Introduction to Finite Dynamical Systems

Adrien Richard

Lecture n ${ }^{\circ}$ 3, M2 Informatique, September 27, 2019

1 The value of $\min (G)$

This is a simple quantity: by Robert's theorem we known that $\min (G)=1$ is G is acyclic and, actually, $\min (G)=0$ otherwise. For the second case, the proof is a construction which uses the following notion: a Feedback Vertex Set (FVS) in a graph G is a subset $I \subseteq V(G)$ of vertices that every cycle of G has a vertex in I, that is, the graph $G \backslash I$ obtained from G by removing I (and the attached arcs) is acyclic. The set of in-neighbor of a vertex i in G is denoted $N(i)$.
Theorem 1 (Aracena, Salinas 2013). For every graph G we have

$$
\min (G)=\left\{\begin{array}{l}
1 \text { if } G \text { is acyclic } \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. As mentioned above, by Robert's theorem we known that $\min (G)=1$ is G is acyclic. So suppose that G has at least one cycle. Let I be a minimal feedback vertex set of G. We define $f \in F(G)$ by

$$
f_{i}(x)=\bigwedge_{j \in N(i)} \overline{x_{j}} \quad \forall i \in I, \quad f_{i}(x)=\bigvee_{j \in N(i)} x_{j} \quad \forall i \notin I .
$$

We prove that f has no fixed point, and thus $\min (G)=0$. Suppose, for a contradiction, that x is a fixed point of f. We consider two cases.

Suppose first that $x_{i}=0$ for some $i \in I$. Since I is a minimal FVS, there is a cycle C in G that intersects I only in i (Exercise 1). Let i_{1}, \ldots, i_{ℓ} an enumeration of the vertices of C in the order, starting from $i_{1}=i$. We have $x_{i_{1}}=0$. Suppose that $x_{i_{k}}=0$, with $1 \leq k<\ell$. Then $i_{k+1} \notin I$ and we deduce that $f_{i_{k+1}}(x)=0$ and thus $x_{i_{k+1}}=0$. Consequently, $x_{i_{k}}=0$ for all $1 \leq k \leq \ell$. In particular, $x_{i_{\ell}}=0$, and since $i_{1} \in I$, we deduce that $f_{i_{1}}(x)=1 \neq x_{i_{1}}$, a contradiction.

Suppose now that $x_{i}=1$ for all $i \in I$. Let J be the set of vertices i with $x_{i}=0$. If J is empty then it is clear that $f_{i}(x)=0$ for all $i \in I$, a contradiction. Thus J is not empty. Let $j \in J$. Since J and I are disjoint, $j \notin I$ and since $f_{j}(x)=x_{j}=0$, there is at least one in-neighbor k of j such that $x_{k}=0$. Thus $k \in J$. We have proved that $G[J]$ (the subgraph induced by J) has minimum in-degree at least one. Thus $G[J]$ has a cycle C, and since J is disjoint from I we get a contradiction: C does not intersect I.

This proves that f has no fixed points.

2 A lower bound one $\max (G)$

The packing number of G is the maximum size of a collection of vertex-disjoint cycles. For instance $\nu\left(K_{n}\right)=\lfloor n / 2\rfloor$. Note also that $\nu(G)=0$ if and only if G is acyclic. By Robert's theorem, $\max (G)=1$ if G is acyclic. The following lower bound generalizes this.

Theorem 2 (Aracena, Richard, Salinas 2017). For every graph G we have

$$
\max (G) \geq \nu(G)+1
$$

Conjecture 1. For every $k \geq 0$, there is G with $\nu(G)=k$ and $\max (G)=k+1$. (for $k=0,1,2$ this is easy, see Exercice 2.)

