling penalties curves. Original stream:
224p, movie

3.3 The Viewers
Finally, we need a dataset that captures the

characteristics of a real population of viewers, and in
particular its heterogeneity.

This dataset comes from [4]. Since the Twitch API does
not provide any information about the viewers (neither
their geographic positions, nor the devices and the network
connections), we need real data to set the download rates
for the population of viewers. The dataset presented in [4]
gives multiple measurements over a large number of
30s-long DASH sessions from thousands of geographically
distributed IP addresses. From their measurements, we
infer the download rate of each IP address for every chunk
of the session and thus obtain 500,000 samples of realistic
download rates. After filtering this set to remove outliers,
we randomly associate one download rate to one of the
viewers watching a channel from the Twitch dataset
snapshot.

4. CURRENT INDUSTRIAL STRATEGIES
Today’s live service provider have to implement a strategy

for stream preparation. To the best of our knowledge, no
provider has yet implemented an optimal strategy. Typically
one of the following two options is implemented. In the



first one, used by Twitch, ABR streaming is only offered to
some premium broadcasters. That is, only a small subset
of channels is transcoded into multiple representations. For
the other broadcasters, the raw video is forwarded to the
viewers without transcoding. The problem of this solution
is that many viewers of standard broadcasters cannot watch
the stream because their downloading rate is too low. This
problem has been recently discussed in [15].

The second option consists in delivering all channels with
ABR streaming. This is the option we study in the paper.
To the best of our knowledge, the live streaming providers
apply the same transcoder settings for all channels although
it has been shown in [22] that such a strategy is sub-optimal.
In this paper, we consider two possible strategies.

Full-Cover Strategy. This corresponds to a strategy
with one representation per resolution smaller than or
equal to the resolution of the source. The bit-rate is chosen
such as to be the lowest possible for this resolution
(100 kbps for low resolutions and 1000 kbps for the high
resolutions). With this strategy, viewers with a display size
smaller than or equal to the source resolution are
guaranteed to find one representation in their display
resolution. Moreover, since the CPU requirements are low
for low bit-rates, this strategy is the least CPU-hungry
possible strategy (among the strategies with at least one
representation per resolution).

Zencoder Strategy. We follow here the
recommendations of one of the main cloud transcoding
providers, namely Zencoder. The recommendations are
given on their public website.8 We give in Table 3 the
characteristics of the set of representations. Again, only
representations with a bit-rate and a resolution smaller
than or equal to the video source are produced.

Video Resolution Bitrates (in kbps)

224p 200, 400, 600
360p 1000, 1500
720p 2000
1080p 2750

Table 3: Zencoder encoding recommendations for live
streaming (adapted to our bitrate ranges).

5. OPTIMIZING STREAM PREPARATION
We first address the problem of live video stream

preparation with an optimization approach. As previously
said, the preparation includes both the decision about the
encoding parameters of the video representations and the
assignment of transcoding jobs to the machines. Our goal
is to maximize the QoE of viewers subject to the
availability of hardware resources. In the following we first
provide a formal formulation of the problem, and then we
present the ILP model that we use to solve the
optimization problem. Finally, we compare the
performances of the industrial strategies with respect to
the optimal.

5.1 Notations
Let I be the set of raw video streams encoded at the

broadcaster side. Each video stream i ∈ I is characterized

8http://zencoder.com/en/hls-guide

by a type of video content vi ∈ V, an encoding bit rate
ri ∈ R and a spatial resolution si ∈ S, where V, R and S
are the sets of video types, the set of encoding bit rates (in
kbps) and the set of spatial resolutions, respectively. We
have shown in Section 3.1 the diversity of raw videos.

Let O be the set of the possible video representations that
are generated from the source by transcoding jobs. Each
representation o ∈ O corresponds to a triple (vo, ro, so),
that is, to a video representation of type of content vo ∈ V
encoded at the resolution so ∈ S and at the bit rate ro ∈ R.

