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a  b  s  t  r  a  c  t

Radiofrequency  catheter  ablation  (CA)  is  increasingly  employed  to  treat  persistent  atrial  fibrillation  (AF),
yet selection  of  patients  who  would  positively  respond  to this  therapy  is  currently  a critical  problem.  Sev-
eral parameters  of the  surface  12-lead  electrocardiogram  (ECG)  have  been  analyzed  in  previous  works  to
predict  AF  termination  by CA.  Nevertheless,  they  are  affected  by  some  limitations,  such  as  manual  com-
putation  and  the  examination  of  a single  ECG  lead  while  neglecting  contributions  from  other  electrodes.
AF spatio-temporal  organization  has  been  described  on surface  ECG  by  means  of the  normalized  mean
square  error  (NMSE)  between  consecutive  atrial activity  (AA)  signal  segments  and  their reduced-rank
approximations  based  on  principal  component  analysis  (PCA).  However,  these  features  do  not  show  to
be correlated  with  CA  outcome.  In  this  study,  such  descriptors  are  adequately  adapted  and  applied  to CA
outcome  prediction.  An  NMSE  index  is  put  forward,  computed  over  the  set  of  eight linearly  independent
ECG  leads  after  AA  signal  rank-1  approximations  determined  by  weighted  principal  component  anal-
ysis  (WPCA).  The  final  predictor  is able  to discriminate  between  successful  (70.76  ±  17.74)  and  failing
CA  procedures  (37.54  ± 20.01)  before  performing  the ablation  (p-value  =  0.0013,  AUC  =  0.91).  The  pro-
posed  WPCA-based  technique  emphasizes  the  most  descriptive  components  of AF electrophysiology
by  selectively  enhancing  contributions  coming  from  the  most  representative  ECG  leads.  Our  investiga-
tion  confirms  that  ECG  spatial  diversity  exploitation  in  this  WPCA-based  framework  not  only  endows  the
NMSE  index  with  clinical  value  in  the  context  of  CA  outcome  prediction,  but  it also  improves  classification
accuracy  and  increases  robustness  to  ECG  lead  selection.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Atrial fibrillation (AF) is a sustained cardiac arrhythmia char-
acterized by rapid and disorganized atrial activations inducing a
loss of atrial mechanical efficacy. Several theories have been sug-
gested to explain AF electrophysiological mechanisms, so as to put
forth a systematic procedural protocol for its treatment. AF activ-
ity has been first regarded as the result of interactions between
multiple wandering atrial wavelets [1,2]. On the other hand, it is
commonly acknowledged that pulmonary veins (PVs) significantly
contribute to AF maintenance and evolution, especially in parox-
ysmal forms of this disease [3].  In spite of major advances in its
treatment, AF remains a significant cause of cardiovascular mor-
bidity and mortality, especially those arising from stroke and heart
failure.
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Radiofrequency catheter ablation (CA) has become the first-
line strategy [4] for the treatment of this disease. However, as
the precise pathophysiology of AF dynamics has not been com-
pletely clarified yet, it is still questionable whether CA effectively
suppresses abnormal rhythm sources, and how it affects heart elec-
trical substrate. Different CA techniques have been developed, yet
none of them is widely considered as effective for the treatment of
persistent AF. Their performance is still far from satisfactory, and
they are less effective than equivalent procedures for paroxysmal
AF. Since this cardiac interventional procedure is profoundly influ-
enced by operator’s experience and patient’s health conditions,
results reported by clinical centers are quite disparate and not eas-
ily comparable [5–7]. It follows that its efficacy in terminating AF
and avoiding its recurrence is not guaranteed for all patients. This
situation explains the increasing tendency to attempt an a priori
selection of patients who can undergo CA and experience durable
sinus rhythm (SR) restoration. Several parameters extracted from
the surface ECG have been proposed as potential predictors of CA
outcome [8,9]. For example, prolongation of atrial fibrillation cycle
length (AFCL) can be associated with AF termination by CA [10]. In
other studies [8], it has been argued that the higher the amplitude
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of the fibrillatory waves (f-waves) observed on the surface ECG, the
more likely procedural success.

In parallel, another line of research aims at noninvasive meas-
ures of AF spatio-temporal complexity, with the underlying
assumptions that treatment modalities should be chosen and ther-
apy outcome could be predicted on the basis of these measures. In
[11], a noninvasive measure of AF organization is assessed by the
normalized mean square error (NMSE) values between the atrial
activity (AA) signal and its rank-3 approximations determined by
principal component analysis (PCA) in lead V1 [11]. This argu-
ment is supported by the hypothesis of a correlation between AF
organization and the number and interactions of atrial wavefronts
through the heart substrate. The choice of V1 is justified by the
fact that it presents the maximum atrial-to-ventricular amplitude
ratio among all ECG leads [12]. In [13], CA performance was  shown
to influence AF spatio-temporal organization, and its effect can be
quantified by variations in NMSE values.

Nevertheless, such parameters are affected by several short-
comings. In the first place, some classical ECG-based descriptors are
manually computed [8,10],  so they are subject to operators’ subjec-
tivity and thus prone to errors. Furthermore, as most of them are
measured in only one ECG lead, they do not account for informa-
tion that may  be provided by other electrodes. Indeed, ECG analysis
is not always straightforward, and visual inspection does not cap-
ture AF features underlying the whole ensemble of leads; hence,
the limitations of classical single-lead techniques, which do not
fully exploit multilead ECG spatial diversity. However, AF spatio-
temporal complexity as defined in [11] has not been shown to
correlate with CA outcome.

Our investigation focuses on the potential application of the
spatio-temporal organization of AA measured on the standard ECG
by the NMSE index as a tool to discriminate between successful and
failing CA procedures before applying the therapy. Contributions
provided from the eight independent ECG leads are expressed in
terms on NMSE between successive segments of the actual AA
signal and their rank-1 approximations computed by weighted
principal component analysis (WPCA), and they are finally com-
bined in a single parameter capable of predicting long-term CA
outcome. Thanks to this decomposition, the spatial variability of
the standard ECG is taken into account, and the most significant
ECG leads are also automatically enhanced by assigning different
weights to data based on their estimated relevance.

2. Methods

2.1. Characteristics and acquisition modalities of the
persistent-AF database

Twenty patients (19 males, 60 ± 11 years) with a median per-
sistent AF episode duration of 4.5 months (2–84) were enrolled
in the present study. They all underwent CA at the Cardiology
Department of Princess Grace Hospital in Monaco, performed with
the aid of Prucka Cardiolab and Biosense CARTO electrophysiology
measurement systems. They all gave their informed consent. Sur-
face 12-lead ECG recordings were acquired at the beginning of the
procedure, at a sampling rate of 1 kHz. An example of the signal
recorded on the lead V1 for one of the patients is shown in Fig. 1.
CA was accomplished according to the sequential stepwise protocol
[14], whose major actions consist in 1) circumferential PV isolation,
2) fragmented potentials’ ablation, and 3) non-PV triggers, roof line
and mitral isthmus line right atrial ablation.