We will just prove that $\max (G) \geq 2$ if G has a cycle (the general proof is slightly more technical). So suppose that G has a cycle. Let $f \in F(G)$ defined by $f_{i}(x)=\bigwedge_{j \in N(i)} x_{j}$ for all i. Then the all one state $x=(11 \ldots 1)$ is obviously a fixed point. Let I be the set of vertices reachable from a cycle in G. It is not empty since G has at least one cycle C and then $V(C) \subseteq I$. It is clear that

$$
\delta^{-}(G[I]) \geq 1
$$

Let x defined by $x_{i}=0$ if $i \in I$ and $x_{i}=1$ otherwise. If $x_{i}=0$ then there is some $j \in N(i)$ with $x_{j}=0$ since $\delta^{-}(G[I]) \geq 1$. Thus $f_{i}(x)=0=x_{i}$. If $x_{i}=1$ then $i \notin I$, thus there is no $j \in N(i) \cap I$ and thus $x_{j}=1$ for all $j \in N(i)$. We deduce that $f_{i}(x)=1=x_{i}$. Thus x is a fixed point, and it is not the all one state since $I \neq \emptyset$. Thus f has at least two fixed points, and we deduce that $\max (G) \geq 2$.

The packing number and the minimum in-degree are connected each other.
Theorem 3 (Alon 1996). For every graph G,

$$
\nu(G) \geq\left\lfloor\frac{\delta^{-}(G)}{64}\right\rfloor
$$

Conjecture 2 (Bermond, Thomassen 1981). For every graph G,

$$
\nu(G) \geq\left\lceil\frac{\delta^{-}(G)}{2}\right\rceil
$$

If true, the bound is optimal (see Exercice 3).

3 An upper-bound on $\max (G)$

If G is acyclic, then $\max (G)=1$. From that we may think that if G is not so far from being acyclic, then $\max (G)$ is not se big. But to prove something like that we need a kind of distance from acyclicity. The right notion is the transversal number of G, defined as the minimum size of a FVS of G. It is denoted $\tau(G)$. Note that $\tau(G)=0$ if and only if G is acyclic. Note also that $\nu(G) \leq \tau(G)$ (Exercise 4).

Theorem 4 (Feedback bound; Riis 2007 and Aracena 2008). For every graph G, we have

$$
\max (G) \leq 2^{\tau(G)}
$$

Proof. Let I be a FVS of size $\tau(G)$. Let $f \in F(G)$ and let x, y be fixed points of f (not necessarily distinct). We prove that

$$
\begin{equation*}
x_{I}=y_{I} \Rightarrow x=y \tag{*}
\end{equation*}
$$

Suppose that $x_{I}=y_{I}$. Let n be the number of vertices in G and $m=n-\tau(G)$. Let i_{1}, \ldots, i_{m} be a topological sort of $G \backslash I$, that is, there is no arc from i_{ℓ} to i_{k} for all $1 \leq k \leq \ell \leq m$. Let $I_{0}=I$ and $I_{k}=I \cup\left\{i_{1}, \ldots, i_{k}\right\}$ for $1 \leq k \leq n-\tau(G)$. We prove, by indiction on k from 0 to m that $x_{I_{k}}=y_{I_{k}}$.

For $k=0$ this is true by hypothesis. Let $1<k \leq m$. We have $x_{I_{k-1}}=y_{I_{k-1}}$ by induction. Since $N\left(i_{k}\right) \subseteq I_{k-1}$, we deduce that $f_{i_{k}}(x)=f_{i_{k}}(y)$ and thus $x_{i_{k}}=y_{i_{k}}$ since x and y are fixed points. This proves that $x_{I_{k}}=y_{I_{k}}$ and completes the induction step. In particular $x_{I_{m}}=y_{I_{m}}$, that is, $x=y$ since $I_{m}=V(G)$. This proves $(*)$.

Let X be the set of fixed points of f. Suppose, for a contradiction, that $|X|>2^{|I|}$. Then, by the projection lemma (Exercice 5), we have $x_{I}=y_{I}$ for distinct $x, y \in X$. But by (*) if $x_{I}=y_{I}$ then $x=y$ and we get the desired contradiction. Thus $|X| \leq 2^{|I|}$.

We have seen that $\nu(G) \leq \tau(G)$. Thus a large packing number forces a large transversal number. Conversely, the following very difficult theorem says that, conversely, a large transversal number forces a large packing number.