Let M be the set of physical machines where the
transcoding tasks should be performed. Each machine
m ∈ M can tolerate transcoding jobs up a maximum CPU
load of Pm GHz.

To reduce the size of the problem, and make it more
tractable, we introduce the notion of viewer type. Let U be
the set of viewers types. All viewers in a given viewer type
u ∈ U have the same display resolution (i.e., the spatial
resolution at which the video is displayed on the device)
su ∈ S, request the same video type vu ∈ V, and use an
internet connection with the same minimum bandwidth of
at least cu kbps. However, viewers of the same type u
watch different channels. We note by diu the number of
viewers of type u watching a given channel i. Note that a
viewer in a given type u can play segments encoded at
resolutions lower than its display size su by performing
spatial up-sampling before rendering.

A viewer from viewer type u watching a video
representation o transcoded from a stream i experiences a
satisfaction level of fiou, which is an increasing function of
the bit rate ro. Based on the dataset presented in
Section 3.2, we know that the satisfaction function depends
on the video content type vo, the resolution so and the
original raw video stream i. As previously said, the
satisfaction fiou also depends on whether the video should
be up-scaled or not, since up-scaling introduces a penalty
on the final satisfaction value. We incorporate this
up-scaling penalty into the satisfaction computation by the
following definition of the satisfaction fiou:

fiou =

{
fio, if so = su
fio − qou, if so < su

i ∈ I, o ∈ O, u ∈ U (1)

where fio is the satisfaction level when the display resolution
and the target video resolution match, and qou is the penalty
of the up-scaling process from resolution so to the viewer
display size su.

These notations, as well as some other useful notations,
are summarized in Table 4.

5.2 ILP Model
We now describe the ILP. The decision variables in the

model are:
αiou ∈ Z≥0 : Number of viewers of type u watching a

representation o transcoded from a stream i.

βiom =

 1, if the machine m transcodes stream i into
representation o

0, otherwise.
With these definitions, the optimization problem can be

formulated as shown in (2).
The objective function (2a) maximizes the average

viewer satisfaction. The constraints (2b) and (2c) set up a
consistent relation between the decision variables α and β.



Name Description

fiou ∈ R+ Satisfaction level for a representation o transcoded
from a stream i watched at display su

fio ∈ R+ Satisfaction level for a representation o transcoded
from a stream i l when display size su and target
resolution so match

qou ∈ R+ Up-scaling penalty from resolution so to the viewer
display size su

diu ∈ Z+ Number of viewers of type u watching a stream i

ro ∈ R+ Value in kbps of the encoding bit rate of the
representation o

cu ∈ R+ Maximum internet connection capacity in kbps
of viewer type u

vu ∈ V Video stream requested by viewer type u
su ∈ S Display size (spatial resolution) of viewer type u

N ∈ Z+ Overall number of viewers
R ∈ [0, 1] Minimum fraction of viewers that must be served

pio ∈ R+ CPU requirement to perform the live transcoding
from stream i to representation o in GHz

Pm ∈ R+ CPU capacity of a virtual machine m in GHz

Table 4: Notation adopted in the ILP formulation.

The constraint (2d) establishes that a viewer type u only
can play those transcoded representations o with spatial
resolutions equal or smaller than the viewer display size su,
that is, those ones susceptible to experience an
up-sampling operations at the rendering. The constraints
(2e) ensures that the sum of all the viewers of type u
watching any representation o transcoded from a given
stream i does not exceed the number of viewers of type u
originally watching the stream i. The constraint (2f) limits
the viewer link capacity. The constraint (2g) force us to
serve at least a certain fraction R of viewers. The
constraint (2h) forces that only transcoding operations
defined over the same video content type are allowed as
well as it forbids the senseless transcoding operations, like
transcoding to higher bit rates or higher resolutions or
transcoding to the same pair rate-resolution. The
constraint (2i) guarantees that a given transcoding task
(i, o) is performed in one unique machine m. Finally, (2j)
sets the CPU capacity of each machine m.

