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ABSTRACT

The present contribution investigates the solutions to in-
dependent component analysis (ICA) based on the pairwise
4th-order statistics of the observed data vector. Previously
proposed solutions to the two-signal scenario, including the
well-known JADE, are unified under the general weighted
fourth-order estimator (GWFOE). A theoretical asymptotic
performance analysis enables the selection of the optimal es-
timator in the GWFOE class, i.e., the solution with mini-
mum mean square error performance. To extend the pairwise
estimators to the general scenario of more than two sources,
an improved Jacobi-like optimization (JO) approach with
reduced computational complexity is put forward. Adaptive
versions of the JO methods are also revised, focusing on the
enhancement of their convergence properties. The ultimate
goal of this paper is to develop general guidelines for an op-
timized use of the pairwise processing strategy for ICA.

1. INTRODUCTION

The objective of independent component analysis (ICA) is
the decomposition of an observed data vector into statisti-
cally independent components [1]. Its most common applica-
tion is arguably the separation of instantaneously-mixed un-
observable source signals — a problem known as blind source
separation (BSS) — when the time structure of the sensor
output cannot be exploited or is simply ignored. Other appli-
cation areas include projection pursuit, financial data anal-
ysis, complexity reduction, and feature extraction.

Many successful methods are available to perform ICA
in the general scenario of more than two sources (see, e.g.,
[1] and references therein). Nevertheless, the two-signal case,
being the most basic, remains a scenario of fundamental im-
portance. Despite this relevance, the relationships between
the different two-signal solutions have only been explored to
a certain extent. The first purpose of this paper is to fill the
gap in these connections. By means of a simple expression
depending on a weight parameter, many of the existing two-
signal estimators based on 4th-order statistics are unified,
including JADE [2]. The large-sample mean square error
(MSE) of this estimation class is derived, from which the
weight parameter of the optimal (i.e., asymptotically most
efficient) estimator can be determined as a function of the
source statistics.

In the n-dimensional case, n > 2, ICA can be carried
out by applying the two-signal estimators to each whitened
signal pair over several sweeps until convergence [3]. The
4th-order statistics used by the closed-form estimators need
to be computed for each signal pair at every iteration. The
statistics are typically estimated from the signal samples,
which may involve extensive computations, especially when
processing long data blocks. Adaptive algorithms such as the
adaptive EML (adEML) [4] or the AROT [5], easily derived
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from this approach, generally show poor convergence, partic-
ularly as the number of source components increases. In the
second part of this paper, we investigate strategies aiming to
alleviate these problems. Ultimately, our goal is to provide
the reader with some guidelines on the use of two-signal and
JO-based ICA algorithms.

Notations. Given a set of components {si}n
i=1, we de-

note Ms
i1···ir

, E[si1 · · · sir ] and Cs
i1···ir

, Cum[si1 , . . . , sir ],
1 6 ik 6 n, 1 6 k 6 r, as their rth-order moments and
cumulants, respectively. For the pairwise case, Kendall’s
notation is preferred: µs

r−p,p , E[sr−p
1 sp

2] and κs
r−p, p ,

Cs
1...1︸︷︷︸
r−p

2...2︸︷︷︸
p

stand for the rth-order moment and cumulant of

the signal pair s = [s1, s2]
T. Symbols γ , (κs

40 + κs
04) and

η , (κs
40 − κs

04) represent the source kurtosis sum (sks) and
the source kurtosis diference (skd), respectively. Function
∠a ∈]−π, π] supplies the principal value of the argument of
a ∈ C.

2. ICA MODEL

Given a random vector x = [x1, . . . , xm]T, the purpose of
ICA is to find a linear transformation B such the output vec-
tor y = Bx contains statistically independent components.
ICA implicitly assumes a generative linear model of the form

x = As (1)

where A represents the so-called mixing matrix, with dimen-
sions (m×n), m > n, and s = [s1, . . . , sn]T are the mutually
independent source signals. All signals and mixtures are as-
sumed to be real valued herein. If the mixing matrix is full
column rank, it is possible to obtain a separation matrix such
that B = CA−1, where the global matrix C is the product
of a invertible diagonal matrix and a permutation matrix.
As the source amplitudes are usually not important, it can
be assumed, without loss of generality, that the sources are
unit-variance, E[ssT] = In.