The most recent HRS Expert Consensus Statement guidelines for
CA trials [14] recommend that immediately after CA performance,
there is a three-month “blanking period” during which any fibrilla-
tory episodes are not regarded as symptoms of AF recurrence, but as
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Fig. 1. Example of ECG recording during AF and its characteristic waves. Boxes
highlight TQ intervals which are concatenated to form the AA signal YAA in Eq. (1).

a physiological reaction during recovery from CA. After this blank-
ing period, if the patient remains free of arrhythmia recurrences,
procedural AF termination is considered effectively accomplished.

Procedural success is defined as freedom from ECG/Holter docu-
mented sustained AF recurrence (>30 s) during follow-up, after the
3-month blanking period. Immediately after performing CA, AF can
be converted either directly to SR or to intermediate tachyarrhyth-
mia, exclusively by ablation or after an electrical cardioversion.
For its clinical interest, a long-term criterion is adopted in our
investigation to distinguish between successful and ineffective CA
procedures. In our experimental framework, after a median follow-
up of 9.5 months, CA was successfully accomplished in nS = 13 out of
nP = 20 patients (65%), whereas nF = 7 procedures were not effective.
A follow-up of m months was available at the time of our analy-
sis, where m ranged between 4 and 19 months depending on the
patient.

Some patients received a pharmacological treatment subse-
quent to CA procedure, mainly amiodarone (for some patients,
solatol and flecaine). Three patients underwent a second ablation.
In this case, only ECG signals related to the first procedure are
taken into account in our study. As opposed to previous studies
[8,9], termination of AF during CA was  not achieved in all patients.
Nevertheless, this is not detrimental to our analysis, since AF ter-
mination by CA is not predictive of long-term outcome [15], which
is the event with clinical interest.

2.2. ECG preprocessing and atrial activity segmentation

A fourth-order zero-phase Chebyshev type II bandpass filter
with −3 dB attenuation band between 0.5 Hz and 30 Hz has been
applied to standard ECG recordings of our database, whose length
is about 1 min. This preprocessing stage allows AF content enhance-
ment, whose dominant frequency typically ranges between 3 and
12 Hz, as well as removal of baseline wandering and high fre-
quency noise such as myoelectric artifacts and 50 Hz power line
interference. Automatic detection of ECG fiducial points is then
accomplished, in order to segment TQ intervals. R wave time
instants are detected on lead V1 using the Pan–Tompkins’ algorithm
[16]. Then, Q wave onset is defined 40 ms  before the subsequent R
wave, this being the typical duration of this wave in these condi-
tions (an abnormal Q wave denotes presence of infarct). Finally,
T wave offset is identified with an improved version of Woody’s
method and automatically computed after visual inspection and
selection of the lead exhibiting the most visible T waves (in gen-
eral, V2 and V3) [17]. Such intervals are finally mean-corrected and
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concatenated, so obtaining the (L × N) data matrix YAA representing
AA content only:

YAA = [yAA(1) · · · yAA(N)] ∈ RL×N (1)

where vector yAA(t) = [y1(t), . . .,  yL(t)]T represents the multilead AA
signal at the sample index t, L stands for the number of leads used,
and N the number of samples of the AA signal y!(n) for each lead
!=1, 2, . . .,  L.

The redundancy in ECG leads [18] prompted us to discard lead
III and Goldberger’s augmented leads (aVR, aVL, aVF), since leads I
and II can fully characterize heart electrical activity on the frontal
plane. Finally, all precordial leads have been introduced too, in
order to record the electric potential changes in the heart in a
cross-sectional plane. This yields a total of L = 8 leads, that is, I, II,
V1–V6.

2.3. Atrial activity complexity

Several parameters describing different aspects of AF spatio-
temporal organization have been proposed and analyzed in
previous works, according to various definitions of this concept. The
rationale is to investigate evidences of some underlying structure
in atrial activity during AF. The wide variety of different criteria that
have been proposed in the literature makes it difficult to compare
and interpret all such indices.

The degree of organization of AF wavefronts propagating inside
the atria has been traditionally examined on intracardiac recor-
dings. In [19] the level of spatial correlation between multiple
activation sequences is correlated with AF presence, and enables
selection of antiarrhythmic drug therapy for SR maintenance. In
[20], AF morphology characterization based on PCA and automatic
clustering provides a quantitative tool for AF classification. The
study described in [21] also proposes more advanced techniques for
feature extraction and SVM-classification to perform the same task.
Other approaches focus on temporal regularity of atrial activations
and assess AF complexity according to the level of beat-to-beat
variability [22]. More recently, time-frequency analysis has been
applied to endocavitarian recordings in [23]. Despite their effec-
tiveness, such strategies are all quite invasive and do not provide a
priori predictions of CA outcome.

By contrast, noninvasive recordings can easily provide measures
of heart electrical activity. Some nonlinear measures based on sam-
ple entropy [24] computed on surface ECG have also been exploited
to predict spontaneous paroxysmal AF termination [25]. In [26], it
is also stated that more organized AF patterns as quantified by this
index predict AF termination by electrical cardioversion. The main
drawback of these indices is that they are computed in only one ECG
lead, thus potential information about AF complexity provided by
the remaining leads is not exploited.

Recent attempts to exploit ECG spatial properties have been
made in [27] by combining frequency and complexity measures,
allowing the distinction between persistent and long-standing AF.
Also, in [28] wavefront propagation maps extracted on BSPM recor-
dings have been used for visual classification of AF complexity types
according to Konings’ criteria [1] on BSPM recordings. Based on this
approach, a quantitative multilead analysis is carried out in [11].
This study underlines that AA spatio-temporal organization can
be effectively represented by the first few principal components
(PCs) determined by PCA, retaining most of the total variance, by
quantifying the similarity between the principal subspaces of the
AA signal along consecutive time segments. For sake of complete-
ness, the mathematical description of this complexity measure is
summarized next, as it constitutes an important ingredient of the
present work.

The multilead AA signal YAA is split into S equal-length seg-
ments, each containing NS = [N/S] samples, so that YAA = [Y(1), Y(2),

. . .,  Y(S)], with Y(s) = [y((s − 1)NS + 1), y((s − 1)NS + 2), . . .,  y(sNS)],
s = 1, . . .,  S. The AA signal Y(r) is examined in a certain reference
segment r /= s and decomposed by PCA according to the linear
model Y(r) = M(r)X(r), r = 1 in [11]. Subsequently, a fixed number n
of columns M(r)

n is extracted from the mixing matrices computed
by PCA in this reference interval. Such columns, the so-called prin-
cipal directions, weight the relative spatial contribution of the PCs
to the ECG leads. After these steps, the AA signal is estimated in all
other segments s /= r by projecting Y(s) on the subspace spanned
by the columns of M(r)

n , thus yielding:

Y(s,r)
n = M(r)

n [M(r)
n

T
M(r)

n ]
−1

M(r)
n

T
Y(s) (2)

that is, the orthogonal projection of Y(s) on the span of M(r)
n . Hence,

the approximation quality can be evaluated by means of the nor-
malized mean square error NMSE(s,r)

!,n between the input signal

y(s)
! (t) on the !th lead and its projection ŷ(s,r)

!,n (t) found in the !th
row of Eq. (2):

NMSE(s,r)
!,n =

∑N
t=1[y!

