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Abstract— During atrial fibrillation (AF), atrial activity (AA)
on the surface ECG consists of a pattern of quasi-periodic os-
cillations (f-waves), which are related to the electrical activation
of the atrial substrate. However, to date no direct comparison
between the extracted f-wave pattern in surface recordings
and specific activation sites within the atria has been carried
out. In the present study, one reference intracardiac modality
consisting of a bipolar electrogram (EGM) recorded from the
left atrial appendage (LAA) is exploited for the first time to
guide the extraction of LAA electrical activity from standard
12-lead ECG recordings. A periodic component analysis (πCA)
technique is employed for this task. The performance of the
proposed multimodal extraction technique is compared to that
obtained employing a noninvasive, fully blind approach, namely,
independent component analysis (ICA). On a database of 31 AF
patients, results suggest that the estimation of LAA activity is
indeed possible, even though its contribution to the ECG total
power is relatively low. Interestingly, ICA seems to provide a
slightly better estimation of LAA activation rate, expressed in
terms of dominant frequency (DF). On the other hand, the
multimodal invasive approach performs better QRST complex
suppression and provides AA waveforms with narrower spectra.

I. INTRODUCTION

Atrial fibrillation (AF) is a form of supraventricular ar-
rhythmia characterized by a broad variety of atrial activity
(AA). The depolarization of the atrial substrate is triggered
by the presence of ectopic sources of electrical activity
and is characterized by the propagation of multiple self-
sustaining wavelets [1]. Invasive techniques, consisting of
uni- or multi-polar intracardiac mapping catheters placed in
both left and right atrium (LA and RA, respectively), have
been adopted to explore AA in different sites of the atria.
From the measured electrograms (EGM), information can
be obtained about the number and location of propagating
wavelets, local wave propagation velocity and activation
rate, usually expressed as dominant frequency (DF). This
latter has received particular attention, as it is thought to
correlate to atrial tissue refractoriness and thus to provide
understanding of AF electrophysiological properties [2].

As opposed to invasive techniques, the surface electro-
cardiogram (ECG) provides a noninvasive and inexpensive
tool to study AF. AA on ECG recording takes the shape of
a fluctuating baseline (f-waves), whose morphological and
spectral properties have been correlated with the response
to treatment [3], [4]. The ECG gives an insight into the
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propagation of the electrical fields resulting from heart cells
activation. Hence, whereas the EGM provides information
about local cellular activation, the ECG represents the elec-
tric potential resulting from the sum of the electrical vectors
due to several sources, both of atrial and ventricular origin.
For these reasons, the EGM and ECG recordings can be
considered as two distinct modalities.

Understanding the contributions of the propagating
wavelets to the ECG recordings during AF is an important
topic, with the potential to make the ECG an even more
powerful clinical tool to treat AF. In [4], a comparison carried
out in terms of DF between ECG lead V1 and simultaneous
EGMs, showed that the considered lead mainly contains RA
activity. The only work that considers the contribution of AA
to the standard 12 ECG leads is that found in [5], where a
study is carried out to elucidate which leads better reflect
AA in the LA. Although the above cited works establish a
link between EGM and ECG modalities, they only focus on
the DF, without quantitatively specifying to which extent one
specific AA pattern contributes to the whole ECG.

In the present work, the direct extraction of LA activity
from the 12-lead ECG recording is attempted for the first
time. To this purpose, one EGM from the left atrial ap-
pendage (LAA) is simultaneously recorded with the ECG and
is employed to guide the extraction, in a semi-blind approach
that exploits the pseudo-periodicity of AA during AF and the
synchronicity between the two modalities. Periodic compo-
nent analysis (πCA), a decomposition technique specifically
designed for pseudo-periodic sources, is considered to solve
this problem. The method was first employed in [6] for the
extraction of fetal activity from abdominal ECG recordings
but, to our knowledge, its application to AF signal analysis
has never been attempted before. Moreover, a restatement of
πCA is proposed in this work, in order to make the algorithm
better suited for the problem in hand.

