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Recall that, given a signed graph D with vertex set [n], we denote by F (D) the set of Boolean
networks f : {0, 1}n → {0, 1}n with D(f) = D. Our aim is to find what can be said on the
dynamical properties of Boolean networks in F (D). As a starting point, following what we have
regarded in the unsigned case, we study the number of fixed points, and introduce the following
two quantities:

max(D) = maximum number of fixed point in a Boolean network f ∈ F (D)
min(D) = minimum number of fixed point in a Boolean network f ∈ F (D).

If D is acyclic, we know that min(D) = max(D) = 1. What are the simplest non-acyclic signed
graphs? These are clearly a signed graphs D such that |D| is a cycle. In that case, |F (D)| = 1
and the unique Boolean network f in F (D) has two fixed points if D is a positive cycle, and no
fixed point if D is a negative cycle (Exercice 1). Thus isolated positive and negative cycles have
clearly distinct behaviors, and there distinction is naturally justified. So concerning fixed points,
the situation for positive and negative cycles is clear. What is the next step? What other simple
signed graph families could we study to progress on max(D) and min(D)? One of us propose to
study signed cliques. That’s an interesting proposition.

1 Maximum and minimum number of fixed points for signed cliques

To start, its natural to study the full-positive (resp. full-negative) clique K+
n (resp. K−n ) on n

vertices, obtained by adding a positive (resp. negative) sign on each arc of Kn. We then have the
following results.

Theorem 1 (Gadouleau Richard Riis [2]). For every n ≥ 1, we have(
n
bn/2c

)
n

≤ max(K+
n ) ≤ (2− o(1))

(
n
bn/2c

)
n

max(K−n ) =

(
n

bn/2c

)

min(K+
n ) = 2 min(K−n ) =

{
0 if n ≥ 4
1 otherwise.

Results concerning the minimum number of fixed points are exact and not difficult. In partic-
ular, min(K+

n ) ≤ 2 is an easy exercice (Exercice 2) and min(K+
n ) ≥ 2 follow from a more general

result given below. The analyse of te maximum number of fixed points is more interesting. The
lower bound on max(K+

n ) involves a classical result in Coding Theory (the Graham-Sloane bound,
see [2]) and the upper bound is an easy consequence of a recent result is Set Theory [3].

To prove max(K−n ) ≥
(

n
bn/2c

)
, it is sufficient to consider the minority network on K−n (Exercice

3). The converse inequality follows from the following simple result, which uses Sperner’s theorem
given in the last lecture.
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Lemma 1. If D is a signed graph with n vertices and only negative arcs, then

max(D) ≤
(

n

bn/2c

)
.

Proof. Let x and y be distinct fixed points of f ∈ F (D). Suppose, for a contradiction, that x ≤ y.
Then f(x) ≥ f(y) since all the arcs of D are negative. Thus x ≥ y since x and y are fixed points,
and thus x = y, a contradiction. Thus the set of fixed points of f is an antichain, and by Sperner’s
theorem, the number of fixed points of f is at most

(
n
bn/2c

)
.

Conjecture 1. If D is a simple signed digraph without cycle of length one, then

max(D) ≤
(

n

bn/2c

)
.

What about other signed cliques? There are no partial answer that are not directed conse-
quences of results about the full-positive and full-negative clique. We have the following conjecture.

Conjecture 2. Let D be a simple signed digraph with |D| = Kn.

max(K+
n ) ≤ max(D) ≤ max(K−n ).

2 Absence of positive and negative cycles

Since positive and negative cycles, when isolated, play distinct roles, it is interesting to see what
happens when we forbid the presence of positive or negative cycles. For that we introduce some
definitions and preliminary result. Given D with vertex set [n] and x ∈ {0, 1}n we denote by D(x)
the spanning subgraph of D obtained by removing all the positive arcs from i to j with xi 6= xj and
all the negative arcs from i to j with xi = xj . The basic property concerning D(x) is the following.
The proof is an easy exercice (Exercice 4).

Proposition 1. Let D be a signed graph with vertex set [n] and x ∈ {0, 1}n. Then D(x) has only
positive cycles.

A basic result is signed graph theory is the following. A walk of length ` ≥ 1 in D is a sequence
of vertices i0, . . . , i` such that D has an arc ak from ik to ik+1 for all 0 ≤ k < `. If D is simple,
ak is the unique arc from ik to ik+1, and the sign of D is defined, without possible ambiguity, as
the product of the sign of the arcs ak. Hence, a walk can be regarded as a path where repetition
of vertices are allowed. A closed walk is a walk i0, . . . , i` with i0 = i`.

Theorem 2 (Harary 1954). Let D be a strongly connected signed graph with vertex set [n]. If D
has only positive cycles, then D(x) = D for some x ∈ {0, 1}n.

