Complexity of maximum and minimum fixed point problem in Boolean networks

Adrien Richard
I3S laboratory, CNRS, Nice, France

joint work with

Florian Bridoux, Nicola Durbec & Kévin Perrot
LIS laboratory, CNRS, Marseille, France

Workshop: Theory and applications of Boolean interaction networks
Freie Universität, Berlin, September 12-13, 2019
A Boolean network (BN) with \(n \) components is a function

\[
f : \{0, 1\}^n \rightarrow \{0, 1\}^n
\]

\[
x = (x_1, \ldots, x_n) \mapsto f(x) = (f_1(x), \ldots, f_n(x))
\]
A **Boolean network (BN)** with \(n \) components is a function

\[
f : \{0, 1\}^n \rightarrow \{0, 1\}^n
\]

\[
x = (x_1, \ldots, x_n) \mapsto f(x) = (f_1(x), \ldots, f_n(x))
\]

- **Global** transition function
- **Locale** transition functions

\[
f_i : \{0, 1\}^n \rightarrow \{0, 1\}
\]
A **Boolean network (BN)** with \(n \) components is a function

\[
f: \{0, 1\}^n \rightarrow \{0, 1\}^n
\]

\[
x = (x_1, \ldots, x_n) \mapsto f(x) = (f_1(x), \ldots, f_n(x))
\]

The **synchronous dynamics** is given by

\[
x^{t+1} = f(x^t).
\]

The **asynchronous dynamics** is more realistic in many cases.

Fixed points of \(f \) are **stable states** for both dynamics.
A **Boolean network (BN)** with n components is a function

$$f : \{0, 1\}^n \rightarrow \{0, 1\}^n$$

$$x = (x_1, \ldots, x_n) \mapsto f(x) = (f_1(x), \ldots, f_n(x))$$

The **interaction graph (IG)** of f is the **signed digraph** defined by

- the vertex set is $\{1, \ldots, n\}$,
- there is a positive edge $j \rightarrow i$ if there is $x \in \{0, 1\}^n$ such that

$$f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 0$$
$$f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 1$$

- there is a negative edge $j \rightarrow i$ if there is $x \in \{0, 1\}^n$ such that

$$f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) = 1$$
$$f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 0$$
Example with $n = 3$

\[
\begin{align*}
 f_1(x) &= x_2 \lor x_3 \\
 f_2(x) &= \overline{x_1} \land \overline{x_3} \\
 f_3(x) &= \overline{x_3} \land (x_1 \lor x_2)
\end{align*}
\]

Synchronous dynamics

Interaction graph
BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.
BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?
BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?

We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.
BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?

We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.

Previous complexity results for BNs essentially concern the

Boolean Network Consistency Problem

Input: A Boolean network f and a dynamical property P.

Question: Does the dynamics of f satisfies P?
BNs are classical models for gene networks. When biologists study a gene network, the interaction graph is often the first reliable data.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?

We study this decision problem from a complexity point of view and for dynamical properties concerning the number of fixed points.

Previous complexity results for BNs essentially concern the

Boolean Network Consistency Problem

Input: A Boolean network f and a dynamical property P.

Question: Does the dynamics of f satisfies P?

Theorem [Kosub 2008]

It is NP-complete to decide if a BN has a fixed point.
Definitions

\[
\begin{align*}
\max(G) & := \text{maximum number of fixed points in a BN on } G \\
\min(G) & := \text{minimum number of fixed points in a BN on } G
\end{align*}
\]
Definitions

\[
\text{max}(G) := \text{maximum number of fixed points in a BN on } G \\
\text{min}(G) := \text{minimum number of fixed points in a BN on } G
\]

\[
\begin{align*}
&\text{max}(G) = 3 \\
&\text{min}(G) = 1 \\
&(8 \text{ BNs})
\end{align*}
\]
Definitions

\[
\begin{align*}
\text{max}(G) & := \text{maximum number of fixed points in a BN on } G \\
\text{min}(G) & := \text{minimum number of fixed points in a BN on } G
\end{align*}
\]

