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1 Upper bound on max(G) via error correcting codes

Let x, y ∈ {0, 1}n. We set

∆(x, y) = {i ∈ [n]|xi 6= yi}, d(x, y) = |∆(x, y)|.

The quantity d(x, y) is the Hamming distance between x and y (see Exercice 1). In particular,
we have the triangular inequality d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ {0, 1}n.

Here is a very useful lemma.

Lemma 1. Let f ∈ F (G) with distinct fixed points x and y. Then G[∆(x, y)] has a cycle.

Proof. Let I = ∆(x, y) and i ∈ I, that is, xi 6= yi. If xN(i) = yN(i) then fi(x) = fi(y) and thus
xi = yi since x and y are fixed points, which is a contradiction. We deduce that xj 6= yj for some
j ∈ N(i). Thus N(i) ∩ I 6= ∅ for all i ∈ I. This is equivalent to say that δ−(G[I]) ≥ 1, and this
trivially implies that G[I] has a cycle.

The girth of G, denoted g(G), is the minimum length of a cycle in G. If G is acyclic, then
g(G) = n + 1 by convention, where n is the number of vertices in G. Let X ⊆ {0, 1}n. The
minimum distance of X is the minimum of d(x, y) for distinct x, y ∈ X. If |X| ≤ 1, then the
minimum distance of X is n + 1 by convention. As a simple consequence of the previous lemma,
we have that the set of fixed points of a Boolean network on G is at least the girth of G.

Lemma 2. Let f ∈ F (G) with distinct fixed points x and y. Then d(x, y) ≥ g(G).

Proof. Indeed, by the previous lemma, G[∆(x, y)] has a cycle C. Since V (G) ⊆ ∆(x, y) we obtain

d(x, y) = |∆(x, y)| ≥ |V (G)| ≥ g(G).

Thus if the girth is large (with respect to the number of vertices), then fixed points are far
from each other and we cannot have to many fixed points. To quantify this phenomena we need
additional definitions from Information Theory.

For positive integers n, d, we denote by A(n, d) the maximum size of a set X ⊆ {0, 1}n with
minimum distance at least d. Given x ∈ {0, 1}n and r ≥ 0, the Hamming ball of center x and
radius r is the set of y ∈ {0, 1}n such that d(x, y) ≤ r. If X has minimum distance at least d,
then Bt(x) ∩ Bt(y) = ∅ for all distinct x, y ∈ X, where t = bd−12 c (Exercise 3). Suppose now that
the members of X, seen messages, are send through a communication channel, and suppose that
at most t bits can be changed during the transmission. If distinct x, y ∈ X are send, the received
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messages belong to Bt(x) and Bt(y), and since these Hamming ball are disjoint, we can recover x
and y without possible ambiguity. We then say that X is a Error Correcting Code correcting
t bits, and A(n, d) is the maximum size of such a code. This is a very well studied quantity in
Information Theory.

An obvious consequence of the previous lemma is the following.

Theorem 1 (Coding bound; Gadouleau, Riis, 2011). For every graph G with n vertices, we have

max(G) ≤ A(n, g(G)).

Proof. Let f ∈ F (G) and let X ⊆ {0, 1}n be the set of fixed points of f . By the previous lemma,
X has minimum distance at least g(G) and thus |X| ≤ A(n, g(G)) by definition.

We have now tow upper bounds on max(G), the feedback bound 2τ(G) and the coding bound
given above. Each time we have two bound, a natural question is: do these bounds are comptitive?
We think that the coding bound is never better than the feedback bound.

Conjecture 1. For every graph G with n vertices, we have

2τ(G) ≤ A(n, g(G)).

2 Upper and lower bounds on A(n, d)

To show that there are few fixed points when the girth is large compare to the number of vertices,
it is sufficient to show that A(n, d) is small when d is close to n. We do this is this section and we
also show that, conversely, A(n, d) is large when d is far from n.

In a previous lecture, we have use (and prove) the Projection Lemma: If X ⊆ {0, 1}n, I ⊆ [n]
and |X| > 2|I| then xI = yI for distinct x, y ∈ X, and thus d(x, y) ≤ n−|I|. This indeed show that
a large subset of X contained at least to members close to each other. Actually, we easily get the
following bound.

Theorem 2 (Singleton bound). For all positive integers n and d ≤ n+ 1, we have

A(n, d) ≤ 2n−d+1.

Proof. Let X ⊆ {0, 1}n with minimal distance at least d and |X| = A(n, d). Let I ⊆ [n] of size
n− d+ 1. If |X| > 2n−d+1 then xI = yI for distinct x, y ∈ X. But then d(x, y) ≤ n− |I| = d− 1,
a contradiction. Thus A(n, d) = |X| ≤ 2n−d+1.

As a consequence, max(G) ≤ 2n−g(G)+1 but this bound is not interesting since for all graph G
with n vertices we have

τ(G) ≤ n− g(G) + 1

(see Exercice 4). It is a nice exercise to characterize the graphs G such that the previous inequality
is an equality (Exercice 6), and the graphs G such that max(G) = 2n−g(G)+1 (Exercice 8). The
following bound improve the singleton bound, excepted for very particular cases (Exercice 9).

