On the Link Between
Oscillations and Negative Circuits
in Discrete Genetic Regulatory Networks

Adrien Richard

INRIA Rhône-Alpes, France
The structure of a gene regulatory network often known and represented by an interaction graph:

The dynamics of the network is often unknown and difficult to observe.

What dynamical properties of a gene network can be deduced from its interaction graph?
(Second) Thomas’ conjecture (1981):

Without negative circuit (odd number of inhibitions) in the interaction graph, there is no sustained oscillations.

Equivalent formulation:

If a network produces sustained oscillations, then its interaction graph has a negative circuit.
In this presentation:

We state the conjecture in a **general discrete framework** which includes the *Generalized Logical Analysis* of Thomas. (The proof is given in the paper.)

Remark: Discrete models are a good alternative to continuous models (based on ODEs) which are difficult to use in practice because of the lack of precise data about the behavior of genetic regulatory networks.
Outline:

1. We describe the dynamics of a network by a discrete dynamical system Γ.

2. We define, from the dynamic Γ, the interaction graphe G of the network.

3. We show that the presence of sustained oscillations in the dynamics Γ imply the presence of a negative circuit in G.
Part 1

Discrete dynamical framework
We consider the evolution of network of n genes:

- The set of states X is of the form:
 \[
 X = X_1 \times \cdots \times X_n, \quad X_i = \{0, 1, \ldots, b_i\}, \quad i = 1, \ldots, n.
 \]

- To describe the dynamics, we consider a map $f : X \to X$:
 \[
 x = (x_1, \ldots, x_n) \in X \to f(x) = (f_1(x), \ldots, f_n(x)) \in X.
 \]

Intuitively, at state x, the network evolves toward $f(x)$:

- If $x_i < f_i(x)$ the expression level x_i of gene i is increasing.
- If $x_i = f_i(x)$ the expression level x_i of gene i is stable.
- If $x_i > f_i(x)$ the expression level x_i of gene i is decreasing.
More precisely, as in the Thomas’ model, the dynamics is described by the **asynchronous state transition graph of** f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by: for each state x and gene i,
 - if $x_i < f_i(x)$ there is an arc $x \rightarrow y = (x_1, \ldots, x_i + 1, \ldots, x_n)$,
 - if $x_i > f_i(x)$ there is an arc $x \rightarrow y = (x_1, \ldots, x_i - 1, \ldots, x_n)$.

Example: with $n = 2$ and $X = \{0, 1, 2\} \times \{0, 1, 2\}$:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$\Gamma(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 2)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 0)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 1)</td>
<td>(2, 1)</td>
<td></td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(0, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 0)</td>
<td>(2, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td>(0, 2)</td>
<td></td>
</tr>
</tbody>
</table>
More precisely, as in the Thomas’ model, the dynamics is described by the **asynchronous state transition graph of** f, denoted $\Gamma(f)$:

1. The set of nodes is the set of states X.
2. The set of arcs is defined by: for each state x and gene i,
 - if $x_i < f_i(x)$ there is an arc $x \rightarrow y = (x_1, \ldots, x_i + 1, \ldots, x_n)$,
 - if $x_i > f_i(x)$ there is an arc $x \rightarrow y = (x_1, \ldots, x_i - 1, \ldots, x_n)$.

Example: with $n = 2$ and $X = \{0, 1, 2\} \times \{0, 1, 2\}$:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$\Gamma(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 2)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 0)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 1)</td>
<td>(2, 1)</td>
<td></td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(0, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 0)</td>
<td>(2, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td>(0, 2)</td>
<td></td>
</tr>
</tbody>
</table>
More precisely, as in the Thomas’ model, the dynamics is described by the asynchronous state transition graph of \(f \), denoted \(\Gamma(f) \):

1. The set of nodes is the set of states \(X \).
2. The set of arcs is defined by: for each state \(x \) and gene \(i \),
 - if \(x_i < f_i(x) \) there is an arc \(x \rightarrow y = (x_1, \ldots, x_i + 1, \ldots, x_n) \),
 - if \(x_i > f_i(x) \) there is an arc \(x \rightarrow y = (x_1, \ldots, x_i - 1, \ldots, x_n) \).