Proof. Suppose that D has only positive cycles (this implies that D is simple). Let T be a spanning
out-tree of D rooted in a vertex v. For all vertex i, let Tj be the path from v to j contained in
T (Tv is of length zero and positive). Let x ∈ {0, 1}n be defined by: for all i ∈ [n], xi = 0 is Ti

is positive and xi = 1 otherwise. We claim that D(x) = D. Suppose, for a contradiction, that
D(x) 6= D. Thus D has a positive arc from i to j with xi 6= xj or a negative arc from i to j with
xi = xj .

Suppose first that D has a positive arc from i to j with xi 6= xj . Then Ti and Tj have opposite
sign. If i1, . . . , il are the vertices of Ti in the order, then i1, . . . , il, j is a walk with the same sign as
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Ti, since sign the arc from i = i` to j is positive. We deduce that D has a positive walk W+ from
v to j and a negative walk W− from v to j. Let P be a path from j to v. If P is positive, then
the concatenation of W− and P gives a negative walk from v to v and if P is negative, then the
concatenation of W+ and P gives a negative walk from v to v. So in both case, D has a negative
closed walk and we deduce that D has a negative cycle (Exercice 5), a contradiction.

Suppose first that D has a negative arc from i to j with xi = xj . Then Ti and Tj have the same
sign. If i1, . . . , il are the vertices of Ti in the order, then i1, . . . , il, j is a walk which has not the
same sign as Ti, since sign the arc from i = i` to j is negative. We deduce that D has a positive
walk W+ from v to j and a negative walk W− from v to j, and as above, we deduce that D has a
negative cycle, a contradiction.

Remark 1. The proof gives an O(n2)-time algorithm to find a negative cycle in D if it exists. By
the theorem above, which is a real tour de force, it is also polynomial to decide if D has a positive
cycle.

Theorem 3 (Robertson Seymour Thomas [4]). There is a polynomial time algorithm that decides
if a given signed digraph D has a positive cycle.

Given a signed graph D and a vertex i, we denote by N s(i) be the set of vertices j such that
D has an arc from j to i of sign s.

Lemma 2. Let D be a sign graph with vertex set [n], let x ∈ {0, 1}n and let i be a vertex of D
which is not a source. Then the following holds:

• If xj = 1 for all j ∈ N+(i) and xj = 0 for all j ∈ N−(i), then fi(x) = 1.

• If xj = 0 for all j ∈ N+(i) and xj = 1 for all j ∈ N−(i), then fi(x) = 0.

Proof. To prove the first assertion, let x with xj = 1 for j ∈ N+(i) and xj = 0 for all j ∈ N−(i).
Suppose, for a contradiction, that fi(x) = 0. Let y ∈ {0, 1}n. We prove by induction on the
Hamming distance d(x, y) that fi(y) = 0 for all y ∈ {0, 1}n. If d(x, y) = 0 there is nothing to prove.
So suppose that d(x, y) > 0. Let j ∈ ∆(x, y). We have two cases:

1. Suppose xj < yj . By induction, fi(y + ej) = 0. If fi(y) = 1, then D has a positive arc from
j to i, thus xj = 1 and we obtain a contradiction. Thus fi(y) = 0.

2. Suppose xj > yj . By induction, fi(y + ej) = 0. If fi(y) = 1, then D has a negative arc from
j to i, thus xj = 0 and we obtain a contradiction. Thus fi(y) = 0.

So fi(y) = 0 in both cases, and this proves the induction step. Hence fi(y) = 0 for all y ∈ {0, 1}n.
So fi is a constant function and we deduce that i is a source of D, a contradiction. This proves the
first assertion, and the second has a similar proof.

Theorem 4 (Aracena 2008 [1]). Let D be a strong connected signed graph with vertex set [n].

1. If D has only negative cycles, min(D) = 0.

2. If D has only positive cycles, max(D) ≥ 2.

Proof. For the first point, suppose that D has only negative cycles but min(D) > 0. Thus there is
f ∈ F (D) with a fixed point, say x. Let i ∈ [n]. If xi = 0 then fi(x) = xi = 0, thus fi(x) 6= 1 and
we deduce from the lemma that there is j ∈ N+(i) with xj = 0 = xi or j ∈ N−(i) with xj = 1 6= xi.
Thus, in both case, the arc from j to i is in D(x). If xi = 1 we prove similarly that there is an arc
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from j to i in D(x). Thus the minimum in-degree of D(x) is at least one. We deduce that D(x)
has a cycle, which is positive by the previous proposition, a contradiction. Thus min(D) = 0.

For the second point, suppose that D has only positive negatives and let f ∈ F (D). By Harary’s
theorem, there is x such that D(x) = D. Using the previous lemma, we deduce that:

1. if xi = 1 then xj = 1 for all j ∈ N+(i) and xj = 0 for all j ∈ N−(i), so fi(x) = 1;

2. if xi = 0 then xj = 0 for all j ∈ N+(i) and xj = 1 for all j ∈ N−(i), so fi(x) = 0.