5.3 Settings for Performance Evaluation
To find the exact solution of the optimal problem, we use

the generic solver IBM ILOG CPLEX [10] on a set of
instances. Unfortunately, this approach does not allow
solving instances as large as the ones that live service
providers face today. Thus, we have built problem
instances based on the datasets introduced in Section 3 but
from a shorter size.

Incoming Videos from Broadcasters. We restrict the
size of the set of sources by picking only the 50 most
popular channels from the Twitch dataset (see Section 3.1).
More precisely, we take 66 snapshots from the dataset,
corresponding to those ones extracted every 4 hours along
11 days since April, 10th 2014 at 00:00. For each snapshot,
we use the channel information (bit-rate and resolution),
which we slightly modify to match the spatial resolutions
and bit-rates from Table 6. Each channel is randomly
assigned to one of the four video types given in Table 2.

QoE for Target Videos. We use the dataset presented in
Section 3.2 to obtain the QoE (estimated as a PSNR score)
fio of a target video o obtained from transcoding a source i.
The up-scaling penalties qou are fixed using PSNR measures

Integer Linear Programming formulation

max
{ααα,βββ}

∑
i∈I

∑
o∈O

∑
u∈U

fiou · αiou (2a)

s.t. αiou ≤ N ·
∑
m∈M

βiom, i ∈ I, o ∈ O, u ∈ U (2b)

∑
m∈M

βiom ≤
∑
u∈U

αiou, i ∈ I, o ∈ O (2c)

αiou ≤
{
N, if su ≥ so
0, otherwise

i ∈ I, o ∈ O, u ∈ U (2d)∑
o∈O

αiou ≤ diu, i ∈ I, u ∈ U (2e)

∑
i∈I

∑
o∈O

(
ro − cu

)
· αiou ≤ 0, u ∈ U (2f)

∑
i∈I

∑
o∈O

∑
u∈U

αiou ≥ R ·N, (2g)

βiom ≤



1, if (vi = vo &
si = so &
bi > bo) ‖

(vi = vo &
si > so &
bi ≥ bo)

0, otherwise

i ∈ I, o ∈ O,m ∈M (2h)

∑
m∈M

βiom ≤ 1, i ∈ I, o ∈ O (2i)

∑
i∈I

∑
o∈O

pio · βiom ≤ Pm, m ∈M (2j)

αiou ∈ [0, N ], i ∈ I, o ∈ O, u ∈ U (2k)

βiom ∈ {0, 1}, i ∈ I, o ∈ O,m ∈M (2l)

from the situation shown on bottom of the Figure 6 (target
resolution lower than display one).

CPU for the Transcoding Tasks. Still to reduce the size
of the instances, and thus the complexity of the problem,
we derive from the set of CPU measurements a function by
fitting exponential functions of the following form:

p = a · rb (3)

where p is the number of GHz required to transcode a
source into a target, a and b are the parameters used in the
curve fitting and the parameter r is the bit rate in Mbps of
the target video. The values of the parameters a and b
depend on (i) the source video (content type, bit rate and
resolution), and (ii) the resolution of the target video. The
fitting curves are identified by continuous lines in Figure 5.
Table 5 gives the parameters a and b used in the curve
fitting of Figure 5.

Target Resol a b

224p 0.673091 0.024642
360p 0.827912 0.033306
720p 1.341512 0.060222
1080p 1.547002 0.080571

Table 5: Parameters of the fitting model of the transcoding
CPU curves. Source stream: 1080p, 2,750 kbps, movie



Viewers. The viewers set U is based on the dataset [4]
presented in Section 3.3. However, the number of viewers
is too large and we implement the concept of user type. To
build the types, we divide the range of bandwidth into
bins, whose limits are selected so that each bin contains an
equal number of viewers. A viewer type corresponds to a
bin, with a display spatial resolution set according to the
lower bandwidth in the bin, and the downloading rate of
the viewer type is equal to the higher bandwidth in the
bin. The number of viewers diu watching a raw video i is
proportionally set up according to the popularity of the
channel in the Twitch dataset.