Example: with \(n = 2 \) and \(X = \{0, 1, 2\} \times \{0, 1, 2\} \):

<table>
<thead>
<tr>
<th></th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(0,1)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(0,2)</td>
<td>(2,2)</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(2,2)</td>
</tr>
<tr>
<td>(1,1)</td>
<td>(2,1)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>(2,0)</td>
<td>(2,0)</td>
</tr>
<tr>
<td>(2,1)</td>
<td>(2,2)</td>
</tr>
</tbody>
</table>

\(\Gamma(f) \):

- \((0,2) \rightarrow (1,2) \rightarrow (2,2) \)
- \((0,1) \rightarrow (1,1) \rightarrow (2,1) \)
- \((0,0) \rightarrow (1,0) \rightarrow (2,0) \)
More precisely, as in the Thomas’ model, the dynamics is described by the **asynchronous state transition graph of** \(f \), denoted \(\Gamma(f) \):

1. The set of nodes is the set of states \(X \).
2. The set of arcs is defined by: for each state \(x \) and gene \(i \),
 1. if \(x_i < f_i(x) \) there is an arc \(x \rightarrow y = (x_1, \ldots, x_i + 1, \ldots, x_n) \),
 2. if \(x_i > f_i(x) \) there is an arc \(x \rightarrow y = (x_1, \ldots, x_i - 1, \ldots, x_n) \).

Example: with \(n = 2 \) and \(X = \{0, 1, 2\} \times \{0, 1, 2\} \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(\Gamma(f))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 1)</td>
<td>(1, 2)</td>
<td></td>
</tr>
<tr>
<td>(0, 2)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 0)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(1, 1)</td>
<td>(2, 1)</td>
<td></td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(0, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 0)</td>
<td>(2, 0)</td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td>(0, 2)</td>
<td></td>
</tr>
</tbody>
</table>
Remarks:

1. The dynamics described by $\Gamma(f)$ is undeterministic.

2. Snoussi and Thomas have showed that this discrete dynamical model is a good approximation of continuous models based on piece-wise differential equations systems.
An attractor of $\Gamma(f)$ is a smallest non-empty subset A of X such that all paths of $\Gamma(f)$ starting in A remain in A.

An attractor which contains at least 2 states describes sustained oscillations, and is called cyclic attractor.

An attractor which contains a unique state is a stable state.

Remark: There is always at least one attractor in $\Gamma(f)$.
Part 2

Interaction graph of f

(0,2) ←→ (1,2) ←→ (2,2)
(0,1) → (1,1) → (2,1)
(0,0) → (1,0) → (2,0)

gene 1

gene 2
The **interaction graph** $G(f)$ of f is the signed oriented graph whose set of nodes is $\{1, \ldots, n\}$ and such that (3 rules):

1. There is a **positive interaction** $i \to j$, with $i \neq j$, if one of the two following motifs is present in $\Gamma(f)$:

![Diagram](image)

Remark: $G(f)$ is a subgraph of the interaction graphs $\Gamma(f)$.
2. There is a **negative interaction** $i \rightarrow j$, with $i \neq j$, if one of the two following motifs is present in $\Gamma(f)$:

- Increase of i
- $x \xrightarrow{} y$
- Decrease of j

- Increase of j
- $y \xleftarrow{} x$
- Decrease of i
3. There is a **negative interaction** \(i \rightarrow i \), if the following motifs is present in \(\Gamma(f) \):

![Diagram](image.png)

Remark: \(G(f) \) is a subgraph of the interaction graphs considered by Thomas and Remy et al.
Asynchronous state transition graph $\Gamma(f)$

$$
\begin{align*}
(0, 2) & \leftrightarrow (1, 2) \leftrightarrow (2, 2) \\
(0, 1) & \rightarrow (1, 1) \rightarrow (2, 1) \\
(0, 0) & \rightarrow (1, 0) \rightarrow (2, 0)
\end{align*}
$$

