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ABSTRACT

The accuracy in the extraction of the atrial activity (AA) from
electrocardiogram (ECG) signals recorded during atrial fib-
rillation (AF) episodes plays an important role in the analy-
sis and characterization of atrial arrhhythmias. The present
contribution puts forward a new method for AA signal au-
tomatic extraction based on a blind source separation (BSS)
formulation that exploits spatial information about the AA
during the T-Q segments. This prior knowledge is used to op-
timize the spectral content of the AA signal estimated by BSS
on the full ECG recording. The comparative performance of
the method is evaluated on real data recorded from AF suf-
ferers. The AA extraction quality of the proposed technique is
comparable to that of previous algorithms, but is achieved at
a reduced cost and without manual selection of parameters.

1. INTRODUCTION

Atrial Fibrillation (AF) represents the most common sus-
tained cardiac arrhythmia in adults. It consists of a mis-
function of the atrium characterized by a modification of
the normal atrial activity (AA) pattern on the electrocardio-
gram (ECG) signal. Epidemiologic studies have shown that
its prevalence and incidence doubles with each advancing
decade beyond 50 years reaching 10% in people over 80 and
has direct impact on mortality and morbidity [1, 2].

The accurate extraction of the AA signal from the ECG of
AF is of great interest for subsequent analysis. For instance,
when the behaviour of the atrioventricular node during AF
is addressed, the precision in the relative amplitude of the
AF estimated signal plays a critical role. A good estimate
of the AA signal is also important for an accurate analysis
of the temporal evolution of the spectral content of the AA
signal. This analysis is justified by the evident correlation
between the spontaneous termination of the episode and the
decreasing trend of the AA signal main frequency [3].

It follows that the proper analysis and characterization
of AF from ECG recordings requires the cancellation of the
signal components associated with ventricular activity (VA),
that is, the QRS-T complex. However, this is not a simple
task. Indeed, a lot of facts hinder this operation. In partic-
ular, the much lower amplitude of the AA signal compared
to the ventricular one and the spectral overlapping of the two
phenomena, so that linear filtering solutions in the frequency
domain are unsuccessful [4].

There exist in the literature two different families of
methods applied to cancel out VA in the ECG. The first in-
volves methods that aim for a direct suppression of the QRS-
T complex, e.g., using an adaptive template in conjunction

with the correct spatio-temporal alignment of every QRS-T
complex [5, 6]. The second involves all the methods based
on the blind source separation (BSS) approach. All the meth-
ods belonging to the first class share similar limitations such
as high sensitivity to QRS morphological changes over time
and inability to eliminate artifacts other than VA. Moreover,
a common limitation to these methods is their inability to ex-
ploit the global spatial diversity of an ECG recording.

Starting from the key observation that AA and VA are de-
coupled, a new interesting perspective has been introduced
recently which does not rely on direct elimination of the
QRS-T complex [4]. Under this assumptions, the AA ex-
traction problem accepts a formulation based on BSS of in-
stantaneous linear mixtures, in which atrial and ventricular
source contributions appear mixed at the electrode outputs in
the ECG. First hopeful results obtained in the separation of
AA sources through a BSS method gave rise to the defini-
tion of more suitable methods exploiting a priori information
inside the BSS model.

The method proposed by Castells et al. in [7] used one
complete independent component analysis (ICA) of the ob-
served signals, followed by a second-order blind identifica-
tion (SOBI). SOBI exploits the time coherence of the source
signals and relies on stationary second-order statistics by per-
forming a joint diagonalization of a set of covariance matri-
ces. A limitation of this method is the presence of two param-
eters that are to be manually defined. Indeed, sources given
by ICA are selected in relation with their kurtosis value, the
first parameter. Only sources that satisfy a particular thresh-
old are kept and introduced in SOBI. Moreover, also suit-
able correlation matrices’ time lags must be manually de-
fined. Our method, inspired to that presented by Hesse and
James in [8], uses a spatial constraint as an a priori informa-
tion inside the model. The spatial constraint used is based
on an initial estimation of the AA source direction or spatial
topography from the T-Q segments. Differently from [8], we
use this spatial constraint not directly inside a suitable ICA
model, but after a conventional ICA. In conjunction with a
spectral concentration criterion, this topography is employed
to enhance the separation of AA from VA and other artifacts
in the whole recording.

2. METHODS

2.1 Data and Preprocessing

A dataset composed of 22 recordings (all presenting AF) was
employed to analyze the proposed idea. All signals were
recorded and digitized at a sampling rate of 1KHz. Among
the segments employed in this analysis 20 were recorded us-



ing a standard 12-lead system while 2 were recorded using a
9-lead system. Pre-processing was done by applying a zero-
phase high pass filter with a cut off frequency of 0.5Hz to
remove physiologically irrelevant low frequency signal vari-
ations (<1Hz) [9], while a notch filter was implemented to
suppress power line noise at 50Hz, applying it in a forward-
backward way to eliminate any phase jump [10].