5.4 Numerical Results
We show now the results of our analysis. Our motivation

here is to reveal how far from the optimal are current
industrial strategies. In Figure 9, we represent the average
QoE, which is captured with the PSNR in dB, as a
function of the number of machines. The line represents
the results obtained from solving the optimization problem
with CPLEX. We show with gray pins the results for both
industrial strategies. The results are the average over all
the snapshots we took from the Twitch datasets.
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Figure 9: Optimal average QoE for the viewers vs. the
number of machines that are used in the data-centers. The
50 most popular channels from several snapshots of the
Twitch datasets are transcoded.

We first emphasize that the amount of hardware
resources in the data-center has a significant impact on the
QoE for the viewers. The difference of PSNR reaches 4dB
between 10 and 100 machines. This remark matters
because it highlights the need of being able to reserve the
right amount of resources in the data-center. However, the
ability to forecast the load and to reserve the resources is
not trivial for elastic live streaming services such as
Twitch.

Our second main observation is that, on our datasets,
the Full-Cover strategy is more efficient than the Zencoder
one in terms of trade-off QoE-CPU. The Full-Cover
strategy is close to the optimal, and thus represents an
efficient implementation with regard to its simplicity. Note
however that the Full-Cover needs 48 machines, while there
exists a solution with the same QoE but with only 35
machines. So, a significant reduction of resources to reserve
can be obtained. The Zencoder strategy is outperformed
by the Full-cover one, as it consumes nearly twice the CPU

cycles for a tiny increase of QoE. For a similar amount of
CPU, the QoE gap between the Zencoder strategy and the
optimal is more than 0.9 dB, which is significant.

To complete this study, we provide another view of the
choices to be taken in Figure 10. Here, we show the ratio
of served users and the amount of delivery bandwidth that
is required to serve the users. In our ILP, we optimize the
average QoE so the solutions that are found by CPLEX are
not optimal on other aspects. Typically in Figure 10b, we
see that the delivery bandwidth of the optimal solution is
significantly higher than the Full-Cover, which may
annihilate the gains obtained by using less machines.
Please note that both parameters of Figure 10 can also be
objective of the ILP. In the same vein, the ILP can also be
re-written so that the parameters to optimize is the
amount of needed CPU subject to a given QoE value.
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Figure 10: Other views on the optimal solution of Figure 9

6. A HEURISTIC ALGORITHM
We now present and evaluate an algorithm for massive

live streaming preparation. We aim here at designing a
fast, light, adaptive algorithm, which can be implemented
in practice. This algorithm should in particular be able to
absorb the elasticity of the streaming service on a fixed
data-center infrastructure.

6.1 Algorithm Description
The purpose of the algorithm is to update the set of

transcoded representations with respect to the
characteristics and the popularity of the incoming raw
videos. The algorithm is executed on a regular basis (for
example every five minutes to stick to Twitch API) by the
live streaming service provider in charge of the data-center.
You can find in Appendix B the pseudo-code of the
algorithms and some additional details.

Algorithm in a Nutshell. We process each channel
iteratively in a decreasing order of their popularity. For a
given channel, the algorithm has two phases: First, we
decide a CPU budget for this channel. Second, we
determine a set of representations with respect to the
decided CPU budget.

Set a CPU Budget Per Channel. We get inspired by the
observations of the optimal solutions found by CPLEX. Four
main observations are illustrated in Figure 14 in Appendix:
(i) in average, the ratio of the overall CPU budget of a
given channel is roughly proportional to the ratio of viewers



watching this channel; (ii) the CPU budget per channel is
lesser than 10 GHz; (iii) in average, some video types (e.g.
sport) require more CPU budget than others (e.g. cartoon);
and (iv) the higher is the resolution of the source, the bigger
is the CPU budget.