The multimodal approach for AA extraction is compared
to a classical fully blind source separation (BSS) method,
the independent component analysis (ICA). BSS and ICA
have been shown to successfully tackle the extraction of
AA in AF ECG recordings exploiting the spatial diversity
provided by multiple leads [7], [8], [9]. Interestingly, in all
these works the analysis of AA has been limited to that of
the most significant AA-related signal: following ICA, the
source showing the highest spectral concentration (SC) is
retained as the most representative of the global AA derived
from all leads. Further information of atrial origin that may
be possibly present in the other ICA components is therefore
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neglected. For this reason, in the present work the ICA source
showing the strongest agreement in DF with the reference
LAA EGM is retained and compared to the ICA source
with the highest SC and the multimodally-extracted source.
On a database of 31 AF patients, blindly and multimodally
extracted AAs were compared in terms of their agreement in
DF with the LAA EGM, as well as of two extraction quality
assessment parameters, such as a QRST residual index [10]
and SC [8]. Finally, a study of the contribution of the atrial
sources to the ECG leads in terms of explained power is
performed to show the applicability of the method presented.

II. METHODS

A. Database, Signal Acquisition and Preprocessing

Standard 12-lead ECG were recorded on 31 patients af-
fected by long-lasting persistent AF and undergoing stepwise
catheter ablation at the Cardiology Department of Princess
Grace Hospital, Monaco. One simultaneous invasive record-
ing was also obtained for each patient, by placing a bipolar
catheter within the LAA. Recordings were acquired at a
sample rate of 977 Hz and lasted about 60 s each.

ECG recordings were filtered by a 4th order zero-phase
band-pass Chebyshev filter with a lower cutoff frequency of
3 Hz and an upper cutoff frequency of 30 Hz, in order to
remove low-frequency baseline wandering due to physiologi-
cal interference (e.g., breathing) and high frequency artifacts,
such as power-line and myoelectric interference.

LAA EGM recordings were preprocessed using the
method proposed in [11] to overcome the difficulties brought
by the sharp biphasic morphology of the atrial depolarization
waves in bipolar EGMs, which makes Fourier analysis easily
fail in representing the actual depolarization rate of the
atrial tissue. The so-preprocessed EGM is transformed in
the frequency domain and the LAA DF is determined as the
peak frequency of Welch’s power spectral density estimate.

B. Blind Atrial Activity Extraction

ICA is a statistical tool belonging to the family of BSS
techniques that aims to separate the statistically indepen-
dent sources contributing to an observed linear mixture.
We employed the RobustICA-f algorithm [9], since it has
been shown to compare favorably to other AA extraction
techniques. ICA-based algorithms, such as RobustICA-f,
typically exploit the fact that the AA shows a narrowband
frequency spectrum to detect the atrial source among the
12 ICA sources. SC is taken as a measure of spectrum
narrowness:

SC =

∑1.17fp
0.82fp

PAA(f)
∑fs/2

0 PAA(f)
(1)

where PAA is the Power spectrum of the estimated AA, fp
is the peak frequency and fs is the sampling frequency. The
source s with peak frequency in the 4-9 Hz range and the
highest SC is typically selected as representative of AA, and
its fp(s) is taken as the AA DF. The ICA method based on
this source selection criterion will be referred to as ICAsc

hereafter.

In this work, we argue that LAA activation information
may be present in sources with SC values lower than
the maximum. Therefore, we also retain the source slaa
satisfying the following condition:

slaa = min
s

|DFlaa − fp(s)| (2)

where DFlaa is the DF of the LAA EGM modality. Hence,
the agreement in terms of peak frequency between the
sources issued from RobustICA-f and the LAA EGM is also
employed as a criterion for source selection; the resulting
method is hereafter denoted by ICAlaa.

C. Periodic Component Analysis (πCA)

This method represents an algebraic alternative to ICA for
the extraction of one or more cyclic sources whose periodic
structure is known a priori. The method was extended to
periodic sources with time-varying period in [6], where it
was also applied to the extraction of the fetal ECG from
maternal abdominal leads.

Assume the period τ of a specific source of interest is
known. Then source extraction is performed by the weight
vector ŵ that maximizes the following measure of τ -
periodicity:

ψ =
wTCτw

wTC0w
(3)

where Cτ and C0 are the observation covariance matrices at
lag τ and 0, respectively. Maximization of (3) is obtained by
choosing the highest eigenvector/eigenvalue pair (v, λ) that
solves the generalized eigenvalue decomposition problem
Cτv = λC0v, and taking ŵ = v. This corresponds to
jointly whitening the data and diagonalizing matrix Cτ ,
which performs source extraction under the given model
assumptions.

