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1 The basic question

In many applications (mostly in biology) the interaction graph G(f) of the system is known (or
well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to its interaction graph G(f)?

This is a difficult question since many different different networks f can have the same interaction
graph (see Exercise 1). Given a graph G with vertex set [n], we denote by F (G) the set of Boolean
networks f : {0, 1}n → {0, 1}n with an interaction graph G(f) equal to G. The size of |F (G)| is at
least doubly exponential with the maximum in degree of G.

2 The acyclic case

To begin it is natural to make strong assumptions on the interaction graph. In the acyclic case,
we obtain a rather clear situation: there is a global convergence toward a unique fixed point in at
most n iterations.

Thorme 1 (Robert 1980). Let f be a finite dynamical system with n components. Suppose that
G(f) is acyclic, then fn is a constant.

We need some notations. Given a graph G and a vertex i inside, we denote by NG(i) the set of
in-neighbors of i in G and we write N(i) when G is given by the context. If x ∈ {0, 1}n and I ⊆ [n]
then xI is the restriction of x on I, that is, xI = (xi)i∈I . the Hamming distance d(x, y) between
x and y is the number of i ∈ [n] such that xi 6= yi.

Lemme 1. For all x, y ∈ {0, 1}n, if xN(i) = yN(i) then fi(x) = fi(y).

Proof. We proceed by induction on d(x, y). If d(x, y) = 0 then x = y and there is nothing to prove.
Suppose d(x, y) > 0 and xN(i) = yN(i). Then xk 6= yk for some k ∈ [n]. Let x′ with x′k = yk and
x′` = x` for ` 6= k. Since x and x′ only differ in xk 6= yk, and since k 6∈ N(i), we have fi(x) = fi(x

′).
Since d(x′, y) = d(x, y)−1, by induction hypothesis, we have fi(x

′) = fi(y). Thus fi(x) = fi(y).

Proof of Theorem 1. Let f : X → X with G(f) acyclic. Then G(f) has a topological sort and we
can assume, without loss, that for all 1 ≤ i ≤ j ≤ n there is no edge from j to i in G(f). If x ∈ X
and t ≥ 0 then we set xt = f t(x).

We prove the following by induction on i:

for all x, y ∈ X, i ∈ [n] and t ≥ i, we have xti = yti (∗)
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Let x, y ∈ X. Since 1 is a source, f1 is a constant function. Thus for t ≥ 1 we have

xt1 = f1(x
t−1) = f1(y

t−1) = yt1.

This proves the base case. For the induction step, let 2 ≤ i ≤ n and t ≥ i. By the topological sort,
we have N(i) ⊆ {1, . . . , i − 1} and thus, by induction hypothesis, xt−1N(i) = yt−1N(i). We deduce from
the lemma that

xti = fi(x
t−1) = fi(y

t−1) = yti

and this completes the induction step. In particular, we deduce from (∗) that

for all x, y ∈ X, t ≥ n, we have xt = yt. (∗∗)

We now prove that f has a fixed point. If not, then Γ(f) has a limit cycle of length ` ≥ 2. If x
and y are distinct states of this cycle, then, for all k ≥ 0, we have

xk` = fk`(x) = x 6= y = fk`(y) = yk`

and we obtain a contradiction for k` ≥ n. Thus f has a fixed point z (thus zt = z for all t ≥ 0).

From (∗∗) we deduce that xn = zn = z, that is, fn(x) = z for all x ∈ X.

3 Minimal and maximal number of fixed points

We are particularly interested in the connection between the interaction graph and the number of
fixed points. For every graph G on [n] we set

min(G) := min
f∈F (G)

|Fixe(f)| max(G) := max
f∈F (G)

|Fixe(f)|

By Robert’s theorem, if G(f) is acyclic then min(G) = max(G) = 1. We can prove the converse.

Thorme 2. For every graph G, we have

min(G) = 0 ⇐⇒ max(G) ≥ 2 ⇐⇒ G has a cycle.

4 Exercises

1. What is the size of |F (Cn)|?

Answer. If f ∈ F (Cn) then each local transition function is either the copy of xi−1 or the
negation of xi−1, that is: fi(x) = xi−1 for all x ∈ {0, 1}n or fi(x) = xi−1 for all x ∈ {0, 1}n
(where x0 means xn). Thus we have two possible choices for each fi, and thus 2n for f .
Hence, |F (Cn)| = 2n.

2. What are the sizes of |F (K3)| and |F (K4)|?

Answer. Let H(n) be the number of Boolean functions h : {0, 1}n → {0, 1} that depends on
its n inputs. We can give a recursive formula for H(n). We have H(0) = 2 (two constant
functions), H(1) = 2 (the copy and negation functions) and, more generally:

H(n) = 22
n −

n−1∑
i=0

(
n

i

)
H(i).
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For instance

H(2) = 22
2 −

(
2

0

)
·H(0)−

(
2

1

)
·H(1) = 16− 1 · 2− 2 · 2 = 10

and

H(3) = 22
3 −

(
3

0

)
·H(0)−

(
3

1

)
·H(1)−

(
3

2

)
H(2) = 256− 1 · 2− 3 · 2− 3 · 10 = 218

If f ∈ F (Kn), each local function fi depends exactly on n−1 inputs, and thus we have H(n−1)
possible choices. We deduce that |F (Kn)| = H(n − 1)n. In particular, |F (K3)| = 103 and
|F (K4)| = 2184.

3. Prove that max(Cn) ≥ 2 and min(Cn) = 0?

Answer. Let f ∈ F (Cn) be defined by f1(x) = xn and fi(x) = xi−1 for 2 ≤ i ≤ n. In other
words, f(x) = (xn, x1, . . . , xn−1). It is clear that if x = (0, 0, . . . , 0) (full-zero state) or x =
(1, 1, . . . , 1) (full-one state) then f(x) = x. Thus max(G) ≥ 2. Now let f ∈ F (Cn) be defined
by f1(x) = xn and fi(x) = xi−1 for 2 ≤ i ≤ n. In other words, f(x) = (xn, x1, . . . , xn−1).
Suppose that x is a fixed point. Then, (x1, x2, . . . , xn) = (xn, x1, . . . , xn−1). Hence, x2 = x1,
x3 = x2, . . . , xn = xn−1 and we deduce that x1 = x2 = x3 = · · · = xn. But then x1 =
f1(x) = xn = x1, which is a contradiction. Thus f has no fixed points and we deduce that
min(G) = 0.
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