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1 The value of min(G)

This is a simple quantity: by Robert’s theorem we known that min(G) = 1 is G is acyclic and,
actually, min(G) = 0 otherwise. For the second case, the proof is a construction which uses the
following notion: a Feedback Vertex Set (FVS) in a graph G is a subset I ⊆ V (G) of vertices
that every cycle of G has a vertex in I, that is, the graph G \ I obtained from G by removing I
(and the attached arcs) is acyclic. The set of in-neighbor of a vertex i in G is denoted N(i).

Theorem 1 (Aracena, Salinas 2013). For every graph G we have

min(G) =

{
1 if G is acyclic
0 otherwise

Proof. As mentioned above, by Robert’s theorem we known that min(G) = 1 is G is acyclic. So
suppose that G has at least one cycle. Let I be a minimal feedback vertex set of G. We define
f ∈ F (G) by

fi(x) =
∧

j∈N(i)

xj ∀i ∈ I, fi(x) =
∨

j∈N(i)

xj ∀i 6∈ I.

We prove that f has no fixed point, and thus min(G) = 0. Suppose, for a contradiction, that x is
a fixed point of f . We consider two cases.

Suppose first that xi = 0 for some i ∈ I. Since I is a minimal FVS, there is a cycle C in G
that intersects I only in i (Exercise 1). Let i1, . . . , i` an enumeration of the vertices of C in the
order, starting from i1 = i. We have xi1 = 0. Suppose that xik = 0, with 1 ≤ k < `. Then ik+1 6∈ I
and we deduce that fik+1

(x) = 0 and thus xik+1
= 0. Consequently, xik = 0 for all 1 ≤ k ≤ `. In

particular, xi` = 0, and since i1 ∈ I, we deduce that fi1(x) = 1 6= xi1 , a contradiction.

Suppose now that xi = 1 for all i ∈ I. Let J be the set of vertices i with xi = 0. If J is empty
then it is clear that fi(x) = 0 for all i ∈ I, a contradiction. Thus J is not empty. Let j ∈ J .
Since J and I are disjoint, j 6∈ I and since fj(x) = xj = 0, there is at least one in-neighbor k of
j such that xk = 0. Thus k ∈ J . We have proved that G[J ] (the subgraph induced by J) has
minimum in-degree at least one. Thus G[J ] has a cycle C, and since J is disjoint from I we get a
contradiction: C does not intersect I.

This proves that f has no fixed points.

2 A lower bound one max(G)

The packing number of G is the maximum size of a collection of vertex-disjoint cycles. For
instance ν(Kn) = bn/2c. Note also that ν(G) = 0 if and only if G is acyclic. By Robert’s theorem,
max(G) = 1 if G is acyclic. The following lower bound generalizes this.
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Theorem 2 (Aracena, Richard, Salinas 2017). For every graph G we have

max(G) ≥ ν(G) + 1.

Conjecture 1. For every k ≥ 0, there is G with ν(G) = k and max(G) = k + 1. (for k = 0, 1, 2
this is easy, see Exercice 2.)

We will just prove that max(G) ≥ 2 if G has a cycle (the general proof is slightly more technical).
So suppose that G has a cycle. Let f ∈ F (G) defined by fi(x) =

∧
j∈N(i) xj for all i. Then the

all one state x = (11 . . . 1) is obviously a fixed point. Let I be the set of vertices reachable from a
cycle in G. It is not empty since G has at least one cycle C and then V (C) ⊆ I. It is clear that

δ−(G[I]) ≥ 1.

Let x defined by xi = 0 if i ∈ I and xi = 1 otherwise. If xi = 0 then there is some j ∈ N(i) with
xj = 0 since δ−(G[I]) ≥ 1. Thus fi(x) = 0 = xi. If xi = 1 then i 6∈ I, thus there is no j ∈ N(i) ∩ I
and thus xj = 1 for all j ∈ N(i). We deduce that fi(x) = 1 = xi. Thus x is a fixed point, and
it is not the all one state since I 6= ∅. Thus f has at least two fixed points, and we deduce that
max(G) ≥ 2.

The packing number and the minimum in-degree are connected each other.

Theorem 3 (Alon 1996). For every graph G,

ν(G) ≥
⌊
δ−(G)

64

⌋
.

Conjecture 2 (Bermond, Thomassen 1981). For every graph G,

ν(G) ≥
⌈
δ−(G)

2

⌉
.

If true, the bound is optimal (see Exercice 3).

3 An upper-bound on max(G)

If G is acyclic, then max(G) = 1. From that we may think that if G is not so far from being
acyclic, then max(G) is not se big. But to prove something like that we need a kind of distance
from acyclicity. The right notion is the transversal number of G, defined as the minimum size
of a FVS of G. It is denoted τ(G). Note that τ(G) = 0 if and only if G is acyclic. Note also that
ν(G) ≤ τ(G) (Exercise 4).