Hence, fi(x) = xi in both cases. We deduce that x is a fixed point. Let x̄ be the state opposite to x,
that is obtained by changing all the components. Then we have D(x̄) = D and we prove similarly
that x̄ is a fixed point. Hence f has at least two fixed points and we deduce that max(D) ≥ 2.

3 Exercises

1. Let D be a simple signed graphe with |D| = Cn. Prove that min(D) = max(D) = 0 if D is
negative and min(D) = max(D) = 2 if D is positive.

Answer. For i ∈ [n], and let si = 0 is the sign of the arc from i − 1 to i is positive, and
si = 1 if it is negative (where the soustraction is modulo n). Then F (D) contains a unique
Boolean network f , since fi(x) = xi−1 + si for all x ∈ {0, 1}n (sum modulo two). Suppose
that x = f(x). Then

x1 = f1(x) = xn + s1
x2 = f2(x) = x1 + s2 = xn + s1 + s2
x3 = f3(x) = x2 + s3 = xn + s1 + s2 + s3

...
xn = fn(x) = xn−1 + sn = xn + s1 + s2 + · · ·+ sn−1 + sn.

We deduce that s1 + s2 + · · · + sn−1 + sn = 0, thus there is an even number of ones in the
sum, that is, D has an even number of negative arcs, and thus it is positive. We deduce that
if D is negative then f has no fixed points and thus min(D) = max(D) = 0. Conversely, for
a ∈ {0, 1}n, let xa ∈ {0, 1}n be defined recursively by xa1 = a and xai = xai−1 +si for 1 < i ≤ n.
Then, we obviously have fi(x

a) = xai for 1 < i ≤ n, and

xan = xan−1 + sn = xan−2 + sn−1 + sn = · · ·xa1 + s2 + s3 + · · ·+ sn−1 + sn.

Thus f1(x
a) = xan + s1 = x1 + s1 + s2 + · · ·+ sn. If D is positive, s1 + s2 + · · ·+ sn = 0 thus

f1(x
a) = xa1, that is xa is a fixed point of f . Thus x0 and x1 are fixed points of f , and it

is easy to see that f has no other fixed point. Thus f has exactly two fixed points and we
deduce that min(D) = max(D) = 2.

2. Prove that min(K+
n ) ≤ 2.

Answer. Let f be the an-network over K+
n , that is fi(x) =

∧
j 6=i xj . Clearly, the all-zero

and all-one configurations are fixed points. Suppose that x = f(x), and let i, j distinct
components, and suppose that xj 6= xi. If xi = 0 then fj(x) = 0 6= xj , a contradiction, and
if xj = 0 then fi(x) = 0 6= xi, a contradiction. We deduce that all the components in x have
the same value, thus x is the all-zero or the all-one configuration. Hence f has exactly two
fixed points, and this implies min(K+

n ) ≤ 2.
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3. Prove that max(K−n ) ≥
(

n
bn/2c

)
.

Answer. Considering the minority function on K−n , that is, let f ∈ F (K−n ) defined by: for all
i ∈ [n] and x ∈ {0, 1},

fi(x) =

{
0 if

∑
j 6=i xj ≥ bn/2c,

1 otherwise.

Let any x containing exactly bn/2c ones. If xi = 0 then
∑

j 6=i xj = bn/2c thus fi(x) = 0 = xi,
and if xi = 1 then

∑
j 6=i xj = bn/2c − 1 thus fi(x) = 1 = xi. So x is a fixed point. Since the

number of x with exactly bn/2c ones is
(

n
bn/2c

)
, we deduce that f has at least

(
n
bn/2c

)
fixed

points.

4. Let D be a signed graph with vertex set [n] and x ∈ {0, 1}n. Prove that D(x) has only positive
cycles.

Answer. Let i0, . . . , in be a walk in D(x). Then this walk is positive if and only if x0 = x`.
We deduce that all the closed walks of D(x) are positive. In particular, all the cycles of D(x)
are positive.

5. Let D be a signed graph. Prove that D has a negative cycle if it has a negative closed walk.

Answer. Let W = i0, . . . , i` be a negative closed walk in D of minimal length. If the
vertices i0, . . . , i`−1 are all distinct, then W itself form a negative cycle and we are done.
Otherwise, there are 0 ≤ p < q < ` such that ip = iq. Then, W1 = ip, . . . , iq and W2 =
i0, . . . , ip, iq+1 . . . , i` are closed walk, and the sign of W is the product of the sign of W1 and
W2. Thus exactly one of W1,W2 is negative, and since both are shorter than W , we obtain
a contradiction. Thus every negative closed walk in D of minimal length is a negative cycle.
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