Introduction to Finite Dynamical Systems

Adrien Richard
Lecture n° 6, M2 Informatique, October 30, 2019

1 Signed graph

A signed (directed) graph is a (directed) graph where each arc is positive or negative. More formally, a signed graph is a couple $D=(V, E)$ where V is a finite set of vertices, and $E \subseteq$ $V^{2} \times\{-1,1\}$. If $(u, v, s) \in E$ then we say that D has an arc from u to v of $\operatorname{sign} s$. Note that D can have both a positive and a negative arc from one vertex to another, and we say that D is simple if there is at most one arc from one vertex to another. We denote by $|D|$ the underlying (unsigned) graph of D : the vertex set is V and there is an arc from u to v if D has a positive or negative arc from u to v. Below, positive arcs are green, while negative arcs are red.

Example 1. Here is a example of signed graph with its underlying unsigned graph.

D

$|D|$
A cycle in D is a simple subgraph C of D such that $|C|$ is a cycle. The sign of a cycle is the product of the signs of its arcs. Thus a cycle is positive if and only if it has an even number of negative arcs. The signed graph D above has both a positive and a negative cycle.

If G is a graph and D is a signed graph with $|D|=G$, then D is a signed version of G. It is obvious that every graph G has a signed version with only positive cycle, for example the signed version with only positive arcs. But not every G has a signed version with only negative cycles, see Exercice 1. Such graphs G are call even graphs and have been studied in e.g. [4, 2].

2 Signed interaction graph

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a Boolean network with n components. The signed interaction graph of f, denoted $D(f)$, is the signed graph with vertex set $[n]$ and with a positive (resp. negative) arc from j to i if there exists $x \in\{0,1\}^{n}$ with $x_{j}=0$ such that $f_{i}\left(\bar{x}^{j}\right)-f_{i}(x)$ is positive (resp. negative). Recall that \bar{x}^{j} is the state obtained from x by flipping the j th component. Note that $|D(f)|=G(f)$, that is, the interaction graph $G(f)$ is the underlying graph of the signed interaction graph $D(f)$.

Example 2. Here is an example of Boolean network with its signed interaction graph.

x	$f(x)$
000	000
001	110
010	101
011	110
100	001
101	100
110	101
111	100

In many applications (mostly in biology) the signed interaction graph $D(f)$ of the system is known (or well approximated) while f itself is unknown. So the basic question is:

What can be said on the dynamics of f according to $D(f)$?

This is a difficult question since many different different networks f can have the same signed interaction graph (see the next section for example). However, $D(f)$ provides much more information on f than $G(f)$, and we can thus hope to have stronger partial answers in the signed case than in the unsigned case.

Given a signed graph D with vertex set $[n]$, we denote by $F(D)$ the set of Boolean networks with an signed interaction graph equal to D.

3 Monotone networks

We equip $\{0,1\}^{n}$ with the partial order \leq defined by:

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \quad \Longleftrightarrow \quad x_{i} \leq y_{i} \forall i \in[n]
$$

We say that a Boolean function $h:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow h(x) \leq h(y) .
$$

We say that a Boolean network $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is monotone if

$$
\forall x, y \in\{0,1\}^{n}, \quad x \leq y \Rightarrow f(x) \leq f(y) .
$$

Remark that f is monotone if and only if its n components are monotone. Here is another characterization.

Proposition 1. A Boolean network is monotone if and only if its signed interaction graph has only positive arcs.
Proof. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and suppose that $D(f)$ has a negative arc from j to i. Then there is $x \in\{0,1\}^{n}$ with $x_{j}=0$ such that $f_{i}\left(\bar{x}^{j}\right)<f_{i}(x)$. Since we have $x \leq \bar{x}^{j}$ and since $f(x) \leq f\left(\bar{x}^{j}\right)$ is false, we deduce that f is not monotone.