Theorem 4 (Feedback bound; Riis 2007 and Aracena 2008). For every graph G, we have

max(G) ≤ 2τ(G).

Proof. Let I be a FVS of size τ(G). Let f ∈ F (G) and let x, y be fixed points of f (not necessarily
distinct). We prove that

xI = yI ⇒ x = y. (∗)

Suppose that xI = yI . Let n be the number of vertices in G and m = n− τ(G). Let i1, . . . , im be a
topological sort of G \ I, that is, there is no arc from i` to ik for all 1 ≤ k ≤ ` ≤ m. Let I0 = I and
Ik = I ∪{i1, . . . , ik} for 1 ≤ k ≤ n− τ(G). We prove, by indiction on k from 0 to m that xIk = yIk .
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For k = 0 this is true by hypothesis. Let 1 < k ≤ m. We have xIk−1
= yIk−1

by induction. Since
N(ik) ⊆ Ik−1, we deduce that fik(x) = fik(y) and thus xik = yik since x and y are fixed points.
This proves that xIk = yIk and completes the induction step. In particular xIm = yIm , that is,
x = y since Im = V (G). This proves (∗).

Let X be the set of fixed points of f . Suppose, for a contradiction, that |X| > 2|I|. Then, by
the projection lemma (Exercice 5), we have xI = yI for distinct x, y ∈ X. But by (∗) if xI = yI
then x = y and we get the desired contradiction. Thus |X| ≤ 2|I|.

We have seen that ν(G) ≤ τ(G). Thus a large packing number forces a large transversal number.
Conversely, the following very difficult theorem says that, conversely, a large transversal number
forces a large packing number.

Theorem 5 (Reed, Robertson, Seymour, Thomas 1996). There is a function h : N→ N such that,
for every graph G,

τ(G) ≤ h(ν(G))

The function h of the proof is astronomic, but a folklore conjecture asserts that h(k) is only in
O(k log k). This is based on the best lower bound we known: h(k) = Ω(k log k) [Alon, Seymour
1993]. The only exact value is h(1) = 3, and this is a deep result [MacCuaig 1991] (see Exercice 6).

4 Exercises

1. Prove that if I is a minimal FVS of G then for every i ∈ I there is a cycle C in G that
intersects I only in i.

Answer. Let I be a minimal and i ∈ I. Let I ′ = I \ {i}. Then G \ I ′ has a cycle C since
I ′ is strictly included in I, which is a minimal FVS. Thus V (C) ∩ I ′ = ∅ and, by definition,
V (C) ∩ I 6= ∅. Thus V (C) ∩ I = {i}.

2. Prove that for k = 0, 1, 2 there is G such that ν(G) = k and max(G) = k + 1.

Answer. For k = 0, we have ν(K1) = 0 and max(K1) = 1. For k = 1, we have ν(C1) = 1
and max(C1) = 2. For k = 2, let G be the graph with vertex set {1, 2} with a loop on each
vertex and an arc 1 → 2. We have ν(G) = 2. If max(G) = 4 then some f ∈ F (G) has four
fixed points. But then f is the identity on {0, 1}2, that is, f1(x) = x1 and f2(x) = x2 for all
x ∈ {0, 1}2. But the interaction graph of such a f has no arc from 1 to 2, a contradiction.
Thus max(G) ≤ 3. Let f ∈ F (G) defined by f1(x) = x1 and f2(x) = x1 ∧ x2. Then 00, 10
and 11 are fixed points, thus max(G) ≥ 3. We deduce that max(G) = 3 has desired.

3. Find for every k a graph G with δ−(G) = k and ν(G) = dk/2e.

Answer. We have ν(Kn) = bn/2c = d(n− 1)/2e = dδ−(Kn)/2e.

4. Prove that ν(G) ≤ τ(G) for every G.

Answer. Let C1, . . . , Cν be vertex-disjoint cycles in G, with ν = ν(G). Such a collection of
cycles exists by definition of the packing number. Let I be any FVS of G of size τ = τ(G).
By definition of a FVS, for each 1 ≤ k ≤ ν there is a vertex jk in Ck which belongs to I.
Let J = {j1, . . . , jν}. Since the cycles are vertex-disjoint, the jr are pairwise distinct, thus
|J | = ν. Since J ⊆ I we have ν ≤ |I| = τ .
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5. Prove the projection lemma: If X ⊆ {0, 1}n, I ⊆ [n] and |X| > 2|I|, then xI = yI for distinct
x, y ∈ X.

Answer. Let X and I has in the statement. Let h : X → {0, 1}I defined by h(x) = xI . Since
|X| > 2|I| = |{0, 1}I | the function h is not an injection: there exists distinct x, y ∈ X such
that h(x) = h(y).

6. Find a graph G with ν(G) = 1 and τ(G) = 3.

Answer.
1 2

3

45

6 7
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