(s)(t) − ŷ(s,r)
!,n (t)]2

∑N
t=1[y(s)

! (t)]2
(3)

with !=1, · · · , L. In [11], the mean NMSE is computed by assuming
the first segment as a reference (r = 1), and averaging Eq. (3) over
the remaining segments (s = 2, . . .,  S).

Nonetheless, in [11] the NMSE introduced in Eq. (3) is merely
computed on a single lead, so spatial variability typical of multi-
lead recordings is not entirely exploited. In particular, despite the
proximity of lead V1 to the right atrial free wall, there is the risk of
not considering further useful information provided by other ECG
leads. In addition, as all aforementioned parameters, this single-
lead index proved unable to predict CA outcome [13].

In order to render a more general perspective of AF com-
plexity over all leads and provide the NMSE index with further
clinical value with respect to CA outcome prediction, several alter-
native strategies have been put forward. In [29] some statistical
descriptors combining NMSE contributions from several ECG leads
depending on AA signal variance were able to assess the level
of spatio-temporal repetitiveness of the AA signal during several
steps of the ablation and predict its outcome. NMSE computa-
tion was repeated for each segment, for all possible combinations
between estimated and reference segments r, s = 1, . . .,  S, with
r /= s. The analysis presented in [30] puts forward the computa-
tion of reduced-rank representations of AF complexity measures
by means of the nonnegative matrix factorization (NMF). Despite
their advantages, these strategies prove effective only in short-
term prediction, so they are not able to render the mechanisms
of electrical remodeling of the heart substrate altered by CA over
longer follow-up periods and discriminate between the classes of
interest. Results from these works encouraged us to design a more
robust methodology capable of selectively emphasizing the most
relevant contributions from ECG observations to improve classifica-
tion accuracy in the CA outcome prediction context. More precisely,
we aim at characterizing the NMSE index in a multilead framework
so as to predict CA outcome by applying the weighted PCA of the
atrial signal matrix.

2.4. Weighted principal component analysis

As mentioned in the previous section, a possible strategy aim-
ing at the exploitation of the multivariate properties of the standard
ECG consists in searching for a reduced set of uncorrelated compo-
nents retaining as much of its spatial variability as possible. In order
to achieve this objective, PCA has been widely applied to the ECG,
due to its non-parametric nature, simplicity of implementation and
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versatility [31–34].  However, PCA is sometimes not recommended
in ECG processing. As it gives the same relevance to all observations,
the low-rank representation tends to be quite sensitive to outliers
and can become unstable. This issue affects every decomposition
method based on the minimization of a criterion function in the
ordinary least squares (OLS) sense. To avoid these limitations, we
put forward a more robust multivariate analysis aiming at decom-
posing the multilead AA signal defined in Eq. (1) and split into S
segments.

The approach proposed is the weighted principal component anal-
ysis (WPCA), fitting the data model Y(r) by minimizing a weighted
least squares (WLS) loss function [35] as in the scheme described
next. According to the WLS  approach, each entry of the input matrix
Y(r) defined in a reference segment r is separately weighted with
a fixed, nonnegative quantity. These leveraging factors can be col-
lected in a matrix W(r) having the same dimensions as Y(r). The
general form of the WLS  loss function can be written as:

h(Y(r)|Y(r), W(r)) = ‖(Y(r) − Y(r)) ∗ W(r)‖
2
F

=
L∑

!=1

N∑

m=1

[w(r)
!,m(y(r)

!,m − ŷ(r)
!,m)]2 (4)

where * denotes the Hadamard (or elementwise) product, whereas
the operator || · ||F stands for the Frobenius norm. In our experi-
mental framework, the output model Y(r) = M(r)X(r) consists of the
WPCA vectors contained in the L × n matrix M(r), and the n × NS
matrix X(r) representing the PCs, stored in decreasing order of
variance. As in classical PCA, some orthogonality constraints are
imposed on M(r) and X(r) in order to reduce the ambiguities in the
model.

2.5. Assignment of the weight matrix

Special consideration must be paid to the assignment of the
weights collected in matrix W(r). Indeed, an accurate choice of these
values can give rise to a kind of filtering action which enhances
not only the leads, but also the time samples giving the most
content-bearing contributions while discarding those that do not
yield significant information or can pollute atrial observations. In
our application, all temporal samples on the same lead are equally
treated. Also, we aim at emphasizing leads with more stable and
regular waveforms while reducing the influence of those character-
ized by higher temporal dispersion, quantified in terms of energy.
We assume that the input signal Y(r) can be modeled as:

Y(r) = Y(r)
S + Y(r)

N (5)

namely, as the sum of a meaningful component Y(r)
S (describing

AF in our application) and a noisy component Y(r)
N , due not only

to data acquisition noise, but also to elements discarded by the
reduced-rank WPCA-approximation. Our hypothesis is that Y(r)

N =
(Y(r) − Y(r)

S ) is characterized by a high degree of spatio-temporal
variability which can alter or hide informative elements coming
from YS in each lead. This term can be regarded as the argument of
the WLS  criterion defined in Eq. (4) to be minimized according to
the algorithm described in the sequel. Hence, one way of reducing
its influence on the overall signal is by weighing each lead by the
inverse of AA signal variance, thus giving more importance to the
least powerful electrodes. As a result, each row of W(r) is weighted
by the inverse of the standard deviation "(r)

! associated with the
corresponding lead !=1, . . .,  L in Y(r) and computed on each segment
r = 1, . . .,  S:

W(r) = [("(r)
1 )

−1
("(r)

2 )
−1

. . . ("(r)
L )

−1
]T 1 (6)

where 1 is a row vector with T unit entries. It is well worth noting
that classical PCA is a special case of WPCA, where the elements of
the weight matrix are all equal to 1. Once a weight matrix has been
chosen, WPCA can be carried out using the algorithm summarized
in the Appendix.  Hence, the choice of decomposing each reference
time interval in keeping with the WPCA model Y(r) = M(r)X(r). In our
application, this model is computed in each reference time inter-
val. In such a context, AA signal estimation quality per segment is
quantified by the NMSE defined in Eq. (3).  Different weight matrices
W(r) will generally lead to different models M(r)X(r), thus resulting
in different NMSE values. The predictive value of different forms of
W(r) will be tested in Section 3.