We derive from these four observations the algorithm
shown in Algorithm 1. We start with the most popular
channel. We first set a nominal CPU budget according to
the ratio of viewers and the maximal allowable budget.
Then we adjust this nominal budget based on a video type
weight and a resolution weight (interested readers can find
in Appendix details about the values we chose for these
weights, based on observations from the optimal solutions).
We obtain a CPU budget for this channel.

Decide Representations for a Given CPU Budget.
The pseudo-code is detailed in Algorithm 2. This
algorithm builds the set of representations by iteratively
adding the best representation. At each step, the needed
CPU budget to transcode the chosen representation should
not exhaust that the remaining channel budget. To decide
among the possible representations, we need to estimate
the QoE gain that every possible representation can
provide if it is chosen. To do so, we estimate the
assignment between the representations and the viewers in
Algorithm 3. In short, this algorithm requires a basic
knowledge on the distribution of downloading rates in the
population of viewers. (in our simulation, we have
considered that the service provider has no information, so
it considers a uniform distribution of downloading rates in
the range between 100 kbps and 3,000 kbps). The idea is
then to assign subsets of the population to representations
and to evaluate the overall QoE. Details are given in
Appendix.

6.2 Simulation Settings
Our simulator is based on the datasets presented in

Section 3 and the extra settings given in Section 5.3.
However, in contrat to the ILP, our heuristic is expected to
scale. Therefore we evaluate the heuristic and the
aforementioned industrial strategies on the complete
dataset containing all online broadcasters at each snapshot.
Regarding the viewers, we consider now each viewer, to
which we randomly assign a bandwidth value as presented
in Section 3.3 and a display spatial resolution accordingly.
We use the actual number of viewers watching channels
according to the Twitch dataset.

Please note also that we focus here on the decision about
the representations (number of representations and
transcoding parameters), and we neglect the assignment of
transcoding jobs to machines. This does not impact the
evaluation since all tested strategies (our heuristic and
both industrials strategies) can be evaluated without
regard to this assignment. We let for future works the
integration of the VM assignment policy into middleware
such as OpenStack.9

6.3 Performance Evaluations
We present in the following the same set of results from

two different perspectives; first, we show how the
performances evolve throughout the eleven days we
consider. Then we will present the results so that we

9http://www.openstack.org/

highlight the main features of the algorithms.
In Figure 11 we show the three main metrics during our

11-days dataset. The combination of the three figures
reveals the main characteristics of the strategies. The main
point we would like to highlight is that our heuristic keeps
a relatively constant, low CPU consumption without
regard to the traffic load in input. Our heuristic also
succeeds in maintaining a high QoE. To achieve this
excellent trade-off, our heuristic plays with the ratio of
served viewers. Yet, this ratio stays at a high value since it
is always greater than 95%. Our heuristic thus
demonstrates the benefits from having different
representation sets for the different channels according to
their popularity. The industrial strategies are less capable
of absorbing the elastic services. In particular, the CPU
needs of the Zencoder strategy ranges from 1,000 GHz to
18,000 GHz while the average QoE is always lower than for
our heuristic.

To highlight the relationship between CPU needs and QoE
for the population, we represent in Figure 12 a cloud of
points for each snapshot. The Full-Cover has most points in
the southwest area of the Figure, which corresponds to a low
CPU utilization but also a low QoE. We also note that the
distance between two points can be high, which emphasizes
an inability to absorb load variations. This inability is even
stronger for the Zencoder strategy, for which the points are
far from each other, covering all areas of the Figure. On
the contrary, our heuristic absorbs well elastic services, with
points that are concentrated in the northwest part of the
Figure, which means low CPU and high QoE.