\[\text{max}(G) = 3 \quad \text{min}(G) = 1 \quad (8 \text{ BNs})\]

\[\text{max}(G') = 2 \quad \text{min}(G') = 2 \quad (8 \text{ BNs})\]
Definitions

\[
\text{max}(G) := \text{maximum number of fixed points in a BN on } G
\]
\[
\text{min}(G) := \text{minimum number of fixed points in a BN on } G
\]

\[
\begin{align*}
\text{max}(G') &= 3 \\
\text{min}(G') &= 1
\end{align*}
\]

(8 BNs)

\[
\begin{align*}
\text{max}(G') &= 2 \\
\text{min}(G') &= 2
\end{align*}
\]

(8 BNs)

\textit{k-MaxProblem: } Given \(G \), do we have \(\text{max}(G) \geq k \)?
Definitions

\[\text{max}(G) := \text{maximum number of fixed points in a BN on } G \]
\[\text{min}(G) := \text{minimum number of fixed points in a BN on } G \]

\[\text{max}(G) = 3 \quad \text{min}(G) = 1 \quad \text{(8 BNs)} \]

\[\text{max}(G) = 2 \quad \text{min}(G) = 2 \quad \text{(8 BNs)} \]

\text{*k-MaxProblem*: Given } G, \text{ do we have } \text{max}(G) \geq k? \text{*k-MinProblem*: Given } G, \text{ do we have } \text{min}(G) \leq k?
Theorem

\[\max(G) \geq 1 \] iff each initial strong component of \(G \) has a positive cycle.
max\((G) \geq 1? \)

Theorem
\[\text{max}(G) \geq 1 \text{ iff each initial strong component of } G \text{ has a positive cycle.} \]

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polynomial time if \(G \) has a positive cycle.
max(G) ≥ 1?

Theorem

max(G) ≥ 1 iff each initial strong component of G has a positive cycle.

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]

We can decide in polynomial time if G has a positive cycle.

Corollary

We can decide in polynomial time if max(G) ≥ 1.
max(G) ≥ 1?

Theorem
\[\max(G) \geq 1 \text{ iff each initial strong component of } G \text{ has a positive cycle.} \]

Theorem [Robertson, Seymour and Thomas 1999; McCuaig 2004]
We can decide in polynomial time if \(G \) has a positive cycle.

Corollary
We can decide in polynomial time if \(\max(G) \geq 1 \).

Recall that it is **NP-complete** to decide if a BN has a fixed point.
max(G) ≥ 2?

According to Thomas, $\max(G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.
max(G) ≥ 2?

According to Thomas, $\max(G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max(G) \geq 2$, then G has a positive cycle. [Thomas’ 1st rule]
max(G) \geq 2?

According to Thomas, $\max(G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max(G) \geq 2$, then G has a positive cycle.
2. If G has *only* positive cycles and no source, then $\min(G) \geq 2$.
According to Thomas, $\max(G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max(G) \geq 2$, then G has a positive cycle.
2. If G has only positive cycles and no source, then $\min(G) \geq 2$.

Can we hope for a simple characterization of $\max(G) \geq 2$?
max(G) ≥ 2?

According to Thomas, \(\max(G) \geq 2 \) means that \(G \) can be the interaction graph of a gene network controlling a **cell differentiation process**.

Theorem [Aracena 2008]

1. If \(\max(G) \geq 2 \), then \(G \) has a positive cycle.
2. If \(G \) has *only* positive cycles and no source, then \(\min(G) \geq 2 \).

Can we hope for a simple characterization of \(\max(G) \geq 2 \)?

Theorem

It is **NP-complete** to decide if \(\max(G) \geq 2 \).
$\max(G) \geq 2$?

According to Thomas, $\max(G) \geq 2$ means that G can be the interaction graph of a gene network controlling a cell differentiation process.

Theorem [Aracena 2008]

1. If $\max(G) \geq 2$, then G has a positive cycle.
2. If G has *only* positive cycles and no source, then $\min(G) \geq 2$.