2.6. Assessing atrial activity complexity from the NMSE values

After WPCA performance, we  investigate how to properly com-
bine NMSE values computed on each ECG lead and condense
information in a unique predictor of CA outcome. With reference to
Section 2.3,  AF complexity evaluation in each segment is followed
by the computation of the mean value #!,n and the standard devi-
ation "!,n of the NMSE in Eq. (3) over all possible combinations
of estimated and reference segments (s, r), for each lead ! [29].
Parameter #!,n assesses global segment estimation performance,
whereas "!,n quantifies AF organization inter-segment variability.
Finally, contributions from all leads analyzed are combined into the
interlead NMSE weighted sum:

#̃n =
L∑

!=1

#!,n

"2
!,n

/

L∑

!=1

1
"2

!,n

(7)

whose weights are represented by NMSE inverse variance values
1/"2

!,n per lead; contributions coming from ECG leads rendering
more regular and less dispersive patterns are considered to be
more relevant. A further interpretation of "!,n can be given in terms
of uncertainty: low values of this parameter depict a more stable
reconstruction across time segments, whereas high values denote
higher projection error uncertainty. Accordingly, leads guarantee-
ing a more robust AA content characterization have a stronger
influence in the computation of the output descriptor. The choice of
such weights can be further justified if we  consider that the com-
plexity information is reflected on the ensemble of ECG leads as
a set of independent random variables. The best linear minimum-
variance unbiased estimator of the complexity descriptor will thus
be given by the weighted mean of Eq. (7) [36]. As a result, greater
weight is given to values coming from lower-variance distributions.
The flow chart resuming the main processing stages of our method
is represented in Fig. 2.

2.7. Choice of NMSE characteristic parameters

Some considerations about the tuning of NMSE characteristic
parameters should be mentioned, i.e., the number S of AA segments
which need to be processed, besides the number of spatial topogra-
phies n used for AA signal estimation. Concerning the value of S,
experimental evidence in [29] shows that in most patients NMSE
decreases and remains constant after a certain threshold S value.
Since the error variation flattens from S ≈ 4 segments, we set this
value prior to signal decomposition. This choice is also supported
in the present study by the evolution of #̃WPCA8 as a function of
the number of segments S, assuming that their size is fixed and
equal to NS and taking into account constraints derived from the
ECG recording length available in our database. As Fig. 3 shows, the
index keeps quite a constant value when S increases. In addition,
even when segment length NS changes, parameter variations are
quite limited (below 10%), as shown in Fig. 4. This result confirms
the robustness of the predictor put forward to the choice of tuning

dx.doi.org/10.1016/j.bspc.2013.02.002


Please cite this article in press as: M. Meo, et al., Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal
component analysis, Biomed. Signal Process. Control (2013), http://dx.doi.org/10.1016/j.bspc.2013.02.002

ARTICLE IN PRESSG Model

BSPC-381; No. of Pages 11

M.  Meo et al. / Biomedical Signal Processing and Control xxx (2013) xxx– xxx 5

Fig. 2. Flow chart of the algorithm yielding the proposed CA outcome predictor #̃WPCA8 .

Fig. 3. Evolution of #̃WPCA8 as a function of the number of segments S.

parameters and supports our choice of setting a unique value for S
for all patients in order to simplify the algorithm.

Concerning estimation performance, as WPCA rationale
assumes that the first PC retains the most of the AA global variance,
the rank-1 approximation of AA observations by projecting them
over the dominant PC is computed. Indeed, such a reconstruction
allows not only underlining the most descriptive components in
terms of variance, but also suppressing irrelevant and/or noisy

Table 1
Assessment of WPCA convergence characteristics: average number of iterations for
convergence $ = 10−5.

NS s

1 2 3 4

1000 96 84 114 93
2000 92 100 92 96
3000 84 90 92 103
4000 85 98 101 112

Fig. 4. Evolution of #̃WPCA8 as a function of the number of samples per segment NS .

elements that can deteriorate signal content. Further experimental
results are presented later in the paper (Section 3) and support
the choice of setting n = 1, so the corresponding subscript will be
omitted in the sequel for convenience. Finally, as WPCA is an iter-
ative algorithm (described in the Appendix),  a stopping criterion
has been introduced, based on a convergence tolerance $ = 10−5

defined before Eq. (9).  In order to assess WPCA computational

Table 2
Assessment of WPCA convergence characteristics: average final value of WLS
convergence criterion C* (Eq. (9) after convergence, with $ = 10−5) [n.u.]. Values
normalized by a scaling factor equal to 10−6.

NS s

1 2 3 4

1000 9.0 8.8 9.1 8.9
2000 8.8 9.0 8.6 9.2
3000 8.6 9.1 9.1 8.7
4000 9.0 8.9 8.9 9.0
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Table  3
Interpatient statistical analysis and CA outcome prediction performance (n.u.: normalized units).

Successful CA Failing CA p-Value AUC Best cut-off

#̃WPCA8 [n.u.] 70.76 ± 17.74 37.54 ± 20.01 0.0013 0.91 40.64
#̃WPCA12 [n.u.] 63.03 ± 18.12 61.64 ± 20.87 0.88 0.47 53.76
#̃PCA8 [n.u.] 65.68 ± 19.27 37.59 ± 21.88 0.0082 0.84 45.57
#̃PCA12 [n.u.] 65.85 ± 28.41 44.09 ± 27.49 0.12 0.76 45.57
NMSEWPCA8 [n.u.] 54.24 ± 25.89 50.24 ± 23.04 0.74 0.57 45.64
NMSEWPCA12 [n.u.] 85.67 ± 14.62 86.78 ± 17.41 0.75 0.54 95.32
NMSEPCA8 [n.u.] 45.56 ± 26.93 30.35 ± 26.93 0.19 0.64 49.03
NMSEPCA12 [n.u.] 67.80 ± 22.11 80.73 ± 14.48 0.18 0.69 69.00
D(V1) [mV] 0.08 ± 0.03 0.06 ± 0.01 0.03 0.80 0.05
SampEn(Ls, r(A)

s ) [n.u.] 2.82 ± 0.39 3.06 ± 0.43 0.21 0.70 3.12
SampEn(Ls, r(B)

s ) [n.u.] 2.42 ± 0.38 2.66 ± 0.43 0.20 0.70 2.73
SampEn(Ls, r(C)

s ) [n.u.] 2.14 ± 0.37 2.39 ± 0.42 0.20 0.70 2.44
AFCLV1 [ms] 139.63 ± 19.66 121.75 ± 23.83 0.09 0.71 129.87

load, the number of iterations for convergence and the final value
of WLS  convergence criterion C* (introduced in Eq. (9) in the
Appendix)  are computed for a fixed NS value. These values are first
computed on each segment s = 1, . . .,  4 and then averaged over the
20-patient database. Test results are reported in Tables 1 and 2.
We can remark that both parameter values do not significantly
change when passing from a segment to the following one, and
that computational burden is relatively low in terms of iterations.
A similar result is obtained when considering variations in the
number of samples per segment NS. This further evidence supports
the robustness of our method to the choice of tuning parameters,
as the algorithm converges to satisfactory results in all cases.