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and suppose that $D(f)$ has only positive arcs. Let $x, y \in\{0,1\}^{n}$ with $x \leq y$. We prove, by induction on $d(x, y)$ that $f(x) \leq f(y)$. This is obvious if $d(x, y)=0$. Suppose that $d(x, y)>0$. Then there is $j \in[n]$ with $x_{j}<y_{j}$, and we have $x \leq \bar{x}^{j} \leq y$. If $f_{i}\left(\bar{x}^{j}\right)<f_{i}(x)$ for some $i \in[n]$ then $D(f)$ has a negative arc form j to i, a contradiction. Thus $f(x) \leq f\left(\bar{x}^{j}\right)$. Since $d\left(\bar{x}^{j}, y\right)=d(x, y)-1$, by induction hypothesis, $f\left(\bar{x}^{j}\right) \leq f(y)$. We deduce that $f(x) \leq f(y)$. This completes the induction step.

Proposition 2. Every monotone Boolean network has at least one fixed point.
Proof. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be monotone. Let $\mathbf{0}$ be the all zero configuration. We have $\mathbf{0} \leq x$ for every $x \in\{0,1\}^{n}$. In particular, $\mathbf{0} \leq f(\mathbf{0})$. By monotonicity, we obtain

$$
\mathbf{0} \leq f(\mathbf{0}) \Rightarrow f(\mathbf{0}) \leq f^{2}(\mathbf{0}) \Rightarrow f^{2}(\mathbf{0}) \leq f^{3}(\mathbf{0}) \Rightarrow \cdots
$$

thus

$$
\mathbf{0} \leq f(\mathbf{0}) \leq f^{2}(\mathbf{0}) \leq f^{3}(\mathbf{0}) \leq \cdots \leq f^{n}(\mathbf{0}) \leq f^{n+1}(\mathbf{0}) .
$$

If f has no fixed point, then each inequality is a strict inequality, and we deduce that, for $0 \leq k \leq$ $n+1$, the number of ones in $f^{k}(\mathbf{0})$ is at least k. But then the number of ones in $f^{n+1}(\mathbf{0})$ is at least $n+1$, which is obviously false. Thus f has a fixed point.

An antichain of $\{0,1\}^{n}$ is a subset A of $\{0,1\}^{n}$ such that there is no distinct $x, y \in A$ with $x \leq y$. In other words, distinct members of A are incomparable. Let $\binom{[n]}{k}$ be the set of $x \in\{0,1\}^{n}$ with exactly k ones. Thus the size of $\binom{[n]}{k}$ is $\binom{n}{k}$. Clearly, for each $k,\binom{[n]}{k}$ is an antichain, and thus $\{0,1\}^{n}$ can be partitioned in $n+1$ antichains. The dual notion is that of chain. A chain is a subset $C \subseteq\{0,1\}^{n}$ such that any two members of C is comparable. Thus there is an enumeration x^{1}, \ldots, x^{k} of the elements of C such that $x^{1}<x^{2}<\cdots<x^{k}$. It is clear that the maximum size of a chain is $n+1$. The number of chain of size $n+1$ is n ! (Exercice 4).

We denote by $\mathcal{A}(n)$ the set of antichains of $\{0,1\}^{n}$. The size of $\mathcal{A}(n)$ is the nth Dedekind number and is known only for $0 \leq n \leq 8$. We have however the following approximation result.

Theorem 1 (Kleitman 1969 [1]).

$$
\log _{2}|\mathcal{A}(n)|=(1-o(1))\binom{n}{\lfloor n / 2\rfloor} .
$$

where $o(1) \rightarrow 0$ as $n \rightarrow \infty$.
Let $\mathcal{M}(n)$ be the set of monotone Boolean functions $h:\{0,1\}^{n} \rightarrow\{0,1\}$.
Proposition 3. For all $n \geq 1$,

$$
|\mathcal{M}(n)|=|\mathcal{A}(n)|
$$

Proof. For each antichain A of $\{0,1\}^{n}$ and we define $h^{A}:\{0,1\}^{n} \rightarrow\{0,1\}$ by

$$
h^{A}(x)= \begin{cases}1 & \text { if } x \geq a \text { for some } a \in A \\ 0 & \text { otherwise } .\end{cases}
$$