In its more general form, ICA relies on higher-order
statistics (HOS). The use of HOS requires that at most one of
the sources be Gaussian. A previous spatial whitening pro-
cess (entailing second-order decorrelation and power normal-
ization) helps to reduce the number of unknowns, resulting
in a set of normalized uncorrelated components (whitened
signals) z = [z1, . . . , zn]T such that E[zzT] = In. These are
related to the sources through an orthogonal transformation

z = Qs. (2)

ICA is then tantamount to the identification of orthogonal
matrix Q.

A contrast function [3] is a mapping from the set of out-
put probability density functions to the real field whose op-
timization yields the ICA solution. Contrasts constitute one
of the most attractive approaches to ICA because they allow
an optimal processing in the presence of unknown noise and
interference, adding robustness to the source separation per-
formance. Several families of contrasts have been proposed

In Proc. EUSIPCO, Antalya, Turkey, Sept. 4-8, 2005.



to date, based on information-theoretical principles such as
maximum likelihood (ML), mutual information or marginal
entropy (ME). Although apparently different, these contrasts
are all related [6]. In the two-signal scenario, these optimal-
ity criteria accept (in exact or approximate form) a variety of
analytical solutions, whose connections are developed in the
next section. The general scenario of more than two source
components is addressed in Section 4.

3. OPTIMAL SOLUTION FOR TWO SOURCES

3.1 Existing Pairwise Solutions

In the fundamental real-valued two-signal case, Q is a Givens
rotation matrix

Q(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(3)

characterized by an unknown angle θ ∈]−π, π]. ICA then re-
duces to the identification of parameter θ from the whitened
sensor outputs. A variety of closed-form methods for the es-
timation of this angle have been proposed in the literature.
These methods, mostly based on 4th-order statistics, provide
direct solutions with no iterative search involved.

The first expression was obtained in [5] by relating the
4th-order statistics of sources and sensors. Its performance
was later shown to depend on the actual value of the un-
known parameter [7], thus losing the desirable uniform per-
formance property. Other early methods were derived from
the ML approach by using the truncated Gram-Charlier ex-
pansion of the source probability density function (pdf) [8].
Their restricted validity conditions were broadened through
the extended ML (EML) and the alternative EML (AEML)
estimators [9, 10]. In turn, these latter presented consistence
problems, which were overcome with the hybrid approach of
[10]. The two estimators were joined into a single analytic
expression in [11], yielding the the approximate ML (AML).
The MaSSFOC estimator [12] is derived from the approxi-
mate maximization of the contrast function of [3]. Relying on
a trigonometric approximation to the same contrast, a sim-
ilar closed-form solution, so-called sinusoidal ICA (SICA),
was recently proposed in [13].

The notion of linearly combining estimators was origi-
nally put forward in [11], giving rise to the so-called weighted
AML (WAML). Based on this idea, a general estimation ex-
pression is presented next which unifies most of the exist-
ing solutions summarized above. Specific guidelines for the
choice of the optimal estimator are also derived.

3.2 Unification: the General Weighted Estimator

Relation (2) accepts a compact complex-valued formulation:

z1 + jz2 = ejθ(s1 + js2) (4)

where (z1 + jz2) = ρejφ and (s1 + js2) = ρejφ′
. Geometri-

cally, expression (4) signifies that the whitened-signal pdf is
a rotated version of the source pdf, φ = φ′ + θ. Now, cen-
troids are defined as particular non-linear averages of com-
plex points (4). The following centroids are useful in deriving
closed-form expressions for the estimation of θ:

ξγ , E[ρ4ej4φ] = (κz
40 − 6κz

22 + κz
04) + j4(κz

31 − κz
13) (5)

ξη , E[ρ4ej2φ] = (κz
40 − κz

04) + j2(κz
31 + κz

13) (6)

β , E[ρ4]− 8 = κz
40 + 2κz

22 + κz
04. (7)

When written as a function of the source statistics, the above
centroids yield ξγ = γej4θ, ξη = ηej2θ and β = γ. The

EML estimator [9] can be expressed as θ̂EML = 1
4
∠(βξγ).

