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1 The value of min(G)

This is a simple quantity: by Robert’s theorem we known that min(G) = 1 is G is acyclic and,
actually, min(G) = 0 otherwise. For the second case, the proof is a construction which uses the
following notion: a Feedback Vertex Set (FVS) in a graph G is a subset I C V(G) of vertices
that every cycle of G has a vertex in I, that is, the graph G \ I obtained from G by removing I
(and the attached arcs) is acyclic. The set of in-neighbor of a vertex i in G is denoted N (i).

Theorem 1 (Aracena, Salinas 2013). For every graph G we have

1if G is acyclic
0 otherwise

min(G) = {

Proof. As mentioned above, by Robert’s theorem we known that min(G) = 1 is G is acyclic. So
suppose that G has at least one cycle. Let I be a minimal feedback vertex set of G. We define
f e F(G) by
fim)= N\ = Viel,  fie)= \/ z; VigL
JEN(7) JEN(3)
We prove that f has no fixed point, and thus min(G) = 0. Suppose, for a contradiction, that x is
a fixed point of f. We consider two cases.

Suppose first that z; = 0 for some ¢ € I. Since [ is a minimal FVS, there is a cycle C in G
that intersects I only in i (Exercise 1). Let i1,...,4; an enumeration of the vertices of C' in the
order, starting from i = i. We have z;, = 0. Suppose that z;, =0, with 1 <k < . Then ipy; ¢ I
and we deduce that f;_ (r) = 0 and thus z;_, = 0. Consequently, z;, =0 for all 1 <k < /. In
particular, z;, = 0, and since i; € I, we deduce that f;, (x) =1 # x;,, a contradiction.

Suppose now that x; = 1 for all i € I. Let J be the set of vertices ¢ with x; = 0. If J is empty
then it is clear that f;(z) = 0 for all i € I, a contradiction. Thus J is not empty. Let j € J.
Since J and I are disjoint, j ¢ I and since f;j(z) = x; = 0, there is at least one in-neighbor k of
j such that z = 0. Thus k£ € J. We have proved that G[J] (the subgraph induced by J) has
minimum in-degree at least one. Thus G[J] has a cycle C, and since J is disjoint from I we get a
contradiction: C does not intersect 1.

This proves that f has no fixed points. O

2 A lower bound one max(G)

The packing number of G is the maximum size of a collection of vertex-disjoint cycles. For
instance v(K,) = |n/2]. Note also that v(G) = 0 if and only if G is acyclic. By Robert’s theorem,
max(G) = 1 if G is acyclic. The following lower bound generalizes this.



Theorem 2 (Aracena, Richard, Salinas 2017). For every graph G we have
max(G) > v(G) + 1.

Conjecture 1. For every k > 0, there is G with v(G) = k and max(G) = k+ 1. (for k =0,1,2
this is easy, see Exercice 2.)

We will just prove that max(G) > 2 if G has a cycle (the general proof is slightly more technical).
So suppose that G has a cycle. Let f € F(G) defined by fi(z) = /\jeN(i) x; for all i. Then the
all one state z = (11...1) is obviously a fixed point. Let I be the set of vertices reachable from a
cycle in G. It is not empty since G has at least one cycle C and then V(C') C I. It is clear that

5 (G[I]) > 1.

Let x defined by xz; = 0 if ¢ € I and x; = 1 otherwise. If z; = 0 then there is some j € N (i) with
xj = 0 since 6~ (G[I]) > 1. Thus fi(z) =0 =x;. If z; = 1 then i ¢ I, thus there is no j € N(i) NI
and thus z; = 1 for all j € N(i). We deduce that fj(x) = 1 = x;. Thus z is a fixed point, and
it is not the all one state since I # (). Thus f has at least two fixed points, and we deduce that
max(G) > 2.

The packing number and the minimum in-degree are connected each other.
Theorem 3 (Alon 1996). For every graph G,

5(G)
64

v(G) >

Conjecture 2 (Bermond, Thomassen 1981). For every graph G,

()]

v(G) > 5

If true, the bound is optimal (see Exercice 3).

3 An upper-bound on max(G)

If G is acyclic, then max(G) = 1. From that we may think that if G is not so far from being
acyclic, then max(G) is not se big. But to prove something like that we need a kind of distance
from acyclicity. The right notion is the transversal number of GG, defined as the minimum size
of a FVS of G. It is denoted 7(G). Note that 7(G) = 0 if and only if G is acyclic. Note also that
v(G) < 7(G) (Exercise 4).