Theorem 3 (Sphere packing bound). For all positive integers n and d ≤ n+ 1, we have

A(n, d) ≤ 2n∑t
k=0

(
k
n

) where t =

⌊
d− 1

2

⌋
.
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Proof. Let X ⊆ {0, 1}n with minimum distance at least d. It is sufficient to prove that |X| ≤
2n/bt(n), where bt(n) =

∑t
k=0

(
k
n

)
. Note that |Bt(x)| = bt(n) for all x ∈ {0, 1}n (Exercice 2).

Furthermore, Bt(x) ∩Bt(y) = ∅ for all distinct x, y ∈ X (Exercice 3). We deduce that

2n ≥

∣∣∣∣∣ ⋃
x∈X

Bt(x)

∣∣∣∣∣ =
∑
x∈X
|Bt(x)| =

∑
x∈X

bt(n) = |X| · bt(n).

Thus |X| ≤ 2n/bt(n).

Theorem 4 (Gilbert bound). For all positive integers n and d ≤ n+ 1, we have

A(n, d) ≤ 2n∑d−1
k=0

(
k
n

) .
Proof. Let X ⊆ {0, 1}n with minimum distance at least d and of maximal size of this property,
that is, of size A(n, d). We have

for all y ∈ {0, 1}n, there is x ∈ X such that d(y, x) ≤ d− 1. (∗)

Suppose, for a contradiction, that there is y ∈ {0, 1}n such that d(y, x) ≥ d for all x ∈ X. Then
X ∪ {y} is of size |X|+ 1 and has minimum distance at least d. This is a contradiction since X is
of maximal size for this property. This proves (∗), which is equivalent to⋃

x∈X
Bd−1(x) = {0, 1}n.

We obtain

2n =

∣∣∣∣∣ ⋃
x∈X

Bd−1(x)

∣∣∣∣∣ ≤∑
x∈X
|Bd−1(x)| =

∑
x∈X

d−1∑
k=0

(
k

n

)
= |X| ·

d−1∑
k=0

(
k

n

)
.

3 Exercises

1. Prove that the Hamming distance is indeed a distance.

Answer. Let x, y ∈ {0, 1}n. We trivially have d(x, y) ≥ 0 (non-negativity), d(x, y) = 0 ⇐⇒
x = y (identity), and d(x, y) = d(y, x) (symmetry). It only remains to prove the triangular
inequality: for any z ∈ {0, 1}n, d(x, y) ≤ d(x, z) + d(z, y). Suppose that i ∈ ∆(x, y), that is,
xi 6= yi. Then, either xi 6= zi or yi 6= zi, and thus either i ∈ ∆(x, z) or i ∈ ∆(z, y). We have
prove that ∆(x, y) ⊆ ∆(x, z) ∪∆(z, y). We deduce

d(x, y) = |∆(x, y)| ≤ |∆(x, z) ∪∆(z, y)| ≤ |∆(x, z)|+ |∆(z, y)| = d(x, z) + d(z, y).

2. Let x ∈ {0, 1}n and r ≥ 0. Give the size Br(x) as a function of n and r.

Answer. We have

|Br(x)| =
r∑

k=0

(
k

n

)
.
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3. Let X ⊆ {0, 1}n with minimum distance at least d ≥ 1. Let t = bd − 1/2c. Prove that
Bt(x) ∩Bt(y) = ∅ for all distinct x, y ∈ X.

Answer. Let x, y ∈ X, x 6= y. Suppose for a contradiction that z ∈ Bt(x) ∩ Bt(y). This is
equivalent to say that d(x, z) ≤ t and d(y, z) ≤ t. Using the triangular inequality, we get

d(x, y) ≤ d(x, z) + d(z, y) ≤ 2t = 2bd− 1/2c ≤ d− 1.

This is a contradiction since X has minimum distance at least d.

4. Let G be a graph with n vertices. Prove that

g(G) ≥ 2 and τ(G) = n− 1 ⇐⇒ G ∼ Kn.

Answer. The direction ⇐ is obvious. To prove ⇒, suppose that g(G) ≥ 2 and τ(G) = n− 1.
Then G has no loop. Let i, j be distinct vertices. Let I = V (G) \ {i, j}. Since |I| < τ(G),
G \ I has a cycle, that is, the is an arc form i to j and from j to i. This proves that G ∼ Kn.

5. Prove that τ(G) ≤ n− g(G) + 1 for every graph G with n vertices.

Answer. Let I be a FVS of G os size τ(G). In a previous lecture, we have seen that, given
i ∈ I, there exists a cycle C with V (C) ∩ I = {i}. Thus

n ≥ |V (C) ∪ I| = |V (C)|+ |I| − 1 = |V (C)|+ τ(G)− 1 ≥ g(G) + τ(G)− 1.

6. Let G be a graph with n vertices. Prove that τ(G) = n − g(G) + 1 if and only is one of the
following holds:

(a) G ∼ Cn.

(b) G ∼ Kn.

(c) each vertex of G has a loop.