2.2 Blind Source Separation

The BSS consists of recovering a set of source signals from
the observation of linear mixtures of the sources. The term
blind underlines that little is known about the source sig-
nals or the mixing structure, the only hypothesis being the
sources’ mutual independence [11, 12]. Under this hypoth-
esis, BSS can be carried out by ICA, a technique used to
transform multisensor signals into statistically independent
components [11]. Mathematically, given N observations of n
time series y(t) ∈ ℜn, the observed signals, it is possible to
write them as a linear combination M ∈ ℜn×m of the origi-
nal sources s(t) ∈ ℜm (m ≤ n). BSS searches for this linear
combination and the corresponding sources given the obser-
vations. In the noiseless case, the BSS model for an instan-
taneous linear mixtures is:

y(t) = Ms(t) (1)

where the ith column of M represents the spatial topography
that links the ith source with the observed signals. ICA aims

to estimate the sources ŝ(t) and the separating matrix Ŵ:

ŝ(t) = Ŵy(t) (2)

with Ŵ ≈ M♯, and where the ♯ operator stands for pseudo-
inverse of the matrix.

Spatial whitening involves a linear transformation of the
mean corrected observed signals y(t), which produces a set
of uncorrelated waveforms with unit variance z(t):

z(t) = Vy(t) = VMs(t) = Hs(t) (3)

The whitening matrix V can be obtained from the singu-
lar value decomposition (SVD) of the observation matrix

y(t) = USRT, and V =
√

NS−1UT. Since whitening
identifies the independent components up to a rotation, the
mixing matrix H = VM for whitened data is orthonormal,
i.e. H−1 = HT with unit norm columns. Therefore, sources
estimated from whitened data ŝ(t) = ĤT ẑ(t) (with Ĥ ≈ H

and ẑ(t) = V̂y(t)) do not involve matrix inversion. This

gives the possibility to apply the transpose of matrix Ĥ on
ẑ(t) directly, withouth further computations.

For the estimate of the a priori information that is used
in the proposed method, a further model based only on the
temporal segments in the observations free from any VA is
needed. This model is obtained in the following way. Firstly,
the set of ECG recordings under analysis (e.g. Fig. 1(a))
is taken and, after the QRS-T complexes detection, only
the T-Q segments are isolated, so that yAA(t) = {y(ti) | ti /∈
QRS−T}. This new set of signals contains only AA and
possible noise, but it is quite reasonable to suppose it free
from any VA, confined in the QRS-T segment. Secondly,
the BSS model for this new set is generated in two different
ways, that is, applying either ICA or principal component
analysis (PCA) (e.g., through SVD):

yAA(t) = MAAsAA(t) (4)

yAA(t) = BAAzAA(t) (5)

where B
♯
AA is the whitening matrix and zAA(t) the set of

decorrelated sources. In this way, two sets of independent (4)
or simply decorrelated (5) sources respectively, formed by
the components present in T-Q segments only, are obtained.

2.3 ICA and Spatial Constraint

In many BSS problems exploiting independence, one may
only have particular interest in a component or a set of de-
sired sources, and automatically discard the remainder of un-
interesting signals or noise. To this end, ICA methods ex-
ploiting some a priori information as a referential constraint
inside the problem have been presented in the literature. Both
signal extraction and noise rejection essentially involve the
estimation of a target source, in a more precise way than
conventional ICA. Therefore, the achievement of a suitable
constraint becomes a crucial task.

The observation that AA and VA are decoupled under-
lines the idea that their electrical vectors inside the heart
should be different, and so their topographies. This naturally
draws our attention to their spatial differences, rather than
on their temporal ones. The importance of exploiting spatial
diversity of an ECG recording is then clear. Therefore, a par-
ticular AA spatial constraint, as the AA spatial topography,
can be used as a tool to get rid of the VA present in the ECG.

A spatial constraint can be defined either as an abstract
prior knowledge (e.g., all the constraints defined on the mix-
ing matrix structure, as orthogonality, orthonormality etc.) or
in a more specific way. We use a specific spatial constraint,
for each particular subject under analysis: the estimation of
the AA spatial topography m̂AA. As said before, this spa-
tial constraint can be generated applying either ICA (4) or
PCA (5) to the set yAA(t). When the spatial constraint is
constructed using ICA, as in the model described in (4), the
second step is to search for the best AA source that describes
the AF, ŝAA, inside the set of the estimated output sources
ŝAA(t). The criterion used for selecting the best AA source is
Spectral Concentration (SC) of the AA around its main peak,
computed according to the following expression [7]:

SC =

∫ 1.17 fc
0.82 fc

PAA( f )d f
∫ fs/2

0 PAA( f )d f
(6)

The above equation is a measure for the compactness of the
spectrum around the central frequency fc, that is the modal
frequency in the 3-12Hz interval. PAA is the power spectrum
of the AA signal, fs/2 is the half of the sampling frequency

[7]. The column of the estimated mixing matrix M̂AA asso-
ciated to the selected source is the topography of interest and
defines the spatial constraint m̂AA.