Similarly, the AEML [10] reads θ̂AEML = 1
2
∠ξη. Under mild

conditions, the sample versions of centroids ξγ , ξη and β
are consistent estimators of γej4θ, ηej2θ and γ, respectively,

so that θ̂EML and θ̂AEML consistently estimate θ as long as
γ 6= 0 and η 6= 0, respectively [9]. The lack of consistency
for certain values of source kurtosis is precisely the main
drawback of these two estimators. In order to circumvent
this deficiency, let us form the compound centroid

ξGWFOE = wβξγ + (1− w)ξ2
η, 0 < w < 1. (8)

Then, parameter θ can also be determined through:

θ̂GWFOE =
1

4
∠ξGWFOE (9)

which we call the general weighted fourth-order estimator
(GWFOE). The relevance of the GWFOE lies in the fact
that it is a consistent estimator of θ for any source distribu-
tion, since the GWFOE centroid consistently estimates the
complex number [wγ2+(1−w)η2]ej4θ. In addition, the GW-
FOE unifies many of the analytic solutions already proposed
in the literature, which are simply obtained for different val-
ues of the weight parameter w:

(i) w = 0: AEML estimator of [10]
(ii) w = 1/3: AML estimator of [11]
(iii) w = 3/7: SICA estimator of [13]
(iv) w = 1/2: MaSSFOC estimator of [12]

JADE method of [2] (proof: see [14])
(v) w = 1: EML estimator of [9].

Solutions derived from the ML approach which assume some
knowledge on the source kurtosis can also be included in the
GWFOE with minor changes [13, 14]. In effect, the ML, MK
and SKSE/SKDE estimators of [8, 12, 15, 16, 17] are ob-
tained with w = 1 and substituting β by ±1 in the GWFOE
expression. Eqn. (9) is essentially the WAML estimator [11]
written in centroid form. The use of the complex-centroid
formalism allows us to evidence the connections with other
existing closed-form solutions. Since some of these solutions
(such as MaSSFOC or SICA) were originally obtained as ap-
proximations to optimality criteria other than ML, we pre-
fer to adhere to the denomination of GWFOE. Moreover, the
complex-centroid formalism facilitates the theoretical perfor-
mance analysis of the estimator, leading to an optimal choice
of w.

3.3 Optimal Estimator

The optimal GWFOE corresponds to the the value of w
which minimizes the asymptotic (large-sample) mean square
error (MSE) of the GWFOE class. The asymptotic MSE of
the GWFOE (9) is given by [14, 18]

MSE[θ̂GWFOE] =

E
{[

wγ(s3
1s2 − s1s

3
2) + (1− w)η(s3

1s2 + s1s
3
2)

]2}
T

[
wγ2 + (1− w)η2

]2 (10)

where T is the sample size. If |κs
40| 6= |κs

04|, the local mini-
mum of (10) is obtained at:

wopt =
1

2
+

µs
40µ

s
04

[
(κs

40)
2 − (κs

04)
2
]
+ κs

40κ
s
04(µ

s
60 − µs

06)

2
[
(κs

40)
2µs

06 − (κs
04)

2µs
60

] .

(11)
If wopt /∈ [0, 1], we are left to choose between wopt = 0
(AEML) and wopt = 1 (EML) the value that provides the
lowest MSE in (10). Given the source statistics, this sim-
ple procedure allows one to select the estimator of the GW-
FOE family with asymptotic minimum MSE (MMSE) per-
formance.
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In a blind problem, the source statistics needed for the
computation of wopt in (11) are typically unknown. To cir-
cumvent this difficulty, one may perform an initial separation
with any w ∈]0, 1[ and obtain an initial estimate of wopt from
the estimated sources. Then, the source separation and the
computation of wopt may be repeated until convergence. For
sufficient sample size, this iterative estimation of wopt shows
high accuracy and fast convergence rate (1–2 iterations) [14].