Can we hope for a simple characterization of $\max(G) \geq 2$?

Theorem

It is **NP-complete** to decide if $\max(G) \geq 2$.

It is **NP-complete** to decide if $\max(G) \geq k$, for every fixed $k \geq 2$.
\[\text{max}(G) \geq k? \text{ is in NP} \]

Theorem

There is an algorithm with the following specifications:

Input: \(G \) and \(k \) couples of states \((x^1, y^1) \ldots (x^k, y^k)\).

Output: A BN \(f \) on \(G \) with \(f(x^\ell) = y^\ell \) for \(1 \leq \ell \leq k \), if it exists.

Running time: \(O(k^2n^2) \).
Theorem

There is an algorithm with the following specifications:

Input: G and k couples of states $(x^1, y^1) \ldots (x^k, y^k)$.

Output: A BN f on G with $f(x^\ell) = y^\ell$ for $1 \leq \ell \leq k$, if it exists.

Running time: $O(k^2n^2)$.

If $\max(G) \geq k$, there is a BN f on G with k fixed points x^1, \ldots, x^k.

Then (x^1, \ldots, x^k) is a certificat of size $O(kn)$ which can be checked in $O(k^2n^2)$-time by giving as input G and the couples $(x^1, x^1), \ldots, (x^k, x^k)$.

$\max(G) \geq k$? is in NP
max(G) ≥ k? is in NP

Theorem

There is an algorithm with the following specifications:

Input: G and k couples of states \((x^1, y^1) \ldots (x^k, y^k)\).

Output: A BN \(f\) on G with \(f(x^\ell) = y^\ell\) for \(1 ≤ \ell ≤ k\), if it exists.

Running time: \(O(k^2 n^2)\).

If \(\max(G) ≥ k\), there is a BN \(f\) on G with \(k\) fixed points \(x^1, \ldots, x^k\).

Then \((x^1, \ldots, x^k)\) is a certificate of size \(O(kn)\) which can be checked in \(O(k^2 n^2)\)-time by giving as input G and the couples \((x^1, x^1), \ldots, (x^k, x^k)\).

Thus \(\max(G) ≥ k?\) is in **NP**.
$\max(G) \geq 2 ?$ is NP-hard
Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in $O(n + m)$-time an interaction graph G_ϕ with $O(n + m)$ vertices s.t.

$$\max(G_\phi) \geq 2 \iff \phi \text{ is satisfiable}$$
max\(G\) ≥ 2? is NP-hard

Theorem
Given a SAT formula \(\phi\) with \(n\) variables and \(m\) clauses, we can built in \(O(n + m)\)-time an interaction graph \(G_\phi\) with \(O(n + m)\) vertices s.t.
\[
\max(G_\phi) \geq 2 \iff \phi \text{ is satisfiable}
\]

Basic observation:

- 2 fixed points
- 1 fixed point

The idea is to “control” with \(\phi\) the “effectiveness” of the negative chord, so that the chord can be “ineffective” if and only if \(\phi\) is satisfiable.
max(G) ≥ 2? is NP-hard

Theorem

Given a SAT formula ϕ with n variables and m clauses, we can built in $O(n + m)$-time an interaction graph G_ϕ with $O(n + m)$ vertices s.t.

$$\max(G_\phi) \geq 2 \iff \phi \text{ is satisfiable}$$

Basic observation:

2 fixed points

1 fixed point

The idea is to “control” with ϕ the “effectiveness” of the negative chord, so that the chord can be “ineffective” if and only if ϕ is satisfiable.
max(G) \geq 2? is NP-hard

Example with \(\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c}). \)
max(G) ≥ 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).
max(\(G\)) \(\geq\) 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).
$\max(G) \geq 2$ is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.
max(\(G\)) \(\geq 2\) is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).
max(G) \geq 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).
max(\(G\)) \(\geq\) 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).