2.8. Statistical analysis and classification performance assessment

As displayed in Table 3, categories under examination are
referred to as “Successful CA” and “Failing CA”. All parameters are
expressed as mean ± standard deviation. First, Lilliefors’ test was
run to verify data normality. Differences between successful and
failing CA procedures were statistically determined by an unpaired
Student’s t-test if data were sampled from a Gaussian distribution,
a Wilcoxon rank sum test otherwise. The p-values output by each
unpaired test are obtained under a confidence level  ̨ = 0.05, and
they are reported in Table 3 as well. Binary classification accuracy
of each feature is quantified by the area under its receiver operator
curve (ROC), or area under curve (AUC), whose value is correlated
with the maximization of sensitivity and specificity, i.e., the true
positive and true negative rates, respectively.

3. Results

Our 8-lead descriptor #̃WPCA8 is compared with its 12-lead coun-
terpart #̃WPCA12 . Moreover, the final weighted mean of NMSE values
has also been computed for each lead subset after performing a
rank-1 approximation by classical PCA, thus obtaining #̃PCA8 and
#̃PCA12 , respectively. A comparison between multilead descriptors
and conventional single-lead methods is drawn as well. Accord-
ingly, AA amplitude D(V1) is computed on lead V1 according to the
algorithm proposed in [37,38]. Moreover, atrial fibrillation cycle
length (AFCL), widely known as a predictor of AF termination
by CA, is also determined on the same electrode. Its measure is
manually determined as described in [39]. More specifically, its
value is obtained by averaging temporal distance between 30 con-
secutive f-waves, thus giving AFCLV1 as output. In addition, we
examine a single-lead complexity measure based on the NMSE
value computed on V1 either by applying WPCA or classical PCA.
Such decompositions are accomplished both on the full ensem-
ble of ECG leads and the reduced 8-lead subset, thus resulting in
NMSEWPCA8 , NMSEWPCA12 , NMSEPCA8 and NMSEPCA12 , respectively,

as outputs. A parallel with a non-linear complexity descriptor, the
sample entropy SampEn [24,26,40],  has been drawn as well on
V1. Two parameters have to be tuned prior to its computation: Ls
and rs. Parameter Ls is defined as the length of the sequences the
ECG recording is split into. Such segments are then compared, and
the tolerance for accepting matches is assessed by the threshold
rs. This parameter is chosen as a fraction of the AA input signal
standard deviation on V1, denoted "V1 , so as to assure the transla-
tion and scale invariance of SampEn. Parameter values have been
tuned according to the guidelines given in [24], so we set Ls = 2
besides three values of rs, namely, r(A)

s = 0.1"V1 , r(B)
s = 0.15"V1 and

r(C)
s = 0.2"V1 .

The generalization power of our analysis to an independent
dataset is validated by means of a leave-one-out cross-validation
technique. More precisely, AUC values have been computed on
every possible subset of 19 patients, and then averaged over the
20 subsets. AUC values describing the classification power of each
descriptor are shown in Table 3, besides the corresponding optimal
cut-off points, providing both the highest sensitivity and the high-
est specificity on the whole 20-patient database. Fig. 5 plots the
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Fig. 5. AUC values characterizing #̃WPCAL prediction performance as a function of
the size L of the subset of the 8 independent ECG leads (S = 4, n = 1). WPCA: rank-1
decomposition of the atrial signal in the ECG lead subsets according to the WPCA
approach; PCA: rank-1 decomposition of the atrial signal in the ECG lead subsets
according to the PCA approach.
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Table  4
ECG lead subsets with optimal prediction performance of #̃WPCA8 .

Number of leads (L) Leads

2 I, V1

3 I, II, V2

4 I, V2, V3, V5

5 [I, II, V2, V4, V5]
[I, II, V1, V3, V6]

6 I, II, V2, V3, V4, V6

7 I, II, V1, V2, V3, V4, V5

AUC values describing the classification performance of #̃WPCAL
as

a function of the number L of leads retained in the analysis. For
each value of L ranging from 2 up to 8, #̃PCAL

value has been com-
puted for all 8 !/((8 − L) ! L !) possible ensembles of leads. For each
lead combination, CA outcome prediction performance has been
assessed from the corresponding values of #̃WPCAL

, and validated
by the leave-one-out technique. For each size L, the minimum, max-
imum and mean AUC values over all L-lead subsets were obtained
as a function of the subset dimension L, and their related ranges
of values are displayed in Fig. 5. The lead combinations with the
best prediction performance for each subset dimension are shown
in Table 4. The application of PCA on a single lead (L = 1) has been
excluded from this test, since in this case the method is equivalent
to single-lead analysis.

In our application, we deal with multivariate decomposition
techniques based on the maximization of the variance of the AA
signal, conveying information about AF spatio-temporal distribu-
tion. Hence, another crucial point of our investigation is the effect
of such techniques on AA signal energy content. More specifically,
the input AA signal variance has been determined on each ECG lead,
yielding the atrial power distribution represented by the vector
!2

AA = ["AA
2
1, "AA

2
2, . . . , "AA

2
L ]T , with L = 8. Effects of the multilead

weighting scheme on the decompositions of the observed AA sig-
nal are also compared to those obtained by standard PCA. The
rank-1 approximations Y computed by WPCA and PCA yield atrial
power distribution vectors !2

WPCA and !2
PCA, respectively. These
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Fig. 6. Effects of the multilead weighting scheme on AA reconstruction. !2
AA: vari-

ance of the input AA signal per lead; !2
PCA: variance per lead of the rank-1 AA signal

approximation by PCA; !2
WPCA: variance per lead of the rank-1 AA signal approxi-

mation by WPCA.
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Fig. 7. Assessment of CA outcome prediction performance of single-lead energy
descriptors. !2

AA: energy of the input AA signal per lead; !2
PCA: energy per lead of the

rank-1 AA signal approximation by PCA; !2
WPCA: energy per lead of the rank-1 AA

signal approximation by WPCA.

parameters have been computed over the whole persistent AF
database and averaged over all patients; their spatial distribution
is plotted in Fig. 6. This figure evaluates the energy content of
data reconstructions computed by each decomposition, as well
as their capability of effectively approximating the original sig-
nal. Following this line, this evaluation has been accomplished in
the framework of CA outcome prediction as well. In particular, we
tested whether AA signal energy "2

AA associated with each lead can
effectively perform as a predictor of the ablation result; hence, the
quantification of their classification accuracy on each ECG lead by
means of the AUC criterion, whose values are displayed in Fig. 7.
The same analysis is led on the energy values computed on the
rank-1 approximations output by PCA and WPCA, "2

PCA and "2
WPCA,

respectively, also plotted in Fig. 7. Finally, further tests confirm the
validity of the model introduced in Eq. (5) by assessing CA outcome
prediction performance on the basis of different definitions of the
weight matrix W(r) as will be discussed in Section 4.5.