7. CONCLUSIONS
This paper studies the management of new live adaptive

streaming services in the cloud from the point of view of
streaming providers using cloud computing platforms. All
the simulations conducted in the paper make use of real
data from three datasets covering all the actors in the
system. The study is focused on the interactions between
the optimal video encoding parameters, the available CPU
resources and the QoE perceived by the end-viewers. We
use an ILP to model this system and we compare its
optimal solution to current industry-standard solutions,
highlighting the gap between the two. Due to the ILP
computational limitations, we propose a practical
algorithm to solve problems of real size, thanks to key
insights gathered from the optimal solution. This
algorithm finds representations beating the standard
industrial approaches in terms of the trade-off between
viewers QoE and CPU resources needed. Furthermore, it
uses an almost-constant amount of computing resources
even in the presence of a time varying demand.
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APPENDIX
A. TRANSCODING CPU USAGE

In this Appendix we give more details about the
experiments that we have used to estimate the CPU usage
of different transcoding operations.

A.1 Input and Output Rates
As discussed in Section 3.2, we consider only the rates

covering 90% of the sources that we observe in the Twitch
dataset, as detailed in Table 6. For low resolutions (224p
and 360p), the set of bit rates ranges from 100 kbps up to
3000 kbps with steps of 100 kbps, while for high resolutions
(720p and 1080p), the set of bit rates ranges from
1000 kbps up to 3000 kbps with steps of 250 kbps. Thus,
each video sequence from Table 2 can be encoded into 78
different combinations of rates and resolutions. To obtain
these 78 sources, we took the original full-quality decoded
videos from Table 2 and we encoded them into each of the
78 videos that we consider as possible raw videos.

Resol. Width x Height Min–Max Rates Rate Steps

224p 400 x 224 100–3000 kbps 100 kbps
360p 640 x 360 100–3000 kbps 100 kbps
720p 1280 x 720 1000–3000 kbps 250 kbps
1080p 1920 x 1080 1000–3000 kbps 250 kbps

Table 6: Resolutions and ranges of rates for the raw videos.

A.2 Transcoding
The transcoding operation that we have performed is

summarized in Figure 13. This operation has been done
12,168 times in total. This corresponds to 4 (the number of
video types) multiplied by 78 (the number of possible
sources) multiplied by 39 (the average number of possible
target videos). Recall that, for each input video, we
produced only videos with resolutions and bit-rates lower
than or equal to those of the input. That is, only a subset

of the 78 possible representations are created from a given
raw video.

We have used ffmpeg for the transcoding with the same
parameters as in [5], which is a study conducted by the
leading developers of the popular GPAC video encoder.
The command is

f fmpeg − i source name −vcodec l i b x 2 6 4 −p r e s e t
u l t r a f a s t −tune z e r o l a t e n c y

−s t a r g e t r e s o l u t i o n −r 30 −b t a r g e t r a t e −an
ta rge t name

original
video
yuv

source
720p

2.25 Mbps

target
360p

1.6 Mbps

encoding transcoding

measure CPU cycles

Figure 13: Measuring the CPU cycles for the transcoding
of any source to any target video. Here an example with a
source at 720p and 2.25 Mbps and a target video at 360p
and 1.6 Mbps.

Measuring CPU cycles. As discussed above and in
Section 3.2, we have run many transcoding operations
using an Intel Xeon CPU E5640 at 2.67GHz with 24 GB of
RAM using Linux 3.2 with Ubuntu 12.04. To measure the
number of used CPU cycles, we use the perf tool10, a
profiler for Linux 2.6+ based systems, with the next
command:

p e r f s t a t −x −e CYCLES

This command provides access to the counter collecting
the number of CPU cycles at the Performance Monitoring
Unit (PMU) of the processor. Then, this number is divided
by the duration in s of the video sequences to obtain the
frequency of CPU (in GHz) required to perform the
transcoding during a running time equal to the play time
of the video, that is, the frequency of CPU required to do a
live transcoding.

B. HEURISTIC

B.1 Settings
CPU Budget Per Channel. The values we used for
both video type weight and resolution weight are given in
Tables 7. These values correspond the average of the
curves plotted in Figure 14, which we obtain from the
optimal solutions computed by CPLEX on the 50 most
popular channels and 100 machines. The x-axis is the rank
of the channels according to their popularity. On the top
we show the average distribution of CPU budget per
channel. On the bottom, we show the average difference
between the average CPU budget when a channel from a
given type (respectively resolution) is at a given rank and
the average CPU budget for channels at this rank. This
difference allows us to compute the adjustment of CPU
budget according to the video type and the resolution.

