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1 Signed graph

A signed (directed) graph is a (directed) graph where each arc is positive or negative. More
formally, a signed graph is a couple D = (V,E) where V is a finite set of vertices, and E C
V2 x {-1,1}. If (u,v,5) € E then we say that D has an arc from u to v of sign s. Note that
D can have both a positive and a negative arc from one vertex to another, and we say that D is
simple if there is at most one arc from one vertex to another. We denote by |D| the underlying
(unsigned) graph of D: the vertex set is V and there is an arc from u to v if D has a positive or
negative arc from u to v. Below, positive arcs are green, while negative arcs are red.

Example 1. Here is a example of signed graph with its underlying unsigned graph.
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A cycle in D is a simple subgraph C of D such that |C| is a cycle. The sign of a cycle is the
product of the signs of its arcs. Thus a cycle is positive if and only if it has an even number of
negative arcs. The signed graph D above has both a positive and a negative cycle.

If G is a graph and D is a signed graph with |D| = G, then D is a signed version of G. It is
obvious that every graph G has a signed version with only positive cycle, for example the signed
version with only positive arcs. But not every G has a signed version with only negative cycles, see
Exercice 1. Such graphs G are call even graphs and have been studied in e.g. [4, 2].

2 Signed interaction graph

Let f : {0,1}" — {0,1}" be a Boolean network with n components. The signed interaction
graph of f, denoted D(f), is the signed graph with vertex set [n] and with a positive (resp.
negative) arc from j to i if there exists « € {0,1}" with x; = 0 such that f;(z7) — fi(x) is positive
(resp. negative). Recall that 7 is the state obtained from z by flipping the jth component. Note
that |D(f)] = G(f), that is, the interaction graph G(f) is the underlying graph of the signed
interaction graph D(f).



Example 2. Here is an example of Boolean network with its signed interaction graph.
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In many applications (mostly in biology) the signed interaction graph D(f) of the system is
known (or well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to D(f)?

This is a difficult question since many different different networks f can have the same signed inter-
action graph (see the next section for example). However, D(f) provides much more information
on f than G(f), and we can thus hope to have stronger partial answers in the signed case than in
the unsigned case.

Given a signed graph D with vertex set [n], we denote by F(D) the set of Boolean networks
with an signed interaction graph equal to D.

3 Monotone networks

We equip {0, 1}" with the partial order < defined by:
Vz,y € {0,1}", r<y <= x; <y Vi€]ln].
We say that a Boolean function A : {0,1}" — {0,1} is monotone if
Ve,y € {0.1)",  z<y= h(z) < h(y).
We say that a Boolean network f : {0,1}" — {0,1}" is monotone if
ey e {01, a<y= @) < f).

Remark that f is monotone if and only if its n components are monotone. Here is another charac-
terization.

Proposition 1. A Boolean network is monotone if and only if its signed interaction graph has only
positive arcs.

Proof. Let f:{0,1}" — {0,1}" and suppose that D(f) has a negative arc from j to i. Then there
is x € {0,1}" with z; = 0 such that f;(z7) < f;(z). Since we have z < Z7 and since f(z) < f(7/)
is false, we deduce that f is not monotone.

Let f:{0,1}™ — {0,1}" and suppose that D(f) has only positive arcs. Let x,y € {0,1}" with
x < y. We prove, by induction on d(z,y) that f(z) < f(y). This is obvious if d(x,y) = 0. Suppose
that d(z,y) > 0. Then there is j € [n] with z; < y;, and we have z < 7 < y. If f;(27) < fi(z) for
some i € [n] then D(f) has a negative arc form j to i, a contradiction. Thus f(x) < f(2’). Since
d(z’,y) = d(z,y) — 1, by induction hypothesis, f(2/) < f(y). We deduce that f(x) < f(y). This
completes the induction step. O



Proposition 2. FEvery monotone Boolean network has at least one fixed point.

Proof. Let f:{0,1}" — {0,1}" be monotone. Let 0 be the all zero configuration. We have 0 < x
for every z € {0,1}". In particular, 0 < f(0). By monotonicity, we obtain

0 < £(0) = £(0) < f2(0) = f*(0) < f3(0) = -+

thus
0 < £(0) < f%(0) < f2(0) < --- < f"(0) < f*(0).

If f has no fixed point, then each inequality is a strict inequality, and we deduce that, for 0 < k <
n+ 1, the number of ones in f¥(0) is at least k. But then the number of ones in f"*1(0) is at least
n + 1, which is obviously false. Thus f has a fixed point. O

An antichain of {0,1}" is a subset A of {0,1}" such that there is no distinct z,y € A with
x < y. In other words, distinct members of A are incomparable. Let ([Z]) be the set of z € {0,1}"
with exactly k ones. Thus the size of ([Z]) is (). Clearly, for each k, ([Z]) is an antichain, and
thus {0,1}" can be partitioned in n + 1 antichains. The dual notion is that of chain. A chain is a
subset C' C {0,1}" such that any two members of C' is comparable. Thus there is an enumeration
z!, ..., ¥ of the elements of C' such that 2! < 2% < --- < 2¥. It is clear that the maximum size of

a chain is n + 1. The number of chain of size n + 1 is n! (Exercice 4).

We denote by A(n) the set of antichains of {0,1}". The size of A(n) is the nth Dedekind
number and is known only for 0 < n < 8. We have however the following approximation result.