Theorem 5 (Reed, Robertson, Seymour, Thomas 1996). There is a function $h: \mathbb{N} \rightarrow \mathbb{N}$ such that, for every graph G,

$$
\tau(G) \leq h(\nu(G))
$$

The function h of the proof is astronomic, but a folklore conjecture asserts that $h(k)$ is only in $O(k \log k)$. This is based on the best lower bound we known: $h(k)=\Omega(k \log k)$ [Alon, Seymour 1993]. The only exact value is $h(1)=3$, and this is a deep result [MacCuaig 1991] (see Exercice 6).

4 Exercises

1. Prove that if I is a minimal $F V S$ of G then for every $i \in I$ there is a cycle C in G that intersects I only in i.

Answer. Let I be a minimal and $i \in I$. Let $I^{\prime}=I \backslash\{i\}$. Then $G \backslash I^{\prime}$ has a cycle C since I^{\prime} is strictly included in I, which is a minimal FVS. Thus $V(C) \cap I^{\prime}=\emptyset$ and, by definition, $V(C) \cap I \neq \emptyset$. Thus $V(C) \cap I=\{i\}$.
2. Prove that for $k=0,1,2$ there is G such that $\nu(G)=k$ and $\max (G)=k+1$.

Answer. For $k=0$, we have $\nu\left(K_{1}\right)=0$ and $\max \left(K_{1}\right)=1$. For $k=1$, we have $\nu\left(C_{1}\right)=1$ and $\max \left(C_{1}\right)=2$. For $k=2$, let G be the graph with vertex set $\{1,2\}$ with a loop on each vertex and an arc $1 \rightarrow 2$. We have $\nu(G)=2$. If $\max (G)=4$ then some $f \in F(G)$ has four fixed points. But then f is the identity on $\{0,1\}^{2}$, that is, $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{2}$ for all $x \in\{0,1\}^{2}$. But the interaction graph of such a f has no arc from 1 to 2 , a contradiction. Thus $\max (G) \leq 3$. Let $f \in F(G)$ defined by $f_{1}(x)=x_{1}$ and $f_{2}(x)=x_{1} \wedge x_{2}$. Then 00,10 and 11 are fixed points, thus $\max (G) \geq 3$. We deduce that $\max (G)=3$ has desired.
3. Find for every k a graph G with $\delta^{-}(G)=k$ and $\nu(G)=\lceil k / 2\rceil$.

Answer. We have $\nu\left(K_{n}\right)=\lfloor n / 2\rfloor=\lceil(n-1) / 2\rceil=\left\lceil\delta^{-}\left(K_{n}\right) / 2\right\rceil$.
4. Prove that $\nu(G) \leq \tau(G)$ for every G.

Answer. Let C_{1}, \ldots, C_{ν} be vertex-disjoint cycles in G, with $\nu=\nu(G)$. Such a collection of cycles exists by definition of the packing number. Let I be any FVS of G of size $\tau=\tau(G)$. By definition of a FVS, for each $1 \leq k \leq \nu$ there is a vertex j_{k} in C_{k} which belongs to I. Let $J=\left\{j_{1}, \ldots, j_{\nu}\right\}$. Since the cycles are vertex-disjoint, the j_{r} are pairwise distinct, thus $|J|=\nu$. Since $J \subseteq I$ we have $\nu \leq|I|=\tau$.
5. Prove the projection lemma: If $X \subseteq\{0,1\}^{n}, I \subseteq[n]$ and $|X|>2^{|I|}$, then $x_{I}=y_{I}$ for distinct $x, y \in X$.

Answer. Let X and I has in the statement. Let $h: X \rightarrow\{0,1\}^{I}$ defined by $h(x)=x_{I}$. Since $|X|>2^{|I|}=\left|\{0,1\}^{I}\right|$ the function h is not an injection: there exists distinct $x, y \in X$ such that $h(x)=h(y)$.
6. Find a graph G with $\nu(G)=1$ and $\tau(G)=3$.

Answer.