Estimation Viewers QoE. To estimate the QoE gain
when choosing one representation, we need to consider all
the assignments representations-viewers. In Algorithm 3,

10https://perf.wiki.kernel.org



Video Type Weight

Cartoon -0.176
Documentary 0.072

Sport 0.190
Video -0.076

Resolution Weight

224p -0.917
360p -0.657
720p -0.108
1080p 0.432

Table 7: Video type and resolution weights
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Figure 14: CPU information for a given channel popularity
rank. Data comes from the average optimal solution with
100 machines. From the average total CPU % according
to the rank (top figure), we derive the difference between
distinct video types (middle figure) and between distinct
channel input resolutions (bottom figure).

we evaluate the representations in the set in descending
order of their bit rates. At each iteration, we identify the
fraction of viewers whose bandwidth is between the rate of
the considered representation and the closest
representation with superior bit-rate. Then, we also have
to take into account the display sizes of the viewers (it also
depends on the knowledge of the service provider; we again
considered it a minimal knowledge of the population).
Therefore, this fraction of viewers is again split into one or
more sub-fractions corresponding to their display
resolutions. A different value of PSNR is then computed
for each sub-fraction. This value is multiplied by the ratio
of viewers belonging to the sub-fraction. When all the
representations have been assessed, the sum of the PSNR
contributions of all the sub-fractions of viewers is returned
as the estimated QoE of the set.

B.2 Algorithms in Pseudo-code

Algorithm 1: Main routine

Data: channelsSet: Channels metadata (e.g. number of
viewers, id) sorted by decreasing channel popularity.

Data: totalCPU: total CPU Budget in GHz.
1 representations← emptySet()
2 foreach channel ∈ channelsSet do
3 cpu← channel.viewersRatio ∗ totalCPU
4 cpu← min(cpu,MAX CPU)
5 w video← getV ideoTypeWeight(channel.video)
6 w resol← getResolutionWeight(channel.resolution)
7 cpu← max(cpu ∗ (1 + w video + w resol), 0)
8 representations.append(findReps(channel, cpu))

9 return representations

Algorithm 2: findReps Find the channels representations

set meeting a budget

Data: channel: Channel metadata (e.g. number of
viewers, id).

Data: CPU: calculated channel CPU Budget in GHz.
1 representations← emptySet()
2 freeCPU ← CPU
3 repeat
4 newRep← false
5 foreach

resolution ≤ channel.resolution ∈ resolutionsSet do
6 foreach bitrate ∈ bitratesSet[resolution] do
7 thisRep← (resolution, bitrate)
8 if bitrate ≤ channel.bitrate and

thisRep /∈ representations then
9 thisRep.cpu← getCPU(thisRep, channel)

10 if thisRep.cpu ≤ freeCPU then
11 reps← representations + thisRep
12 thisRep.qoe← getQoE(reps, channel)
13 if not newRep or

newRep.qoe < thisRep.qoe then
14 newRep← thisRep

15 if newRep then
16 representations.append(newRep)
17 freeCPU− = newRep.cpu

18 until not newRep
19 return representations

Algorithm 3: getQoE Obtain an estimation of PSNR for a

given representation set of one channel

Data: channel: Channel metadata (e.g. number of
viewers, id).

Data: repSet: Set of representations for a given channel.
1 totalPSNR← 0
2 foreach rep ∈ repSet do
3 ranges← getResolutionsRanges(rep)
4 foreach viewersRange ∈ ranges do
5 v ratio← getV iewersRatio(viewersRange)
6 v resol← getV iewersResolution(viewersRange)
7 partialPSNR← calcPSNR(rep, channel, v resol)
8 totalPSNR+ = v ratio ∗ partialPSNR

9 return totalPSNR