4. MORE THAN TWO SOURCES

4.1 Off-line Jacobi Optimization

A Jacobi-like optimization (JO) procedure to extend a two-
signal ICA contrast to the n-dimensional case, with n >
2, was introduced in [3]. Such an extension can easily be
applied to the GWFOE. At each component pair [zp, zq]

T,
1 6 p < q 6 n, Givens angle θpq is computed by using
(9), and the output components are updated by applying
the corresponding rotation. This rotation also updates the

estimate Q̂ of orthogonal matrix Q. This process is repeated
over several sweeps until convergence. Since centroids (5)–
(7) are calculated by averaging over the whole set of samples
of every signal pair, this procedure may be computationally
very costly for large sample sizes.

A more efficient alternative may be obtained as follows.
Centroids (5)–(7) may readily be written as a function of
the moments of the current output pair {µy

4−i,i}
4
i=0. The

idea is to compute the whole set of whitened-signal moments
just one time at an initial stage, and later ‘rotate’ them at
each step of the algorithm without using the signal samples.
Define the symmetric (r × r) matrix

Mz(
a(i, j), a(k, l)

)
= Mz

ijkl (12)

with r = n(n+1)/2 and a(i, j) = (i−1)(n− i
2
)+ j, 1 6 i 6

j 6 n. If y = Vz, for any (n× n) matrix V, then [14, 19]

µy
40 = vT

ppM
zvpp, µy

31 = vT
ppM

zvpq

µy
22 = vT

ppM
zvqq, µy

13 = vT
pqM

zvqq (13)

µy
04 = vT

qqM
zvqq

where

vpq

(
a(i, j)

)
=

{
V(p, i)V(q, j) + V(p, j)V(q, i), i < j

V(p, i)V(q, i), i = j.
(14)

Hence, moment matrix Mz can be computed before starting
the Jacobi iterations and then the output moments recalcu-

lated at each step of the JO algorithm using V = Q̂T in
(13)–(14). This procedure, which uses the whitened-output
samples only once, is referred to as initialized JO (IJO). Re-
mark that IJO produces the same ICA results as the stan-
dard JO; they only differ in their computational complexity.

Denote by K = 1 +
√

n the typical maximum number
of sweeps in the JO iterations, and by g = n(n − 1)/2 the
number of signal pairs. The analysis of the relative compu-
tational burden, in floating point operation (flops), between
of the standard JO to the IJO approaches [14, 19] draws the
following conclusions:
• IJO is to be used for a low number of sources, n 6 5.
• For 5 < n 6 25, resort to the decision rule:

19gKT

T
((

n+3
4

)
+

(
n+1

2

))
+ gKr(r + 1)

IJO
>
<
JO

1. (15)

• For n > 25, the standard JO method should be selected.
Since IJO is not to be used for large numbers of components,
potential memory problems associated with the storage of a
large matrix Mz are avoided.

4.2 On-line Jacobi Optimization

The JO procedure may be implemented adaptively, that is,
on a sample-by-sample basis, resulting in the adaptive JO
(AJO) algorithm. If the GWFOE is used as basic pairwise
separator, a new observed sample updates centroids (5)–(7)
for each pair in turn over consecutive sweeps. Since cen-
troids at a given pair and sweep depends on previous up-
dated centroids, the statistics of the latest pairs and sweeps
cannot converge until those of previous pairs and sweeps
do. Furthermore, fluctuations around the convergence point
of the statistics in the first sweeps make those in the final
stages fluctuate as well, in a manner difficult to predict, thus
compromising the stability of the algorithm. Since the re-
quired number of sweeps grows with the source dimension,
the method only converges for a low number of components.
The AROT [5] and adEML [4] adaptive methods, which are
also implemented in AJO’s fashion, present analogous defi-
ciencies.