When the source of interest presents a time-varying period
τt, the method proposed in [6] suggests to assign a linear
phase function φ(t) to each sample, in order to phase-wrap
the τt-periodic cycles onto the [−π,π] interval, relative to a
significant feature of the signal (e.g., an amplitude peak) that
repeats in a quasi-periodic manner. The time-varying period
τt is determined on a sample-to-sample basis, so as to satisfy
the following condition:

τt = min{τ | φ(t+ τ) = φ(t), τ > 0}. (4)

This method is particularly suitable for the problem in hand,
as AA is a pseudo-periodic signal, whose prior information
about the period can be obtained from the intracardiac
modality. Peak detection is performed on the LAA signal
and each peak-to-peak interval is employed to define φ(t)
and determine τt for recovering the projection of LAA AA
on the ECG recording.

D. πCA for AA Extraction with EGM Modality

The phase-wrapping procedure performed by πCA aims
at making each sample as phase-aligned as possible to its
corresponding sample at the following cycle, as shown in
(4). Although this is suitable in an application such as



that presented in [6], where each cycle is characterized
by several components (i.e., the P, Q, R, S and T-waves),
this condition appears too hard on a signal with a less
defined pattern, such as AA on the ECG. Moreover, φ(t)
implicitly deforms the signal waveform before performing
the correlation, especially if the period of atrial activations
presents a strong variability. For these reasons, in the present
study the condition in (4) is relaxed, imposing that only
the samples in correspondence with the LAA EGM peaks
be perfectly aligned. Matrix Cτ at the nominator of (3) is
replaced by the following second order statistics:

Γk =
N−k∑

i=1

xi(t)x
T
i+k(t), k = 1, 2, ...,K (5)

where xi(t) is the vector containing the 12-lead observation
segments centered around the ith LAA depolarization peak,
with i = 1, 2, ..., N , and K is the maximum period-lag
considered. In the following, this modified version of the
πCA algorithm will be referred to as πCAmod.

III. RESULTS

A. Dominant Frequency Correlation Analysis

Fig. 1 shows the correlation between the DF of the refer-
ence EGM modality and the AA sources extracted from the
ECG with the different criteria considered for the 31 patients
in our database. Note that, although all criteria produce high
correlation coefficients, the ICAsc source shows the poorest
agreement with the LAA (Fig. 1(a)).

The πCA method proposed in [6] (Fig. 1(c)) performs
slightly worse than the restated version of the algorithm
(Fig. 1(d)), thus supporting the relaxation on phase-alignment
made in Section II-D.

The comparison between Fig. 1(b), (c) and (d) suggests
that the RobustICA-f algorithm based on criterion (2) per-
forms slightly better than the multimodal approach, providing
the strongest agreement in DF between ECG-extracted AA
activity and the LAA EGM.

B. Extraction Quality Assessment

The quality of the extracted sources is tested in the time
domain by comparing the intervals of ventricular activation
(QT segments) to the intervals of ventricular latence (TQ
segments). To this purpose, a ventricular residual (VR) index
is adopted as in [10]. For the sake of completeness, a
comparison is also performed in terms of the SC index
given in (1), which has previously been employed in the
ICA algorithm as a source selection criterion [8].

Results of this analysis are depicted in Fig. 2, where
performance differences among the different methods can
be appreciated. The ICAlaa clearly presents the strongest
QRST complex residual, despite the high correlation with the
reference AA in terms of DF, as seen in the previous section.
On the other hand, ICAsc AA barely contains any ventricular
remainder, despite the comparatively low agreement with
the LAA EGM. The multimodally-extracted sources perform
equally well relative to each other and better than ICAlaa.
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Fig. 1. Correlation between LAA DF and DF of the source obtained by
the four methods under comparison. Top panels: ICA with AA selection
criterion based on (a) SC value (ICAsc) and (b) on agreement in DF with
LAA (ICAlaa). Bottom panels: πCA, (c) as proposed in [6] and (d) in its
modified version (πCAmod).

The results of the analysis in terms of SC, reported in the
box-and-whiskers plot on the right of Fig. 2, are in general
agreement with those relative to the VR index, suggesting
that the two indices employed are strongly correlated in
assessing extraction quality.