Answer. Let τ = τ(G) and g = g(G). It is clear that if one of (a),(b),(c) is true then
τ = n− g + 1. For the other direction, suppose that τ = n− g + 1. Suppose first that g = 1.
Then τ = n and we deduce that (c) is true. So suppose that g ≥ 2. Let I be a FVS of
G of size τ and let J = V (G) \ I (the acyclic part). Let i ∈ I and let C be a cycle with
V (C) ∩ I = {i}. Then

n ≥ |V (C) ∪ I| = |V (C)|+ |I| − 1 = V (C) + τ − 1 ≥ g + τ − 1 = n.

Thus C is of length g. Let j1j2 . . . jg the vertices of C in the order, starting from j1 = i. Then
{j2, . . . , jg} is disjoint from I and of size g− 1 = n− τ , thus J = {j2, . . . , jg} and G[J ] is the
path j2 . . . jg. We deduce that if I = {i} then G = Cn. So suppose that |I| = τ > 1. Let
i′ ∈ I distinct from i and let C ′ be a cycle with V (C ′)∩ I = {i′}. We prove similarly that C ′

is of length g, and thus the vertices of C ′ in the order are i′j2 . . . jg. We deduce that all the
cycles of G \ {j2} are in G[I]. Let I ′ be a FVS of size G[I]; it is not empty since τ > 1. Then
I ′ ∪ {i} is a FVS of G, and thus |I| ≤ |I ′|+ 1. On the other hand, we have |I ′| < |I| since if
|I ′| = |I| then it means that each vertex of G[I] has a loop, and thus g = 1, a contradiction.
Hence, |I ′| = |I| − 1 and since g(G[I]) ≥ g(G) ≥ 2, we deduce from a previous exercise that
G[I] ∼ Kτ . Thus g = 2 and we again deduce from the previous exercise that G ∼ Kn.
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7. Prove that max(Cn) = 2 and max(Kn) = 2n−1.

Answer. Since τ(Cn) = 1 we have max(Cn) ≤ 2 and since ν(Cn) = 1 we have max(Cn) ≥ 2.
Since τ(Kn) = n− 1, it is sufficient to prove that there is f ∈ F (Kn) with 2n−1 fixed points.
Let f ∈ F (Kn) be defined by fi(x) =

∑
j 6=i xj for all i ∈ [n]. Let x ∈ {0, 1}n with an even

number of ones. If xi = 0 then fi(x) = 0 and if xi = 1 then fi(x) = 1. Thus f(x) = x. We
deduce that f has 2n−1 fixed points.

8. Let G be a graph with n vertices, and let nC1 be the disjoint union of n copies of C1. Prove
that

max(G) = 2n−g(G)+1 ⇐⇒ G ∼ nC1 or G ∼ Cn or G ∼ Kn.

Answer. The direction ⇐ is obvious for nC1 and easy for Cn and Kn (Exercise 7). To prove
⇒, let τ = τ(G), g = g(G) and suppose that max(G) = 2n−g+1. Since τ ≤ n−g+1 (Exercice
5), we deduce from the feedback bound that τ = n − g + 1, that is n = τ + g − 1. Thus
either G ∼ Cn or G ∼ Kn or each vertex of G has a loop (Exercice 6). Suppose that each of
G vertex has a loop. Then g = 1 thus τ = n thus max(G) = 2n and it is then obvious that
G ∼ nC1.

9. Prove that the sphere packing bound is better than the singleton bound for 5 ≤ d < n− 1.

Answer. Let 3 ≤ d < n be positive integers, and t = b(d− 1)/2c ≥ 1. It is sufficient to prove
that bt(n) =

∑t
k=0

(
n
k

)
> 2d−1. We essentially use the fact that if d is odd, then bt(d) = 2d−1.

Suppose that d is odd. Then

t∑
k=0

(
n

k

)
≥

t∑
k=0

(
d+ 1

k

)
=

t∑
k=0

(
d

k

)
+

(
d

k − 1

)
=

t∑
k=0

(
d

k

)
+

t−1∑
k=0

(
d

k

)
≥ 2d−1 + 1 > 2d−1.

Suppose now that d is even. Since t ≥ 2 we have

t∑
k=0

(
n

k

)
≥

t∑
k=0

(
d+ 2

k

)

=
t∑

k=0

(
d− 1

k

)
+ 3

(
d− 1

k − 1

)
+ 3

(
d− 1

k − 2

)
+ 3

(
d− 1

k − 3

)

≥ 2d−2 + 3

(
t∑

k=0

(
d− 1

k − 1

))
+ 1

> 2d−2 + 3 · 2d−2 − 3

(
d− 1

t

)
.

Thus we only have to prove that

3 · 2d−2 − 3

(
d− 1

t

)
≥ 2d−2

which is equivalent to

3

(
d− 1

t

)
≤ 2d−1.

Since

2

(
d− 1

t

)
+ 2

(
d− 1

t− 1

)
≤ 2d−1
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it is sufficient to prove that (
d− 1

t

)
≤ 2

(
d− 1

t− 1

)
and an easy computation shows that this is true if d ≥ 6.
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