To overcome these convergence problems the adaptive
initialized JO (AIJO) method is proposed [14, 20], which
can be considered as the adaptive implementation of the IJO
algorithm. The AIJO algorithm consists of two stages. The
first stage updates the output moments by introducing the
latest output sample:

Mz(t + 1) = (1− λ)Mz(t) + λMz(t + 1) (16)

where Mz(t) is matrix Mz in (12) computed with just z(t),
the whitened-output sample at time instant t, and λ is a
suitable positive step size. The second stage sweeps over the
signal pairs to compute the current estimate of the separating
matrix V(t), as in the IJO method described in the previous
section.

Hence, the AIJO algorithm dissociates the learning of
the pertinent statistics and the computation of the separa-
tion solution. As illustrated by the following experiments,
this decoupled design presents better convergence speed and
accuracy than the AJO approach and other adaptive ICA
algorithms.

5. ILLUSTRATIVE EXPERIMENTS

A few computer experiments illustrate the potential benefits
of the optimized pairwise strategies developed in this paper.
In the first simulation, two source signal with i.i.d. uniform
and Rayleigh distribution are mixed with θ = 15o. The

solid line in Fig. 1 plots the theoretical values of T ·MSE[θ̂],
calculated from (10), as a function of the GWFOE pa-
rameter. The crosses represent the values obtained by the
EML, AEML, AML, MaSSFOC, JADE and optimal GW-
FOE [wopt = 0.7141, from (11)] for sample sizes Tk = k ·103,
k = 1, 2, . . . , 10. Empirical MSE estimates are averaged
over νk independent signal realizations, with νkTk = 5 · 106.
The fitness of asymptotic approximation (10) is very pre-
cise. More importantly, the optimal GWFOE substantially
outperforms the other estimators, with MSE differences of
up to 10 dB. Due to the connection between the estimated-
angle MSE and separation performance indices such as the
interference-to-signal ratio (ISR) [1], these gaps can have a
significant impact on the ICA separation quality. This out-
come evidences the importance of an appropriate choice of
the weight parameter.

Next, the AIJO-GWFOE method with w = 1 is com-
pared to other adaptive procedures: the AJO-GWFOE with
the same value of w (adEML) [4] and the well-known EASI
[21]. The adaptation coefficient for both the whitening stage
and the EASI method is selected as α = 5 · 10−3, whereas
the learning rate is set to λ = 10−3 for the two other meth-
ods. A mixture of eight independent sources is observed: six
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Figure 1: Performance of the GWFOE as a function of the
weight coefficient for uniform-Rayleigh sources. Solid line:
theoretical MSE (10). ‘×’: empirical values.

uniformly distributed processes, a binary sequence and a si-
nusoid with random frequency and phase. For all methods,
the separating matrix is initialized at the identity, B(0) = In.
The evolution of the ISR performance curves averaged over
1000 independent Monte Carlo runs, shown in Fig. 2, demon-
strates that the AIJO-GWFOE reaches the best final ISR in
the lowest number of iterations. This technique also presents
a more robust behaviour near convergence, without the os-
cillations shown by the AJO-GWFOE.

6. CONCLUSIONS

In the two-signal case, the GWFOE gathers under the same
expression many existing 4th-order analytic ICA solutions,
including JADE for n = 2. The optimal GWFOE in the
MMSE sense can be selected by exploiting prior knowledge
on the source distribution or by using a simple fast iterative
procedure. The algebraic structure of the general scenario of
more than two sources has allowed us to optimize the com-
putational complexity of the conventional JO procedure. As
a by-product, the proposed approach improves the stability
and convergence rate of the associated adaptive implemen-
tation. Future research should look into the incorporation
of the optimal GWFOE in the general ICA scenario of more
than two signals, and the extensions of these methods to
statistics of orders other than four.
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