4. Discussion

This work investigates noninvasive measures of AA spatio-
temporal variability and their link to CA outcome prediction in
persistent AF. The main results can be summarized as follows.
Firstly, spatial variability of the standard ECG proves to be a use-
ful tool to describe AF content and offer a wider perspective about
the evolution of the disease during CA, thus helping its outcome
prediction. In the second place, an index conventionally employed
as a classifier of AF organization type is herein characterized so as
to assess CA effect. Information about AA signal coming from mul-
tiple ECG leads is exploited by applying WPCA, which efficiently
compresses AF content in a unique, significant PC, thereby min-
imizing the impact of polluting signal components. The weights
used in WPCA seem to automatically enhance the role of the most
descriptive ECG leads, unlike PCA, which equally weights all ECG
leads. This filtering action is also performed by selecting the 8-lead
ensemble introduced in Section 2.2, so suppressing linear depend-
encies between certain leads due to their spatial location. These
aspects are discussed in more detail in the sequel.

dx.doi.org/10.1016/j.bspc.2013.02.002


Please cite this article in press as: M. Meo, et al., Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal
component analysis, Biomed. Signal Process. Control (2013), http://dx.doi.org/10.1016/j.bspc.2013.02.002

ARTICLE IN PRESSG Model

BSPC-381; No. of Pages 11

8 M. Meo et al. / Biomedical Signal Processing and Control xxx (2013) xxx– xxx

4.1. CA outcome prediction in the WPCA multilead framework

Our experimental results point out the advantages of the
multilead strategy which considerably outperforms conventional
predictors computed in only one ECG lead. Concerning single-lead
AF complexity measures determined by PCA on different sets of ECG
leads, i.e., NMSEPCA8 and NMSEPCA12 , not only statistically signifi-
cant interpatient differences cannot be observed, but AUC values
related to their discrimination capability are also extremely low.
Similar conclusions can be drawn when examining the equivalent
parameters obtained in V1 when approximating data by means of
WPCA (NMSEWPCA8 , NMSEWPCA12 ). These results could be explained
by the limited outlook of single-lead complexity measures, which
ignore interlead relationships. Relevant information from other
electrodes is neglected, thus reducing discrimination capabilities.
Furthermore, as lead V1 is close to the right atrial free wall, there
is the risk of neglecting useful information about other important
anatomical areas, such as the left atrium (LA) and the PVs, which
play a crucial role in AF initiation and maintenance [41]. In [42],
it is shown that V1 is the lead that best explains left atrial activ-
ity in two subjects affected by atrial tachycardia confined to the
LA. However, AF mechanisms are generally more complex, and our
results in Section 4.5 indicate in any case that, concerning CA out-
come prediction, lead V1 does not depict important information
about ablation effects that could be present in other leads. Also, con-
cerning nonlinear AF complexity indices such as sample entropy,
no statistically significant interclass differences can be remarked,
regardless of the values of tuning parameters. Not only sample
entropy index is affected by the same shortcomings typical of the
other single-lead features, but it is also necessary to set values of
its tuning parameters prior to its computation.

By contrast, by means of WPCA, ECG spatial diversity high-
lights statistically significant differences between the categories
examined. As displayed in Table 3, higher values of the mul-
tilead descriptor #̃WPCA8 are significantly correlated with CA
success. As its mathematical definition in Eq. (7) shows, the NMSE
inter-segment variance provides a quantitative criterion for the
assessment of the spatio-temporal variability of the AA signal: leads
exhibiting more stable and repetitive patterns give a more relevant
contribution to the weighted mean #̃WPCA8 , so they have stronger
influence. The inter-segment variance acts as a lead selector: it
enhances ECG electrodes where not only the signal shows the most
stable waveform, but it is also likely to yield a more accurate signal
estimation, with a lower degree of uncertainty.

4.2. A comparison with standard clinical predictors of CA outcome

In the first place, selection of patients to be treated by CA is
guided by considerations about some clinical data, such as LA diam-
eter and AF duration. Indeed, it is widely known that when the LA
is markedly dilated CA is less likely to be effective, as a larger LA is
linked to a more advanced degree of the pathology. Similar remarks
can be made about AF duration, correlated with its chronification
level [14]. In [43] it is demonstrated that CA outcome prediction in
paroxysmal AF is notably improved by the knowledge about some
features, primarily the presence of non-PV drivers and dominant
frequencies both in right and left atrium. Nevertheless, the most
of these parameters are invasively acquired and known only at the
moment of the procedure. This motivates the interest in predic-
tive features that can be extracted without risk to the patient in a
cost-efficient manner, as those derived from the ECG.

Analysis of the AA amplitude as rendered by D(V1) arouses dif-
ferent remarks. Actually, we can notice the satisfactory ability to
distinguish between successful and failing ablations, as well as
the effective reproduction of results manually reported in pre-
vious works using a different persistent AF database [8].  Such a

descriptor can effectively capture AA signal amplitude character-
istics if the pattern is sufficiently regular and f-waves are easily
detectable, although interpolation operations can be hampered by
residual spurious peaks or too irregular patterns. What is more, no
information about AF spatio-temporal repetitiveness is provided
by this feature.

The study presented in [39] assesses the predictive role
of AFCL measured on surface ECG for CA of persistent AF.
However, as its value is manually acquired, there is a lack
of reproducibility and prediction reliability. Moreover, experi-
mental results show that such parameter, defined as AFCLV1 ,
does not underline statistically significant differences between
the categories under examination using lead V1. Further-
more, as it is usually determined in only one electrode, it
is affected by the shortcomings typical of single-lead predic-
tors. In addition, correlation between ECG-based parameters and
intracardial measures has not been confirmed in some studies
[44].

4.3. Weighted and standard PCA: a comparison

Even though standard PCA is capable of discriminating between
successful and failing CA procedures as well, results concerning
#̃WPCA8 show that classification quality can be further improved by
our a priori knowledge about atrial observations in the form of the
weights used in WPCA. On further analysis, AA standard deviation
measured on each ECG electrode proves to be a reliable index, since
it does not only weight AF temporal dispersion, but it is also a sta-
tistical measure of uncertainty. Indeed, if AA patterns on certain
leads are excessively irregular and/or variable, the correspond-
ing inverse standard deviation values automatically reduce their
influence. This selective action seems to boost the compression
power of the decomposition. More specifically, the effect of possi-
ble redundancies is already reduced before computing the iterative
minimization algorithm by selecting the 8 linearly independent
ECG leads, so that the most discriminant AA components are put
into evidence more easily. In Fig. 5 the AUC criterion quantifies the
classification performance of #̃WPCAL

and #̃PCAL
as a function of the

number of ECG leads exploited for the prediction selected among
the 8 independent leads. Classification results obtained using WPCA
outperform those by PCA, especially as size L increases. This figure
also confirms the benefits derived from the spatial variability of
the standard ECG. The higher the number of leads employed, the
more accurate CA result prediction, assessed by higher mean AUC
values.