Theorem 1 (Kleitman 1969 [1]).

g | A = (1= o) 7, ):
where o(1) — 0 as n — oo.

Let M(n) be the set of monotone Boolean functions A : {0,1}" — {0, 1}.

Proposition 3. For alln > 1,
(M(n)| = [A(n)]

Proof. For each antichain A of {0,1}" and we define h* : {0,1}" — {0,1} by

A, J 1 ifz>aforsomeacA
W (z) = { 0 otherwise.

Then h* is monotone. Indeed, suppose that 2 < y and h**(xz) = 1. Then 2 > a for some a € A and
since y > 2 we have y > a and thus A (y) = 1. So h* is monotone. Let A, B be distinct antichains
of {0,1}" and let us prove that h** # hB. Suppose that there is a € A\ B. Then h*(a) = 1 and if
hB(a) = 0 we are done. So suppose that hP(a) = 1. Then a > b for some b € B. If h*(b) = 1, then
b > a’ for some a’ € A. Then a > b > a'. Since a € B, a # a’. So A contains distinct comparable
elements, a contradiction. Thus h(b) = 0 # hB(b) and we are done. If B\ A is not empty the
proof is similar. Hence, A — f# is an injection from A(n) to M(n), so [M(n)| > | A(n)|.

For each monotone h : {0,1}" — {0,1} let A(h) be the set of minimal elements of h~1(1), that
is, the set of a with h(a) = 1 such that there is no x distinct from a with x < a and h(z) = 1. It
is clear that A(h) is an antichain. Let h,h’ : {0,1}" — {0, 1} be monotone and distinct, and let us



prove that A(h) # A(h'). Since h # I/, there is x such that h(x) # h'(z) and, without loss, we can
suppose that h(z) =1 and h/(z) = 0. Then z > a for some a € A(h). If a € A(R) then h'(a) =
and since a < x we have h'(z) = 1 by monotonicity, a contradiction. Thus h — A(h) is an injection

from M(n) to A(n), so IM(n)| < |A(n)|. O

Let M'(n) be the set of monotone Boolean functions h : {0,1}"™ — {0,1} that depends on its n
components. Following the second lecture, we easily deduce that

n—1 n
M) = 1M =3 (7)o
=0

From that and the result of Kleitman, we deduce that |M’(n)| is doubly exponential with n. So if
D is a signed graph with only positive arcs, then |F'(D)| is doubly exponential with the maximum
in-degree of | D|. Actually, it is not difficult to see that this is true for every signed graph D.

Lemma 1 (Sperner’s theorem 1928 [3]). If A is an antichain of {0,1}" then |A] < (Ln/QJ)

Proof. Let A be an antichain of {0,1}". For each z € {0,1}" we denote by C;, the chaines of {0,1}"
of size n + 1 containing x. Let w(z) be number of ones in x. Then there are w(x)! chain from 0 to
x of size w(z)+ 1, and (n —w(x))! chains from z to 1 of size n — w(x) + 1. Since any chain of size
n + 1 containing x is the union of a chain from 0 to x of size w(z) + 1 and a chain from x to 1 of
size n —w(x) + 1, we deduce that

|Ca| = w(@)!(n — w(z))!

Suppose that C' € C, N Cy for distinct z,y € A. Then C contains both = and y, thus x and y are
comparable, a contradiction. Thus

Vr,y € A, r#y=0C,NCy=0.

Since there are n! chains of size n + 1, we deduce that

| Ugea Cx| = Z |Cy| = Zw(az)'(n —w(x))! < nl.

€A €A

Thus

4 Exercises

1. Prove that the following graph G is even.



Answer. Let D be a signed version of GG, and suppose, for a contradiction, that all the cycles
of D are negative. Then D is simple. Let s;; be the sign of the arc from i to j. We have
si; = —s;; since otherwise, the cycle of length two between i and j is positive. Hence

512523531 = (—S21 — s32 — s13) = —(S13532521)

Thus 1 -2 -3 — 1and 1 - 3 — 2 — 1 are cycles of opposite signs, thus exactly one is
positive, a contradiction.

2. Find a Boolean network with the following signed interaction graph.

O O

v

Answer.
filz) = x3
folz) = m
fg(l’) = (Tg/\ xl) V ($2 AN $3)

3. Prove that logy | A(n)| > (U:/L?J)'
[n]

Answer. Since A = (Ln 5 J) is an antichain if size (LnT/L2 j)? and since every subset of A is an

antichain, there is at least 2|4/ antichains in {0,1}".

4. Prove that {0,1}" has n! chains of size n + 1.

Answer. Let C = 2% < 2! --- < 2" be a chain of size n + 1. For each k € [n] there is a unique
component i, that differs between =1 and «*, and i1, . . ., 4, is a permutation of [n], denoted
7(C). Tt is clear that if C' and C” are distinct chains of size n + 1 then 7(C) # «(C"). Thus
{0,1}™ has at most n! chains of size n + 1. Conversely, given a permutation 7 = iy,...,1,
of [n] we define the chain C' = 20 < 2! < ... < 2", where z° = 0 (all zero state) and where
the components at one in z* are i1, ...,4i;. Then if 7 and 7’ are distinct permutations, then
C(m) and C(7’) are distinct, and thus {0, 1}™ has at least n! chains of size n + 1.
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