\(\phi\) is sat. \(\Rightarrow\) max(\(G\)) \(\geq\) 2

Consider a true assignment:
\(a = 1,\ b = 1,\ c = 0\)
max(G) \geq 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).

\(\phi \) is sat. \(\Rightarrow \) max(G) \geq 2

Consider a true assignment:
\(a = 1, \ b = 1, \ c = 0 \)
max(G) \geq 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

ϕ is sat. \Rightarrow max(G') ≥ 2

Consider a true assignment:
\[a = 1, \ b = 1, \ c = 0 \]
max(G) \geq 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

ϕ is sat. \implies max(G') \geq 2

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$
max(G) ≥ 2 is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.

ϕ is sat. \Rightarrow max(G') ≥ 2

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$
max(G) \geq 2? is NP-hard

Example with $\phi = (a \lor \neg b \lor c) \land (\neg a \lor \neg c)$.

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$

ϕ is sat. \Rightarrow max(G') \geq 2
max(G) ≥ 2? is NP-hard

Example with \(\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c}) \).

\(\phi \) is sat. \(\Rightarrow \) max(G) ≥ 2

Consider a true assignment: \(a = 1, b = 1, c = 0 \)
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.

ϕ is sat. \Rightarrow max(G') ≥ 2

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$
max(\(G\)) ≥ 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).

\(\phi\) is sat. \(\Rightarrow\) \(\max(G') \geq 2\)

Consider a true assignment: \(a = 1, b = 1, c = 0\)
$\max(G) \geq 2$ is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$
max(G) \geq 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).

\(\phi \) is sat. \(\Rightarrow \) max(G') \geq 2

Consider a true assignment:
\(a = 1, b = 1, c = 0 \)
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

ϕ is sat. \Rightarrow max(G) ≥ 2

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$
\(\max(G) \geq 2 \) is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).

\(G_\phi \)

\[\begin{array}{c}
1 \quad f_s = 1 \\
\end{array} \]

\(\phi \) is sat. \(\Rightarrow \) \(\max(G') \geq 2 \)

Consider a true assignment: \(a = 1, \ b = 1, \ c = 0 \)
$\max(G) \geq 2$ is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Consider a true assignment: $a = 1, b = 1, c = 0$.

ϕ is sat. $\Rightarrow \max(G') \geq 2$
max(G) ≥ 2? is NP-hard

Example with ϕ = (a ∨ ̅b ∨ c) ∧ (̅a ∨ ̅c).

ϕ is sat. ⇒ max(G') ≥ 2

Consider a true assignment: a = 1, b = 1, c = 0
$\text{max}(G) \geq 2$? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Consider a true assignment: $a = 1$, $b = 1$, $c = 0$

ϕ is sat. $\Rightarrow \text{max}(G) \geq 2$

Isolated positive cycle

\[\Downarrow \]

2 fixed points
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Let f be a BN on G with two fixed points: x and y.
max(G) \geq 2? is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.

G_ϕ

max(G) \geq 2 \Rightarrow \phi \text{ is sat.}$

Let f be a BN on G with two fixed points: x and y

- $x_i < y_i$
- $x_i > y_i$
- $x_i = y_i$
- $x_i \leq y_i$

Adrien RICHARD Maximum/Minimum Fixed Point Problem Freie Universität, Berlin
max(\(G\)) \(\geq\) 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).

Let \(f\) be a BN on \(G\) with two fixed points: \(x\) and \(y\).

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \(\bigcirc\) or all \(\bullet\).
max(\(G\)) \(\geq 2\) is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).

max(\(G\)) \(\geq 2\) \(\Rightarrow\) \(\phi\) is sat.