Further advantages derived from the weighting framework are
displayed in Fig. 6. First of all, it can be noticed that the trend
of !2

WPCA values is very similar to that of !2
AA. In addition, !2

WPCA
values are closer to !2

AA than those obtained when performing
classical PCA (!2

PCA), thereby quantifying a lower error of recon-
struction of the original data. Energy values obtained after AA
signal approximation, either by PCA or WPCA, are lower than those
computed directly on input data because of the low-rank repre-
sentation effect. It can be inferred that WPCA can better preserve
energy content of the AA signal and condense it more efficiently
in a single, maximum-variance PC than conventional PCA. Differ-
ences between these decompositions in terms of the amount of
information retained by the rank-1 approximation are particularly
evident in V1 and V2, which represent the reference leads for AF
analysis in medical practice, owing to their proximity to the right
atrium. Note how WPCA significantly enhances, in an automated
fashion, the relevance of these leads in the AA signal decomposi-
tion. The use of these energy-descriptors in single-lead prediction
does not provide satisfactory results, as shown in Fig. 7. Indeed,
their prediction performance is poor, and also highly dependent on
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the lead considered. In general, these results confirm the need for
an adequate combination of atrial signal contributions from differ-
ent ECG leads in a more robust multilead framework, capable of
filtering out uninformative AA signal features and exploiting ECG
spatial variability. However, the importance of their contribution
is significantly reduced when applying PCA, thus losing relevant
information about AF energy content in the associated heart sites.
Conversely, the WPCA scheme can effectively improve CA outcome
prediction by reinforcing the most discriminative features of input
data thanks to the prior knowledge about AA signal energy distri-
bution.

4.4. Alternative definitions of the weight matrix

The choice of the inverse standard deviation values as W(r)

weights confirms our hypothesis about AA signal representation
illustrated in Section 2.5.  Conversely, other weighting schemes are
not able to give comparable classification results. For example, the
weight matrix depending on AA standard deviation values per lead
W(r) = ["(r)

1 , "(r)
2 , . . . , "(r)

L ]T 1 does not manage to properly empha-
size ECG lead contributions, thus showing a weak predictive power
(AUC = 0.53, p-value = 0.98). These results seem to corroborate our
AF model, as AA maximum-power components seem unable to
selectively enhance the most informative contributions by means
of the weighting structure.

In further experiments, alternative weight matrices W(r) have
also been tested. For instance, one of the attempted strategies
consists in giving more weight to leads better explained by a
reduced-rank PCA approximation, thus defining W(r) elements as
a function of the inverse value of standard deviation of the error
between original data and rank-1 PCA approximation per lead
(W(r) = [("1

(r)
N )−1, ("2

(r)
N )−1, . . . , ("L

(r)
N )−1]T 1). However, no signif-

icant differences between effective and failing CA procedures
have been found in this case (AUC = 0.67, p-value = 0.69). In other
tests, we hypothesize that W(r) components depend on the value
of the standard deviation itself (W(r) = ["1

(r)
N , "2

(r)
N , . . . , "L

(r)
N ]T 1),

although similar poor results are obtained (AUC = 0.63, p-
value = 0.37). This leads us to conclude that focusing on noisy
components that may  be present in the AA signal does not actu-
ally improve the selective action of the weighting scheme, whereas
considering variance of the whole signal gives more emphasis to its
most informative components, thus improving prediction accuracy.

4.5. ECG-lead selection

Classification performance of multilead CA predictors proves
to be more accurate when reduced-rank approximations are com-
puted on the subset of 8 independent leads rather than the whole
standard ECG. This result is in line with recent previous works
[38]. In clinical centers, all leads of the standard ECG are ana-
lyzed so that projections of the resultant vectors in 2 orthogonal
planes at different angles can be compared, so improving pattern
recognition [18]. However, WPCA computation over the subset of
8 independent leads defined above seems to increase the efficacy
of its filtering action, as part of redundant information is already
suppressed before the decomposition, and the model captures the
natural variation underlying the data more easily. These consid-
erations justify the fact that descriptors extracted from the whole
ECG, namely, #̃WPCA12 and #̃PCA12 , are outperformed by their 8-lead
counterparts.

Table 4 displays the groups of leads which best help discrim-
inating between successful and failing procedures, and give the
most relevant contribution to the computation of the weighted
mean #̃WPCA8 in the prediction scenario. Some considerations
can be made about the role of certain leads in CA outcome
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Fig. 8. AUC values describing #̃WPCA8 prediction performance as a function of the
rank n of the WPCA decomposition.

prediction. In particular, we can remark that lead V1 does not
provide the main contribution to CA outcome prediction. In fact,
other leads, such as I, II, V2, recur more frequently. This evidence
is in contrast with standard medical practice, and it can be prob-
ably explained by the placement of lead V1, not close enough
to critical sites responsible for AF genesis and maintenance such
as the PVs and the LA, commonly acknowledged as potential AF
sources. This seems to be confirmed by the recurrence of at least
one lead close to the left side of the heart in each L-size sub-
set, for instance, V5 and V6. We  can conclude that the presence
of leads representing heart electrical activity on multiple planes
supports the hypothesis that clinical information coming from mul-
tiple electrode locations can improve ablation outcome prediction
as compared to classical single-lead approaches, as discussed in
Section 4.1.

4.6. Benefits of reduced-rank WPCA approximations to the AA
signal

Fig. 8 illustrates the advantages provided by data compression
carried out by WPCA, and seems to justify the choice of rank-
1 approximations (n = 1) made in Section 2.7.  Indeed, AUC values
related to our multilead predictor #̃WPCA8 have been computed by
varying the number of PCs n retained in the WPCA truncation in
Eq. (2),  which ranges from 1 (the value set for our algorithm) to 8
(full-rank decomposition). The quality of CA outcome prediction
considerably worsens when increasing the truncation rank, and
#̃WPCA8 exhibits weak discriminating capabilities when assuming
more than 4 PCs. The fewer PCs employed in the decomposition, the
better the classification performance, as if the dominant PCs pre-
served the discriminative power of the complexity index. Indeed,
noisy and/or redundant elements are typically ascribed to the very
last PCs, while preserving the most representative features of the
AA signal in the dominant ones. A similar benefit of rank reduction
was obtained in [38] in the context of short-term CA outcome pre-
diction based on amplitude parameters computed from low-rank
PCA approximation.

4.7. Links with AF spatio-temporal complexity

As our research demonstrates, CA outcome prediction based
on WCPA of multilead ECG signals proves to be effective. How-
ever, the proper link between the NMSE-based predictor proposed
and AF spatio-temporal complexity cannot be established in the
present work for lack of simultaneous invasive recordings. Such
a connection can only be suggested by the results presented in
[11], which showed the correlation between the NMSE measure
in V1 and AF organization. Accordingly, the potential relation
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between CA outcome and AF organization by means of our mul-
tilead characterization of the NMSE index should be further
investigated.

4.8. Limitations of the study

This research is hampered by the limited size of our per-
sistent AF database, making it difficult to generalize the results
obtained. No comparison with invasive recordings is developed
in our study, so possible relations with endocardial electrical
phenomena depicting AF spatio-temporal complexity cannot be
analyzed. Moreover, the short follow-up length established for
some patients can increase error probability when assessing
ablation success. Finally, further attention should be paid to
the implementation modalities of the WPCA weight matrix
W. Roughly speaking, even though the methodology illustrated
in Section 2.5 and further discussed in Section 4.4 proves to
be robust and appropriate for fulfilling long-term CA outcome
prediction in the available database, alternative computational
strategies could be conceived for a deeper comprehension of AF
electrophysiology.

