Introduction to Finite Dynamical Systems

Adrien Richard

Lecture n° 2, M2 Informatique, September 25, 2019

1 The basic question

In many applications (mostly in biology) the interaction graph G(f) of the system is known (or well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to its interaction graph G(f)?

This is a difficult question since many different different networks f can have the same interaction graph (see Exercise 1). Given a graph G with vertex set [n], we denote by F(G) the set of Boolean networks $f : \{0,1\}^n \to \{0,1\}^n$ with an interaction graph G(f) equal to G. The size of |F(G)| is at least doubly exponential with the maximum in degree of G.

2 The acyclic case

To begin it is natural to make strong assumptions on the interaction graph. In the acyclic case, we obtain a rather clear situation: there is a global convergence toward a unique fixed point in at most n iterations.

Thorme 1 (Robert 1980). Let f be a finite dynamical system with n components. Suppose that G(f) is acyclic, then f^n is a constant.

We need some notations. Given a graph G and a vertex *i* inside, we denote by $N_G(i)$ the set of in-neighbors of *i* in G and we write N(i) when G is given by the context. If $x \in \{0,1\}^n$ and $I \subseteq [n]$ then x_I is the restriction of x on I, that is, $x_I = (x_i)_{i \in I}$. the **Hamming distance** d(x, y) between x and y is the number of $i \in [n]$ such that $x_i \neq y_i$.

Lemme 1. For all $x, y \in \{0, 1\}^n$, if $x_{N(i)} = y_{N(i)}$ then $f_i(x) = f_i(y)$.

Proof. We proceed by induction on d(x, y). If d(x, y) = 0 then x = y and there is nothing to prove. Suppose d(x, y) > 0 and $x_{N(i)} = y_{N(i)}$. Then $x_k \neq y_k$ for some $k \in [n]$. Let x' with $x'_k = y_k$ and $x'_\ell = x_\ell$ for $\ell \neq k$. Since x and x' only differ in $x_k \neq y_k$, and since $k \notin N(i)$, we have $f_i(x) = f_i(x')$. Since d(x', y) = d(x, y) - 1, by induction hypothesis, we have $f_i(x') = f_i(y)$. Thus $f_i(x) = f_i(y)$. \Box

Proof of Theorem 1. Let $f: X \to X$ with G(f) acyclic. Then G(f) has a topological sort and we can assume, without loss, that for all $1 \le i \le j \le n$ there is no edge from j to i in G(f). If $x \in X$ and $t \ge 0$ then we set $x^t = f^t(x)$.

We prove the following by induction on i:

for all
$$x, y \in X$$
, $i \in [n]$ and $t \ge i$, we have $x_i^t = y_i^t$ (*)

Let $x, y \in X$. Since 1 is a source, f_1 is a constant function. Thus for $t \ge 1$ we have

$$x_1^t = f_1(x^{t-1}) = f_1(y^{t-1}) = y_1^t$$

This proves the base case. For the induction step, let $2 \le i \le n$ and $t \ge i$. By the topological sort, we have $N(i) \subseteq \{1, \ldots, i-1\}$ and thus, by induction hypothesis, $x_{N(i)}^{t-1} = y_{N(i)}^{t-1}$. We deduce from the lemma that

$$x_i^t = f_i(x^{t-1}) = f_i(y^{t-1}) = y_i^t$$

and this completes the induction step. In particular, we deduce from (*) that

for all
$$x, y \in X, t \ge n$$
, we have $x^t = y^t$. (**)

We now prove that f has a fixed point. If not, then $\Gamma(f)$ has a limit cycle of length $\ell \geq 2$. If x and y are distinct states of this cycle, then, for all $k \geq 0$, we have

$$x^{k\ell} = f^{k\ell}(x) = x \neq y = f^{k\ell}(y) = y^{k\ell}$$

and we obtain a contradiction for $k\ell \ge n$. Thus f has a fixed point z (thus $z^t = z$ for all $t \ge 0$).