C. Contribution of the LAA to the surface ECG recording

The contribution of the estimated source s(t) to the
ECG observations x(t) is found as follows. First, the linear
regression problem xtq(t) = ĥstq(t) is solved via the
minimum mean square error solution, with stq(t) normalized
to unit power. Subscript tq indicates that only the TQ
segments of the signals are considered, in order to avoid
that the ventricular residuals in the extracted source affect
the estimation of weight vector ĥ. Next, the relative power
of lead l explained by source s(t) is found as:

P s
l =

ĥ2
l

rll
, l = 1, 2, ..., 12 (6)

where rll is the lth diagonal entry of the observations
correlation matrix R = E{x(t)xT (t)}. Similarly, the total
contribution of source s(t) to the 12 leads is determined as:

P s
ECG =

ĥT ĥ

tr(R)
(7)

where function tr(·) denotes the trace of a matrix.

The box-and-whiskers plot on the left panel of Fig. 3
shows that the πCAmod source contribution to the total ECG
power is quite modest with respect to the ICAsc source. The



2

4

6

8

10

12

14

16

18

V
R

 in
d
e
x

ICA
sc

ICA
laa

πCA πCA
mod

40

50

60

70

80

90

S
C

 (
%

)
πCA πCA

mod
ICA

laa
ICA

sc

Fig. 2. Extraction performance assessment for the four methods considered,
in terms of the VR index (left) and the SC index (right).
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Fig. 3. Contribution of ICAsc and πCAmod sources to the 12-lead ECG
in terms of explained power. Contribution to the full ECG (left) and to the
ECG leads considered individually (right).

histogram on the right side of the figure shows that the ICAsc

source significantly contributes to lead V1, whereas the LAA
source does not. Although the comparative contribution of
the ICAsc source is higher for almost all leads, the LAA
source contributes best on limb lead I and augmented lead
aVL. Note that the ICAlaa and πCA methods have been
discarded from this analysis for the sake of clarity, since
they were shown to perform similarly to the πCAmod in
terms LAA source extraction quality.

IV. DISCUSSION AND CONCLUSIONS

The present work has attempted for the first time the direct
extraction of the LAA activation pattern on the multilead
ECG during AF. Previous works [3], [4] aimed at determin-
ing how the AA is reflected on the ECG recordings during
AF, but their analyses were limited to lead V1. The study in
[5] is an exception, in that it considered the 12 standard leads,
but only focused on the agreement in DF between EGM and
ECG modalities. In the present work, the knowledge about
the time instants of LAA depolarization provided by the
peaks in the EGM modality has been explicitly exploited to
guide the extraction of a local AA. The good results obtained
in terms of correlation in DF between the multimodally-
extracted source and the LAA EGM recording, as well as
of extraction quality both in time and frequency domains,
corroborates the suitability of the proposed approach.

Furthermore, we have compared the multimodally-
extracted sources with those obtained by means of a fully
blind approach (ICA). We have shown that the ICA source
typically considered as representative of the global AA
generally shows a comparatively low correlation in DF with
the LAA EGM. On the other hand, other ICA sources that

are neglected by the typical selection criterion seem more
representative of LA electrophysiology. In our analysis of
the contribution of the extracted sources to the ECG, the
strong percentage of power explained by the ICAsc source
supports the idea that it is representative of the global AA
derived from all leads. The fact that its agreement in DF
with the LAA EGM is relatively low and its contribution to
lead V1 is significant, may also mean that it better reflects
RA electrophysiology, which is considered to be responsible
for the major contribution to the f-waves in lead V1 [4].
On the other hand, the multimodally-extracted AA seems
to reflect a more localized AF electrophysiology, as its
overall contribution to the ECG is low. Its comparatively
low contribution to V1 agrees with the fact that the LA is
hidden behind the RA from the point of view of this lead.

In conclusion, the direct implications of this work are
twofold. First, it opens the way to the explicit analysis
of a local AA pattern on the multilead ECG recording
during AF. Second, a new approach to source selection for
AA extraction using ICA has been put forward, suggesting
that atrial electrophysiology may be spread among several
independent sources. These results should be corroborated by
more extensive intracardiac measurements in future works.
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