5. Conclusions

This work has examined the role of quantitative indices com-
puted on the surface standard ECG in predicting CA outcome.
These parameters are derived from the NMSE of reduced-rank
PCA approximations to the AA signal, recently shown to quan-
tify AF spatio-temporal organization. Even though we  have not
proved their ability to assess AF organization, our investigation
has demonstrated that contributions from several ECG leads can
be adequately combined so as to accomplish preprocedural long-
term CA outcome prediction in persistent AF patients. Compared
with conventional PCA, WPCA is able to better capture the spa-
tial variability typical of multilead recordings by automatically
enhancing the most significant contributions from an appropriate
subset of ECG leads. The inspection of NMSE spatial distribution can
offer a wider perspective of AF evolution on the heart substrate,
thus overcoming the limited characterization typical of single-lead
strategies. Moreover, our predictor is more robust to lead selection
than single-lead approaches, so it can be particularly advanta-
geous under particular circumstances, e.g., when electrodes get
accidentally loose or disconnected from the patient’s body. Another
positive effect of WPCA concerns data compression into a sin-
gle, maximum-variance PC, as the rank-1 approximation to the
AA signal seems to retain its most essential features while reject-
ing unnecessary information. Our research has demonstrated that
information capable of predicting CA outcome can be efficiently
extracted from the multilead ECG by means of a robust approach
based on a WPCA decomposition of the AA signal over a suitable
ensemble of linearly independent ECG leads. Alternative multi-
variate decomposition techniques have to be examined, as well as
further strategies to select weight matrix W in the WPCA frame-
work.
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Appendix. Algorithm for WPCA computation

WLS  minimization is achieved by the following optimization
algorithm proposed in [35]:

• Initialize Y0 and compute h0 = h(Y0|Y, W), where h(·) is the WLS
cost function given by Eq. (4).

• For i = 0, 1, 2, . . . until convergence
1. Compute a gradient-descent iteration on the WLS  cost, as Ỹi =

Yi + ˇW ∗ W ∗ (Y − Yi), where  ̌ = w−2
M , wM is the maximum

weight of W.
2. Compute Yi+1 as the reduced-rank model fitting the data Ỹi:

Yi+1 = argmin
Y

‖Ỹi − Y‖
2
F (8)

subject to the orthogonality constraints on Y. This is given by
the best rank-r approximation (determined, e.g., via the SVD)
of the matrix Ỹi obtained at the previous step.

3. Compute hi+1 = h(Yi+1|Y, W). Given a fixed, small tolerance $,
if C* < $, where:

C∗ = (hi − hi+1)/hi, (9)

the convergence is reached; otherwise set i = i + 1 and repeat
the algorithm from Step 1 until convergence.

• End

More specifically, the criterion is monotonically minimized
according to Eq. (8),  knowing that Ỹ depends on the multivariate
input signal Y, the weight matrix W and the model Y at the current
iteration.

Different procedures for initializing Y have been envisaged in
earlier works. Our implementation assumes to assign the OLS  solu-
tion obtained by the standard PCA, so that Y0 equals the best rank-r
approximation determined without assigning loads to preferential
leads.
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[34] D. Skŏcaja, A. Leonardisa, H. Bischofb, Weighted and robust learning of subspace
representations, Journal of Pattern Recognition 40 (2007) 1556–1569.

[35] A. Henk, L. Kiers, Weighted least squares fitting using ordinary least squares
algorithms, Psycometrika 62 (2) (1997) 251–266.

[36] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, vol. I,
Prentice Hall Signal Processing Series, 1993.

[37] M. Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Non-invasive prediction
of  catheter ablation outcome in persistent atrial fibrillation by exploiting the
spatial diversity of surface ECG, in: Proc. IEEE EMBC, Boston, USA, 2011, pp.
5531–5534.

[38] M.  Meo, V. Zarzoso, O. Meste, D.G. Latcu, N. Saoudi, Spatial variability of the
12-lead surface ECG as a tool for noninvasive prediction of catheter ablation
outcome in persistent atrial fibrillation, IEEE Transactions on Biomedical Engi-
neering 60 (1) (2013) 20–27.

[39] S. Matsuo, N. Lellouche, M.e.a. Wright, Clinical predictors of termination and
clinical outcome of catheter ablation for persistent atrial fibrillation, Journal of
the American College of Cardiology 54 (9) (2009) 788–795.

[40] R. Alcaraz, J.J. Rieta, A novel application of sample entropy to the electrocar-
diogram of atrial fibrillation, Nonlinear Analysis: Real World Applications 11
(2010) 1026–1035.

[41] M.  Haïssaguerre, P. Jaïs, D. Shah, et al., Spontaneous initiation of atrial fibrilla-
tion by ectopic beats originating in the pulmonary veins, New England Journal
of  Medicine 339 (1998) 659–665.

[42] P.G. Platonov, I. Nault, F. Holmqvist, M.  Stridh, M.  Hocini, M.  Haïssaguerre, Left
atrial appendage activity translation in the standard 12-lead ECG, Journal of
Cardiovascular Electrophysiology 22 (2011) 706–710.

[43] L.W. Lo, C.T. Tai, Y.J. Lin, et al., Predicting factors for atrial fibrillation acute termi-
nation during catheter ablation procedures: implications for catheter ablation
strategy and long-term outcome, Heart Rhythm 6 (2009) 311–318.

[44] M. Holm, S. Pehrson, M.  Ingemansson, et al., Non-invasive assessment of
the  atrial cycle length during atrial fibrillation in man: introducing, validat-
ing  and illustrating a new ECG method, Cardiovascular Research 38 (1998)
69–81.

dx.doi.org/10.1016/j.bspc.2013.02.002

	Catheter ablation outcome prediction in persistent atrial fibrillation using weighted principal component analysis
	1 Introduction
	2 Methods
	2.1 Characteristics and acquisition modalities of the persistent-AF database
	2.2 ECG preprocessing and atrial activity segmentation
	2.3 Atrial activity complexity
	2.4 Weighted principal component analysis
	2.5 Assignment of the weight matrix
	2.6 Assessing atrial activity complexity from the NMSE values
	2.7 Choice of NMSE characteristic parameters
	2.8 Statistical analysis and classification performance assessment

	3 Results
	4 Discussion
	4.1 CA outcome prediction in the WPCA multilead framework
	4.2 A comparison with standard clinical predictors of CA outcome
	4.3 Weighted and standard PCA: a comparison
	4.4 Alternative definitions of the weight matrix
	4.5 ECG-lead selection
	4.6 Benefits of reduced-rank WPCA approximations to the AA signal
	4.7 Links with AF spatio-temporal complexity
	4.8 Limitations of the study

	5 Conclusions
	Acknowledgements
	Appendix Algorithm for WPCA computation
	References


