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1 The basic question

In many applications (mostly in biology) the interaction graph G(f) of the system is known (or
well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to its interaction graph G(f)?

This is a difficult question since many different different networks f can have the same interaction
graph (see Exercise 1). Given a graph G with vertex set [n], we denote by F'(G) the set of Boolean
networks f : {0,1}" — {0, 1}" with an interaction graph G(f) equal to G. The size of |F(G)]| is at
least doubly exponential with the maximum in degree of G.

2 The acyclic case

To begin it is natural to make strong assumptions on the interaction graph. In the acyclic case,
we obtain a rather clear situation: there is a global convergence toward a unique fixed point in at
most n iterations.

Thorme 1 (Robert 1980). Let f be a finite dynamical system with n components. Suppose that
G(f) is acyclic, then f™ is a constant.

We need some notations. Given a graph G and a vertex ¢ inside, we denote by N¢g(i) the set of
in-neighbors of i in G and we write N (i) when G is given by the context. If x € {0,1}" and I C [n]
then x is the restriction of  on I, that is, x1 = (z;);e;. the Hamming distance d(z,y) between
x and y is the number of ¢ € [n] such that z; # v;.

Lemme 1. For all x,y € {0,1}", if xx;) = yng) then fi(x) = fi(y).

Proof. We proceed by induction on d(z,y). If d(z,y) = 0 then z = y and there is nothing to prove.
Suppose d(x,y) > 0 and xy(;) = yn()- Then xy, # yi for some k € [n]. Let 2’ with zj = y; and
xy = xy for £ # k. Since x and 2’ only differ in z;, # yy, and since k ¢ N (i), we have f;(z) = f;(a').
Since d(z',y) = d(x,y)—1, by induction hypothesis, we have f;(z’) = fi(y). Thus f;(z) = fi(y). O

Proof of Theorem 1. Let f: X — X with G(f) acyclic. Then G(f) has a topological sort and we
can assume, without loss, that for all 1 <1 < j < n there is no edge from j to 7 in G(f). If z € X
and t > 0 then we set 2t = f!(z).

We prove the following by induction on i:

for all z,y € X, i € [n] and t > i, we have x' = 3! (%)



Let z,y € X. Since 1 is a source, fi is a constant function. Thus for t > 1 we have
v1= [T = AT =i

This proves the base case. For the induction step, let 2 < ¢ < n and t > 7. By the topological sort,
we have N (i) C {1,...,i — 1} and thus, by induction hypothesis, xi;é) = yf\;é). We deduce from
the lemma that

vi=fi(aT) = Ly =y

and this completes the induction step. In particular, we deduce from (x) that

for all z,y € X, t > n, we have z* = y. ()

We now prove that f has a fixed point. If not, then I'(f) has a limit cycle of length ¢ > 2. If =
and y are distinct states of this cycle, then, for all k£ > 0, we have

et = M) =a £y =y =y™
and we obtain a contradiction for k¢ > n. Thus f has a fixed point z (thus 2' = 2 for all t > 0).
From (xx) we deduce that ™ = 2" = z, that is, f"(x) = z for all z € X. O

3 Minimal and maximal number of fixed points

We are particularly interested in the connection between the interaction graph and the number of
fixed points. For every graph G on [n]| we set

min(G) := fénFi(nG) |FIXE(f)]| max(G) := fg}fa(é) |FIXE(f)]

By Robert’s theorem, if G(f) is acyclic then min(G) = max(G) = 1. We can prove the converse.
Thorme 2. For every graph G, we have

min(G) =0 <= max(G) > 2 <= G has a cycle.

4 Exercises

1. What is the size of |F(Cy)|?

Answer. If f € F(C,) then each local transition function is either the copy of z;—; or the
negation of x;_1, that is: f;(x) = z;—1 for all x € {0,1}" or fi(z) = ;1 for all z € {0,1}"
(where xp means z,). Thus we have two possible choices for each f;, and thus 2" for f.
Hence, |F(Cy,)| = 2".

2. What are the sizes of |F(K3)| and |F(Ky)|?

Answer. Let H(n) be the number of Boolean functions A : {0,1}" — {0,1} that depends on
its n inputs. We can give a recursive formula for H(n). We have H(0) = 2 (two constant
functions), H(1) = 2 (the copy and negation functions) and, more generally:

H(n) =2%" - nzl (?)H(z)

1=0



For instance
22 2 2
H(2) =27 — -H(0) — "H(1)=16—-1-2-2-2=10
and

3 3 3
H(3) = 22" - <0) - H(0) — <1> CH(1) — <2>H(2):256—1-2—3-2—3-10:218
If f € F(K,), each local function f; depends exactly on n—1 inputs, and thus we have H(n—1)
possible choices. We deduce that |F(K,)| = H(n — 1)". In particular, |F(K3)| = 10® and
|F(Ky)| = 218%.

. Prove that max(Cy,) > 2 and min(C,) =07

Answer. Let f € F(C),) be defined by fi(z) = x, and f;j(z) = x;—1 for 2 < i < n. In other
words, f(z) = (xn,21,...,2n—1). It is clear that if x = (0,0,...,0) (full-zero state) or x =
(1,1,...,1) (full-one state) then f(z) = z. Thus max(G) > 2. Now let f € F(C,,) be defined
by fi(z) = T, and fi(z) = z;—1 for 2 < ¢ < n. In other words, f(z) = (Tpn,Z1,...,Tn-1)-
Suppose that z is a fixed point. Then, (z1,x2,...,2,) = (Tn,z1,...,Tn—1). Hence, zo = x1,
r3 = T9, ..., Tp = Tp_1 and we deduce that x1 = 29 = 3 = --- = z,,. But then 1 =
fi(x) = T, = T1, which is a contradiction. Thus f has no fixed points and we deduce that
min(G) = 0.



