Introduction to Finite Dynamical Systems

Adrien Richard

Lecture n° 2, M2 Informatique, September 25, 2019

1 The basic question

In many applications (mostly in biology) the interaction graph $G(f)$ of the system is known (or well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to its interaction graph $G(f)$?

This is a difficult question since many different different networks f can have the same interaction graph (see Exercise 1). Given a graph G with vertex set $[n]$, we denote by $F(G)$ the set of Boolean networks $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ with an interaction graph $G(f)$ equal to G. The size of $|F(G)|$ is at least doubly exponential with the maximum in degree of G.

2 The acyclic case

To begin it is natural to make strong assumptions on the interaction graph. In the acyclic case, we obtain a rather clear situation: there is a global convergence toward a unique fixed point in at most n iterations.

Thorme 1 (Robert 1980). Let f be a finite dynamical system with n components. Suppose that $G(f)$ is acyclic, then f^{n} is a constant.

We need some notations. Given a graph G and a vertex i inside, we denote by $N_{G}(i)$ the set of in-neighbors of i in G and we write $N(i)$ when G is given by the context. If $x \in\{0,1\}^{n}$ and $I \subseteq[n]$ then x_{I} is the restriction of x on I, that is, $x_{I}=\left(x_{i}\right)_{i \in I}$. the Hamming distance $d(x, y)$ between x and y is the number of $i \in[n]$ such that $x_{i} \neq y_{i}$.

Lemme 1. For all $x, y \in\{0,1\}^{n}$, if $x_{N(i)}=y_{N(i)}$ then $f_{i}(x)=f_{i}(y)$.
Proof. We proceed by induction on $d(x, y)$. If $d(x, y)=0$ then $x=y$ and there is nothing to prove. Suppose $d(x, y)>0$ and $x_{N(i)}=y_{N(i)}$. Then $x_{k} \neq y_{k}$ for some $k \in[n]$. Let x^{\prime} with $x_{k}^{\prime}=y_{k}$ and $x_{\ell}^{\prime}=x_{\ell}$ for $\ell \neq k$. Since x and x^{\prime} only differ in $x_{k} \neq y_{k}$, and since $k \notin N(i)$, we have $f_{i}(x)=f_{i}\left(x^{\prime}\right)$. Since $d\left(x^{\prime}, y\right)=d(x, y)-1$, by induction hypothesis, we have $f_{i}\left(x^{\prime}\right)=f_{i}(y)$. Thus $f_{i}(x)=f_{i}(y)$.

Proof of Theorem 1. Let $f: X \rightarrow X$ with $G(f)$ acyclic. Then $G(f)$ has a topological sort and we can assume, without loss, that for all $1 \leq i \leq j \leq n$ there is no edge from j to i in $G(f)$. If $x \in X$ and $t \geq 0$ then we set $x^{t}=f^{t}(x)$.

We prove the following by induction on i :

$$
\begin{equation*}
\text { for all } x, y \in X, i \in[n] \text { and } t \geq i \text {, we have } x_{i}^{t}=y_{i}^{t} \tag{*}
\end{equation*}
$$

Let $x, y \in X$. Since 1 is a source, f_{1} is a constant function. Thus for $t \geq 1$ we have

$$
x_{1}^{t}=f_{1}\left(x^{t-1}\right)=f_{1}\left(y^{t-1}\right)=y_{1}^{t} .
$$

This proves the base case. For the induction step, let $2 \leq i \leq n$ and $t \geq i$. By the topological sort, we have $N(i) \subseteq\{1, \ldots, i-1\}$ and thus, by induction hypothesis, $x_{N(i)}^{t-1}=y_{N(i)}^{t-1}$. We deduce from the lemma that

$$
x_{i}^{t}=f_{i}\left(x^{t-1}\right)=f_{i}\left(y^{t-1}\right)=y_{i}^{t}
$$

and this completes the induction step. In particular, we deduce from ($*$) that

$$
\begin{equation*}
\text { for all } x, y \in X, t \geq n \text {, we have } x^{t}=y^{t} \text {. } \tag{**}
\end{equation*}
$$

We now prove that f has a fixed point. If not, then $\Gamma(f)$ has a limit cycle of length $\ell \geq 2$. If x and y are distinct states of this cycle, then, for all $k \geq 0$, we have

$$
x^{k \ell}=f^{k \ell}(x)=x \neq y=f^{k \ell}(y)=y^{k \ell}
$$

and we obtain a contradiction for $k \ell \geq n$. Thus f has a fixed point z (thus $z^{t}=z$ for all $t \geq 0$).
From ($* *$) we deduce that $x^{n}=z^{n}=z$, that is, $f^{n}(x)=z$ for all $x \in X$.