Let \(f\) be a BN on \(G\) with two fixed points: \(x\) and \(y\)

- \(x_i < y_i\)
- \(x_i > y_i\)
- \(x_i = y_i\)
- \(x_i \leq y_i\)

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \(\bullet\) or all \(\circ\).
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Let f be a BN on G with two fixed points: x and y

- $x_i < y_i$
- $x_i > y_i$
- $x_i = y_i$
- $x_i \leq y_i$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all ● or all ○.
\textbf{Example} with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

\[
\begin{align*}
\text{max}(G) \geq 2 \Rightarrow \phi \text{ is sat.}
\end{align*}
\]

Let f be a BN on G with two fixed points: x and y

\begin{itemize}
 \item $x_i < y_i$
 \item $x_i > y_i$
 \item $x_i = y_i$
 \item $x_i \leq y_i$
\end{itemize}

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \textcolor{green}{\bullet} or all \textcolor{red}{\bullet}.
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})$.

G_{ϕ}

max(G) $\geq 2 \implies \phi$ is sat.

Let f be a BN on G with two fixed points: x and y

- $x_i < y_i$
- $x_i > y_i$
- $x_i = y_i$
- $x_i \leq y_i$

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \bullet or all \circ.
max(G) ≥ 2? is NP-hard

Example with \(\phi = (a \lor \neg b \lor c) \land (\neg a \lor \neg c) \).
max\((G) \geq 2 \) is NP-hard

Example with \(\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c}) \).

Let \(f \) be a BN on \(G \) with two fixed points: \(x \) and \(y \)

\[
\begin{align*}
\circ \quad x_i &< y_i \\
\circ \quad x_i &> y_i \\
\circ \quad x_i &= y_i \\
\bullet \quad x_i &\leq y_i
\end{align*}
\]

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \(\circ \) or all \(\bullet \).
max(G) ≥ 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).

Let \(f \) be a BN on \(G \) with two fixed points: \(x \) and \(y \)

- \(x_i < y_i \)
- \(x_i > y_i \)
- \(x_i = y_i \)
- \(x_i \leq y_i \)

Since all the positive cycles are full-positive, by a thm of Aracena there is a positive cycle where vertices are all \(\bullet \) or all \(\circ \).
max(G) \(\geq 2 \) is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \).

Let \(f \) be a BN on \(G \) with two fixed points: \(x \) and \(y \)

\[
\begin{align*}
\text{if } x_i &< y_i \\
\text{if } x_i &> y_i \\
\text{if } x_i &= y_i \\
\text{if } x_i &\leq y_i
\end{align*}
\]

max(G) \(\geq 2 \) \(\Rightarrow \) \(\phi \) is sat.
\[\max(G) \geq 2? \text{ is NP-hard} \]

Example with \[\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c}) \].

\[\max(G) \geq 2 \Rightarrow \phi \text{ is sat.} \]

Let \(f \) be a BN on \(G \) with two fixed points: \(x \) and \(y \).

- \(x_i < y_i \)
- \(x_i > y_i \)
- \(x_i = y_i \)
- \(x_i \leq y_i \)

\[\Rightarrow \]
\(\text{max}(G) \geq 2? \) is NP-hard

Example with \(\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c}) \).

\[G_\phi \]

\[
\begin{align*}
G_\phi & = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c}) \\
S & \quad a \\
\bar{a} & \quad b \\
\bar{b} & \quad c \\
\bar{c} & \quad \text{C}_1 \\
\text{C}_2
\end{align*}
\]

\(\text{max}(G) \geq 2 \Rightarrow \phi \text{ is sat.} \)

Let \(f \) be a BN on \(G \) with two fixed points: \(x \) and \(y \)

\[
\begin{align*}
& x_i < y_i \\
& x_i > y_i \\
& x_i = y_i \\
& x_i \leq y_i
\end{align*}
\]

\[\Rightarrow \]
max(G) ≥ 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Let f be a BN on G with two fixed points: x and y

- $x_i < y_i$
- $x_i > y_i$
- $x_i = y_i$
- $x_i \leq y_i$

$\max(G) \geq 2 \Rightarrow \phi$ is sat.
max(G) \geq 2? is NP-hard

Example with $\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})$.

Let f be a BN on G with two fixed points: x and y.