Theorem 4 (Feedback bound; Riis 2007 and Aracena 2008). For every graph G, we have
max(G) < 27(@),

Proof. Let I be a FVS of size 7(G). Let f € F(G) and let x,y be fixed points of f (not necessarily
distinct). We prove that

Ty =y = x =1y. (%)
Suppose that x; = y;. Let n be the number of vertices in G and m = n —7(G). Let i1,...,i, be a

topological sort of G'\ I, that is, there is no arc from i, to ix for all 1 <k < /¢ < m. Let [ = I and
Iy =1U{iy, ... ig} for 1 <k <n—7(G). We prove, by indiction on k from 0 to m that zj, = yr, .



For k = 0 this is true by hypothesis. Let 1 < £k < m. We have x;, , = yr,_, by induction. Since
N(ix) C Ix—1, we deduce that f;, (z) = f;, (y) and thus z;, = y;, since x and y are fixed points.
This proves that x;, = yr, and completes the induction step. In particular z,, = y,,, that is,
x =y since I, = V(G). This proves (x).

Let X be the set of fixed points of f. Suppose, for a contradiction, that |X| > 2/|. Then, by
the projection lemma (Exercice 5), we have x; = y; for distinct x,y € X. But by (%) if 1 = yr
then = = y and we get the desired contradiction. Thus | X| < 21/, O

We have seen that v(G) < 7(G). Thus a large packing number forces a large transversal number.
Conversely, the following very difficult theorem says that, conversely, a large transversal number
forces a large packing number.

Theorem 5 (Reed, Robertson, Seymour, Thomas 1996). There is a function h : N — N such that,
for every graph G,
7(G) < h(v(G))

The function h of the proof is astronomic, but a folklore conjecture asserts that h(k) is only in
O(klogk). This is based on the best lower bound we known: h(k) = Q(klogk) [Alon, Seymour
1993]. The only exact value is (1) = 3, and this is a deep result [MacCuaig 1991] (see Exercice 6).

4 Exercises

1. Prove that if I is a minimal FVS of G then for every i € I there is a cycle C' in G that
intersects I only in 1.

Answer. Let I be a minimal and ¢ € I. Let I’ = I\ {i}. Then G \ I’ has a cycle C since
I' is strictly included in I, which is a minimal FVS. Thus V(C) NI’ = () and, by definition,
V(C)NI#0. Thus V(C)NI = {i}.

2. Prove that for k =0,1,2 there is G such that v(G) = k and max(G) = k + 1.

Answer. For k = 0, we have v(K;) = 0 and max(K;) = 1. For k = 1, we have v(Cy) =1
and max(Cy) = 2. For k = 2, let G be the graph with vertex set {1,2} with a loop on each
vertex and an arc 1 — 2. We have v(G) = 2. If max(G) = 4 then some f € F(G) has four
fixed points. But then f is the identity on {0,1}?, that is, fi(z) = 21 and fa(x) = 5 for all
x € {0,1}2. But the interaction graph of such a f has no arc from 1 to 2, a contradiction.
Thus max(G) < 3. Let f € F(G) defined by fi(z) = 21 and fa(x) = 21 A x2. Then 00, 10
and 11 are fixed points, thus max(G) > 3. We deduce that max(G) = 3 has desired.

3. Find for every k a graph G with 6~ (G) =k and v(G) = [k/2].
Answer. We have v(K,) = |n/2] =[(n—1)/2] = [6 (K,)/2].
4. Prove that v(G) < 7(G) for every G.

Answer. Let Cy,...,C, be vertex-disjoint cycles in G, with v = v(G). Such a collection of
cycles exists by definition of the packing number. Let I be any FVS of G of size 7 = 7(G).
By definition of a FVS, for each 1 < k < v there is a vertex ji in C) which belongs to I.
Let J = {j1,...,7,}. Since the cycles are vertex-disjoint, the j, are pairwise distinct, thus
|J| = v. Since J C I we have v < |I| = 7.



5. Prove the projection lemma: If X C {0,1}", I C [n] and | X| > 2!, then x; = y; for distinct
x,y € X.

Answer. Let X and I has in the statement. Let h: X — {0,1}! defined by h(z) = ;. Since
|X| > 2/l = |{0,1}| the function h is not an injection: there exists distinct x,y € X such
that h(z) = h(y).

6. Find a graph G with v(G) =1 and 7(G) = 3.

Answer.
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