3 Minimal and maximal number of fixed points

We are particularly interested in the connection between the interaction graph and the number of fixed points. For every graph G on $[n]$ we set

$$
\min (G):=\min _{f \in F(G)}|\operatorname{FIXE}(f)| \quad \max (G):=\max _{f \in F(G)}|\operatorname{FIXE}(f)|
$$

By Robert's theorem, if $G(f)$ is acyclic then $\min (G)=\max (G)=1$. We can prove the converse.
Thorme 2. For every graph G, we have

$$
\min (G)=0 \Longleftrightarrow \max (G) \geq 2 \Longleftrightarrow G \text { has a cycle. }
$$

4 Exercises

1. What is the size of $\left|F\left(C_{n}\right)\right|$?

Answer. If $f \in F\left(C_{n}\right)$ then each local transition function is either the copy of x_{i-1} or the negation of x_{i-1}, that is: $f_{i}(x)=x_{i-1}$ for all $x \in\{0,1\}^{n}$ or $f_{i}(x)=\overline{x_{i-1}}$ for all $x \in\{0,1\}^{n}$ (where x_{0} means x_{n}). Thus we have two possible choices for each f_{i}, and thus 2^{n} for f. Hence, $\left|F\left(C_{n}\right)\right|=2^{n}$.
2. What are the sizes of $\left|F\left(K_{3}\right)\right|$ and $\left|F\left(K_{4}\right)\right|$?

Answer. Let $H(n)$ be the number of Boolean functions $h:\{0,1\}^{n} \rightarrow\{0,1\}$ that depends on its n inputs. We can give a recursive formula for $H(n)$. We have $H(0)=2$ (two constant functions), $H(1)=2$ (the copy and negation functions) and, more generally:

$$
H(n)=2^{2^{n}}-\sum_{i=0}^{n-1}\binom{n}{i} H(i)
$$

For instance

$$
H(2)=2^{2^{2}}-\binom{2}{0} \cdot H(0)-\binom{2}{1} \cdot H(1)=16-1 \cdot 2-2 \cdot 2=10
$$

and

$$
H(3)=2^{2^{3}}-\binom{3}{0} \cdot H(0)-\binom{3}{1} \cdot H(1)-\binom{3}{2} H(2)=256-1 \cdot 2-3 \cdot 2-3 \cdot 10=218
$$

If $f \in F\left(K_{n}\right)$, each local function f_{i} depends exactly on $n-1$ inputs, and thus we have $H(n-1)$ possible choices. We deduce that $\left|F\left(K_{n}\right)\right|=H(n-1)^{n}$. In particular, $\left|F\left(K_{3}\right)\right|=10^{3}$ and $\left|F\left(K_{4}\right)\right|=218^{4}$.
3. Prove that $\max \left(C_{n}\right) \geq 2$ and $\min \left(C_{n}\right)=0$?

Answer. Let $f \in F\left(C_{n}\right)$ be defined by $f_{1}(x)=x_{n}$ and $f_{i}(x)=x_{i-1}$ for $2 \leq i \leq n$. In other words, $f(x)=\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)$. It is clear that if $x=(0,0, \ldots, 0)$ (full-zero state) or $x=$ $(1,1, \ldots, 1)$ (full-one state) then $f(x)=x$. Thus $\max (G) \geq 2$. Now let $f \in F\left(C_{n}\right)$ be defined by $f_{1}(x)=\overline{x_{n}}$ and $f_{i}(x)=x_{i-1}$ for $2 \leq i \leq n$. In other words, $f(x)=\left(\overline{x_{n}}, x_{1}, \ldots, x_{n-1}\right)$. Suppose that x is a fixed point. Then, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\overline{x_{n}}, x_{1}, \ldots, x_{n-1}\right)$. Hence, $x_{2}=x_{1}$, $x_{3}=x_{2}, \ldots, x_{n}=x_{n-1}$ and we deduce that $x_{1}=x_{2}=x_{3}=\cdots=x_{n}$. But then $x_{1}=$ $f_{1}(x)=\overline{x_{n}}=\overline{x_{1}}$, which is a contradiction. Thus f has no fixed points and we deduce that $\min (G)=0$.