Then h^{A} is monotone. Indeed, suppose that $x \leq y$ and $h^{A}(x)=1$. Then $x \geq a$ for some $a \in A$ and since $y \geq x$ we have $y \geq a$ and thus $h^{A}(y)=1$. So h^{A} is monotone. Let A, B be distinct antichains of $\{0,1\}^{n}$ and let us prove that $h^{A} \neq h^{B}$. Suppose that there is $a \in A \backslash B$. Then $h^{A}(a)=1$ and if $h^{B}(a)=0$ we are done. So suppose that $h^{B}(a)=1$. Then $a \geq b$ for some $b \in B$. If $h^{A}(b)=1$, then $b \geq a^{\prime}$ for some $a^{\prime} \in A$. Then $a \geq b \geq a^{\prime}$. Since $a \notin B, a \neq a^{\prime}$. So A contains distinct comparable elements, a contradiction. Thus $h^{A}(b)=0 \neq h^{B}(b)$ and we are done. If $B \backslash A$ is not empty the proof is similar. Hence, $A \mapsto f^{A}$ is an injection from $\mathcal{A}(n)$ to $\mathcal{M}(n)$, so $|\mathcal{M}(n)| \geq|\mathcal{A}(n)|$.

For each monotone $h:\{0,1\}^{n} \rightarrow\{0,1\}$ let $A(h)$ be the set of minimal elements of $h^{-1}(1)$, that is, the set of a with $h(a)=1$ such that there is no x distinct from a with $x \leq a$ and $h(x)=1$. It is clear that $A(h)$ is an antichain. Let $h, h^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}$ be monotone and distinct, and let us
prove that $A(h) \neq A\left(h^{\prime}\right)$. Since $h \neq h^{\prime}$, there is x such that $h(x) \neq h^{\prime}(x)$ and, without loss, we can suppose that $h(x)=1$ and $h^{\prime}(x)=0$. Then $x \geq a$ for some $a \in A(h)$. If $a \in A\left(h^{\prime}\right)$ then $h^{\prime}(a)=1$ and since $a \leq x$ we have $h^{\prime}(x)=1$ by monotonicity, a contradiction. Thus $h \mapsto A(h)$ is an injection from $\mathcal{M}(n)$ to $\mathcal{A}(n)$, so $|\mathcal{M}(n)| \leq|\mathcal{A}(n)|$.

Let $\mathcal{M}^{\prime}(n)$ be the set of monotone Boolean functions $h:\{0,1\}^{n} \rightarrow\{0,1\}$ that depends on its n components. Following the second lecture, we easily deduce that

$$
\left|\mathcal{M}^{\prime}(n)\right|=|\mathcal{M}(n)|-\sum_{i=0}^{n-1}\binom{n}{i}\left|\mathcal{M}^{\prime}(i)\right| .
$$

From that and the result of Kleitman, we deduce that $\left|\mathcal{M}^{\prime}(n)\right|$ is doubly exponential with n. So if D is a signed graph with only positive arcs, then $|F(D)|$ is doubly exponential with the maximum in-degree of $|D|$. Actually, it is not difficult to see that this is true for every signed graph D.

Lemma 1 (Sperner's theorem 1928 [3]). If A is an antichain of $\{0,1\}^{n}$ then $|A| \leq\binom{ n}{n / 2\rfloor}$.
Proof. Let A be an antichain of $\{0,1\}^{n}$. For each $x \in\{0,1\}^{n}$ we denote by C_{x} the chaines of $\{0,1\}^{n}$ of size $n+1$ containing x. Let $w(x)$ be number of ones in x. Then there are $w(x)$! chain from $\mathbf{0}$ to x of size $w(x)+1$, and $(n-w(x))$! chains from x to $\mathbf{1}$ of size $n-w(x)+1$. Since any chain of size $n+1$ containing x is the union of a chain from $\mathbf{0}$ to x of size $w(x)+1$ and a chain from x to $\mathbf{1}$ of size $n-w(x)+1$, we deduce that

$$
\left|C_{x}\right|=w(x)!(n-w(x))!
$$

Suppose that $C \in C_{x} \cap C_{y}$ for distinct $x, y \in A$. Then C contains both x and y, thus x and y are comparable, a contradiction. Thus

$$
\forall x, y \in A, \quad x \neq y \Rightarrow C_{x} \cap C_{y}=\emptyset .
$$