From (**) we deduce that $x^n = z^n = z$, that is, $f^n(x) = z$ for all $x \in X$.

3 Minimal and maximal number of fixed points

We are particularly interested in the connection between the interaction graph and the number of fixed points. For every graph G on [n] we set

$$\min(G) := \min_{f \in F(G)} |\operatorname{FIXE}(f)| \qquad \max(G) := \max_{f \in F(G)} |\operatorname{FIXE}(f)|$$

By Robert's theorem, if G(f) is acyclic then $\min(G) = \max(G) = 1$. We can prove the converse.

Thorme 2. For every graph G, we have

$$\min(G) = 0 \iff \max(G) \ge 2 \iff G \text{ has a cycle}$$

4 Exercises

1. What is the size of $|F(C_n)|$?

Answer. If $f \in F(C_n)$ then each local transition function is either the copy of x_{i-1} or the negation of x_{i-1} , that is: $f_i(x) = x_{i-1}$ for all $x \in \{0,1\}^n$ or $f_i(x) = \overline{x_{i-1}}$ for all $x \in \{0,1\}^n$ (where x_0 means x_n). Thus we have two possible choices for each f_i , and thus 2^n for f. Hence, $|F(C_n)| = 2^n$.

2. What are the sizes of $|F(K_3)|$ and $|F(K_4)|$?

Answer. Let H(n) be the number of Boolean functions $h : \{0,1\}^n \to \{0,1\}$ that depends on its *n* inputs. We can give a recursive formula for H(n). We have H(0) = 2 (two constant functions), H(1) = 2 (the copy and negation functions) and, more generally:

$$H(n) = 2^{2^{n}} - \sum_{i=0}^{n-1} \binom{n}{i} H(i)$$

For instance

$$H(2) = 2^{2^2} - {\binom{2}{0}} \cdot H(0) - {\binom{2}{1}} \cdot H(1) = 16 - 1 \cdot 2 - 2 \cdot 2 = 10$$

and

$$H(3) = 2^{2^3} - \binom{3}{0} \cdot H(0) - \binom{3}{1} \cdot H(1) - \binom{3}{2} H(2) = 256 - 1 \cdot 2 - 3 \cdot 2 - 3 \cdot 10 = 218$$

If $f \in F(K_n)$, each local function f_i depends exactly on n-1 inputs, and thus we have H(n-1) possible choices. We deduce that $|F(K_n)| = H(n-1)^n$. In particular, $|F(K_3)| = 10^3$ and $|F(K_4)| = 218^4$.

3. Prove that $\max(C_n) \ge 2$ and $\min(C_n) = 0$?

Answer. Let $f \in F(C_n)$ be defined by $f_1(x) = x_n$ and $f_i(x) = x_{i-1}$ for $2 \le i \le n$. In other words, $f(x) = (x_n, x_1, \ldots, x_{n-1})$. It is clear that if $x = (0, 0, \ldots, 0)$ (full-zero state) or $x = (1, 1, \ldots, 1)$ (full-one state) then f(x) = x. Thus $\max(G) \ge 2$. Now let $f \in F(C_n)$ be defined by $f_1(x) = \overline{x_n}$ and $f_i(x) = x_{i-1}$ for $2 \le i \le n$. In other words, $f(x) = (\overline{x_n}, x_1, \ldots, x_{n-1})$. Suppose that x is a fixed point. Then, $(x_1, x_2, \ldots, x_n) = (\overline{x_n}, x_1, \ldots, x_{n-1})$. Hence, $x_2 = x_1$, $x_3 = x_2, \ldots, x_n = x_{n-1}$ and we deduce that $x_1 = x_2 = x_3 = \cdots = x_n$. But then $x_1 = f_1(x) = \overline{x_n} = \overline{x_1}$, which is a contradiction. Thus f has no fixed points and we deduce that $\min(G) = 0$.