- $x_i < y_i$
- $x_i > y_i$
- $x_i = y_i$
- $x_i \leq y_i$

$\max(G) \geq 2 \Rightarrow \phi$ is sat.
max(\(G\)) \(\geq\) 2? is NP-hard

Example with \(\phi = (a \lor \overline{b} \lor c) \land (\overline{a} \lor \overline{c})\).

Let \(f\) be a BN on \(G\) with two fixed points: \(x\) and \(y\)

- \(x_i < y_i\)
- \(x_i > y_i\)
- \(x_i = y_i\)
- \(x_i \leq y_i\)

\[
\text{max}(G) \geq 2 \implies \phi \text{ is sat.}
\]
max\((G) \geq 2\) is NP-hard

Example with \(\phi = (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{c})\).

\[
\begin{align*}
\text{Let } f \text{ be a BN on } G \text{ with two fixed points: } x \text{ and } y \\
&x_i < y_i \\
&x_i > y_i \\
&x_i = y_i \\
&x_i \leq y_i
\end{align*}
\]

\[
\begin{align*}
a = 1, \ b = 0, \ c = 0 \\
a = 1, \ b = 1, \ c = 0
\end{align*}
\]

are true assignments of \(\phi\)
k-MaxProblem: Given G, do we have $\max(G) \geq k$?

Theorem

k-MaxProblem is in P if $k \leq 1$ and NP-complete if $k \geq 2$.

MinProblem: Given G, do we have $\min(G) \leq k$?

This problem is much more difficult:

Theorem

k-MinProblem is NP-hard for every k. But to prove the NEXPTIME-hardness, we use a much more technical reduction from SuccintSAT.
k-MaxProblem: Given G, do we have $\max(G) \geq k$?

Theorem

k-MaxProblem is in P if $k \leq 1$ and NP-complete if $k \geq 2$.

k-MinProblem: Given G, do we have $\min(G) \leq k$?
k-MaxProblem: Given G, do we have $\max(G) \geq k$?

Theorem

k-MaxProblem is in \mathbf{P} if $k \leq 1$ and \mathbf{NP}-complete if $k \geq 2$.

k-MinProblem: Given G, do we have $\min(G) \leq k$?

This problem is much more difficult:

Theorem

k-MinProblem is $\mathbf{NEXPTIME}$-complete for every k.
k-MaxProblem: Given G, do we have $\max(G) \geq k$?

Theorem

k-MaxProblem is in P if $k \leq 1$ and NP-complete if $k \geq 2$.

k-MinProblem: Given G, do we have $\min(G) \leq k$?

This problem is much more difficult:

Theorem

k-MinProblem is NEXPTIME-complete for every k.

With a construction very similar to G_ϕ, we can prove that $\min(G) \leq k$ is NP-hard. But to prove the NEXPTIME-hardness, we use a much more technical reduction from SuccinctSAT.
MaxProblem: Given G and k, do we have $\max(G) \geq k$?

MinProblem: Given G and k, do we have $\min(G) \leq k$?
MaxProblem: Given G and k, do we have $\max(G) \geq k$?

MinProblem: Given G and k, do we have $\min(G) \leq k$?

Theorem

MaxProblem and MinProblem are NEXPTIME-complete.
Conclusion

We study, from a complexity point of view, a natural class of problems.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

$$P = \text{“to have at least/most } k \text{ fixed points”}$$

Our main result is about bistability:

It is **NP-complete** to decide if there is a BN on G with two fixed points.
Conclusion

We study, from a complexity point of view, a natural class of problems.

Interaction Graph Consistency Problem

Input: An interaction graph G and a dynamical property P.

Question: Is there a BN on G with a dynamics satisfying P?

We obtain exact classes of complexity for this problem when

$$P = \text{“to have at least/most } k \text{ fixed points“}$$

Our main result is about bistability:

It is **NP-complete** to decide if there is a BN on G with two fixed points.

Perspectives

1. **Other dynamical properties.**

 \leftrightarrow number/size of cyclic attractors in the (a)synchronous case.

2. **Non-Boolean case** and **unsigned case**.