Since there are n ! chains of size $n+1$, we deduce that

$$
\left|\cup_{x \in A} C_{x}\right|=\sum_{x \in A}\left|C_{x}\right|=\sum_{x \in A} w(x)!(n-w(x))!\leq n!.
$$

Thus

$$
\frac{|A|}{\binom{n}{\lfloor n / 2\rfloor}}=\sum_{x \in A} \frac{1}{\binom{n}{\lfloor n / 2\rfloor}} \leq \sum_{x \in A} \frac{1}{\binom{n}{w(x)}}=\sum_{x \in A} \frac{w(x)!(n-w(x))!}{n!} \leq 1 .
$$

4 Exercises

1. Prove that the following graph G is even.

Answer. Let D be a signed version of G, and suppose, for a contradiction, that all the cycles of D are negative. Then D is simple. Let $s_{i j}$ be the sign of the arc from i to j. We have $s_{i j}=-s_{j i}$ since otherwise, the cycle of length two between i and j is positive. Hence

$$
s_{12} s_{23} s_{31}=\left(-s_{21}-s_{32}-s_{13}\right)=-\left(s_{13} s_{32} s_{21}\right)
$$

Thus $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$ are cycles of opposite signs, thus exactly one is positive, a contradiction.
2. Find a Boolean network with the following signed interaction graph.

Answer.

$$
\left\{\begin{array}{l}
f_{1}(x)=x_{3} \\
f_{2}(x)=x_{1} \\
f_{3}(x)=\left(\overline{x_{2}} \wedge x_{1}\right) \vee\left(x_{2} \wedge x_{3}\right)
\end{array}\right.
$$

3. Prove that $\log _{2}|\mathcal{A}(n)| \geq\binom{ n}{\lfloor n / 2\rfloor}$.

Answer. Since $A=\binom{[n]}{\lfloor n / 2\rfloor}$ is an antichain if size $\binom{n}{\lfloor n / 2\rfloor}$, and since every subset of A is an antichain, there is at least $2^{|A|}$ antichains in $\{0,1\}^{n}$.
4. Prove that $\{0,1\}^{n}$ has $n!$ chains of size $n+1$.

Answer. Let $C=x^{0}<x^{1} \cdots<x^{n}$ be a chain of size $n+1$. For each $k \in[n]$ there is a unique component i_{k} that differs between x^{k-1} and x^{k}, and i_{1}, \ldots, i_{n} is a permutation of [n], denoted $\pi(C)$. It is clear that if C and C^{\prime} are distinct chains of size $n+1$ then $\pi(C) \neq \pi\left(C^{\prime}\right)$. Thus $\{0,1\}^{n}$ has at most n ! chains of size $n+1$. Conversely, given a permutation $\pi=i_{1}, \ldots, i_{n}$ of $[n]$ we define the chain $C=x^{0}<x^{1}<\cdots<x^{n}$, where $x^{0}=\mathbf{0}$ (all zero state) and where the components at one in x^{k} are i_{1}, \ldots, i_{k}. Then if π and π^{\prime} are distinct permutations, then $C(\pi)$ and $C\left(\pi^{\prime}\right)$ are distinct, and thus $\{0,1\}^{n}$ has at least $n!$ chains of size $n+1$.

References

[1] Daniel Kleitman. On dedekind's problem: the number of monotone boolean functions. Proceedings of the American Mathematical Society, 21(3):677-682, 1969.
[2] Paul Seymour and Carsten Thomassen. Characterization of even directed graphs. Journal of Combinatorial Theory, Series B, 42(1):36-45, 1987.
[3] E. Sperner. Ein satz über untermengen einer endlichen menge. Mathematische Zeitschrift, 27(1):544-548, 1928.
[4] Carsten Thomassen. Even cycles in directed graphs. European Journal of Combinatorics, 6(1):85-89, 1985.