Interaction graph $G(f)$

$$
\begin{align*}
\text{gene 1} & \rightarrow \text{gene 2} \\
\text{gene 1} & \rightarrow \text{gene 2}
\end{align*}
$$
Asynchronous state transition graph $\Gamma(f)$

$\Gamma(f)$

Interaction graph $G(f)$

$G(f)$
Asynchronous state transition graph $\Gamma(f)$

(0, 2) \leftarrow (1, 2) \rightarrow (2, 2)

(0, 1) \rightarrow (1, 1) \rightarrow (2, 1)

(0, 0) \rightarrow (1, 0) \rightarrow (2, 0)

Interaction graph $G(f)$

gene 1

gene 2
Asynchronous state transition graph $\Gamma(f)$

$$
\begin{array}{c}
(0, 2) & \xrightarrow{\text{red}} & (1, 2) & \xleftarrow{\text{red}} & (2, 2) \\
\uparrow & & \downarrow & & \uparrow \\
(0, 1) & \rightarrow & (1, 1) & \rightarrow & (2, 1) \\
\uparrow & & \uparrow & & \\
(0, 0) & \rightarrow & (1, 0) & \rightarrow & (2, 0) \\
\end{array}
$$

Interaction graph $G(f)$

$$
\begin{array}{c}
gene 1 \\
\text{gene 2} \\
\end{array}
$$
Asynchronous state transition graph $\Gamma(f)$

\[
(0, 2) \xleftrightarrow{\text{[red]}} (1, 2) \xrightarrow{\text{[red]}} (2, 2) \\
\uparrow \quad \downarrow \quad \uparrow \\
(0, 1) \rightarrow (1, 1) \rightarrow (2, 1) \\
\uparrow \quad \uparrow \\
(0, 0) \rightarrow (1, 0) \rightarrow (2, 0)
\]

Interaction graph $G(f)$

\[
\text{gene 1} \quad \text{gene 2}
\]

$+$

$-$
Part 3

Result
Let $f : X \rightarrow X$, with X the product of n finite intervals of integers.

Theorem (discrete version of the 2nd Thomas’ conjecture): If $\Gamma(f)$ has a cyclic attractor, then $G(f)$ has a negative circuit.

To prove the theorem, we reason by induction on the number of transitions in the cyclic attractors; the base case corresponds to the case where there is a cyclic attractor A containing a state which has a unique successor.

Remark: This theorem was proved by Remy *et al.* in the boolean $(X = \{0, 1\}^n)$ and under the strong hypothesis that $\Gamma(f)$ contains an attractor A such that *all* the states of A have a unique successor.
$$\Gamma(f)$$

\[
\begin{align*}
(0, 2) & \rightarrow (1, 2) & \leftarrow (2, 2) \\
(0, 1) & \rightarrow (1, 1) & \rightarrow (2, 1) \\
(0, 0) & \rightarrow (1, 0) & \rightarrow (2, 0)
\end{align*}
\]

$$G(f)$$

\[
\begin{align*}
+ & \quad \text{gene 1} \\
- & \quad \text{gene 2}
\end{align*}
\]
Concluding Remarks:

1. As corollary we have a

Fixed point theorem:
If $G(f)$ has no negative circuit, then f has at least one fixed point.

Indeed, there is always at least one attractor A in $\Gamma(f)$. If $G(f)$ has no negative circuit then A is not a cyclic attractor, so A is reduced to a unique state x which is a fixed point of f.
Concluding remarks:

2. The presence of a cycle in $\Gamma(f)$ **does not** imply the presence of a negative circuit in $G(f)$.

It seems difficult to find a form of oscillation in $\Gamma(f)$ more general than the cyclic attractors and which imply the presence of a negative circuit in $G(f)$.