Alternatively, when the spatial constraint is constructed
using PCA, as in the model described in (5), we can take
as reference topography m̂AA the first column of the esti-

mated matrix B̂AA, that is the column associated with the
decorrelated source with the highest energy. This is be-
cause AA is expected to be the component contributing to
yAA(t) with the highest variance. Moreover, it is possible to
distinguish between spatial constraints of different severity,
namely hard and soft spatial constraints, according to the un-
certainty about their constraint topographies.



2.4 Hard constraints

If the degree of certainty about a particular spatial constraint
topography m̂AA is quite high, it is possible to use it as a hard
constraint. Indeed, in this case m̂AA can be used to define
the weight vector of a spatial filter applied to the whitened
set z(t) of observed signals. The spatial filter applies the
AA signal topography on the prewhitened waveforms, for VA
removal, as follows:

ŝAA(t) = ĥT
AAz(t) (7)

where ŝAA(t) is the output of the filter, that is, the estimated

AF signal, and ĥAA is obtained by transformation of m̂AA as

ĥAA = Vm̂AA. This transformation allows the projection of
m̂AA on the whitened signal subspace insuring the appropri-
ate use of the spatial constraint on the full recording.

2.5 Soft constraints

If the degree of uncertainty about the spatial constraint to-
pography m̂AA is not negligible, it is better to introduce a
soft constraint. With respect to other methods (e.g., [8]), we
use this kind of a priori information on AF not directly inside
a suitable ICA algorithm, but after a conventional ICA. First,
AA spatial topography m̂AA is obtained, as explained in Sec-
tion 2.3, and a conventional ICA is applied to the observed
signals y(t), obtaining the set of independent sources ŝ(t)
related to them, according to the model introduced in (1)-
(3). Secondly, the best source that describes the AF, inside
the set of output sources ŝ(t) is searched. The criterion used
for selecting the best AF source is the SC of the AA source
around its main peak [7]. We denote m the column of the
mixing matrix associated with the selected source. Once we
have obtained both the topography of the reference m̂AA and
that of the source of interest m̂, we search for the topogra-

phy ĥ′
opt maximizing the SC in the plane defined by the two

whitened vectors ĥAA and ĥ = Vm̂. An orthonormal basis
of that plane can be defined as:

e1 = ĥAA (8)

e2 =
ĥ−proj

ĥAA
ĥ

‖ ĥ−proj
ĥAA

ĥ ‖
(9)

where notation proj
c
d stands for the projection of vector d

on vector c. Accordingly,

ĥ′
α = e1cos(α) + e2sin(α) (10)

ŝ ′α(t) = ĥ ′T
α ẑ(t) (11)

where ĥ′
α and ŝ ′α(t) represent respectively the generic spatial

topography and the generic source, defined in the aforemen-
tioned plane, to be optimized. The source estimate associated
with the largest SC value, ŝ ′opt(t) = ŝ ′αopt

(t), is taken as the

best estimation of the AA source ŝAA(t), its corresponding

topography being ĥ′
opt = ĥ′

αopt
, where

αopt = argmax
α

SC(ŝ ′α(t)) (12)

The above SC optimization can be carried out algebraically
at very little computational cost.

µSC ±σSC (%) µk ±σk (n.u.) µ fc ±σ fc (Hz)

COM2 52.00 ± 14.69 -0.0951 ± 0.5587 5.5154 ± 1.29

SCICAhard

ICA
46.56 ± 18.76 0.0519 ± 0.589 5.421 ± 1.2678

SCICAhard

PCA
36.09 ± 22.618 1.0329 ± 1.8245 4.6442 ± 1.2348

SCICAsoft

ICA
58.39 ± 10.57 -0.2085 ± 0.4403 5.5154 ± 1.2656

SCICAsoft

PCA
58.01 ± 12.14 -0.1717 ± 0.526 5.5209 ± 1.2736

SOBI 60.82 ± 9.21 -0.1391 ± 0.4967 5.3711 ± 1.3255

ST−Canc 57.01 ± 11.98 0.5511 ± 2.8898 5.4321 ± 1.2159

Table 1: Mean performance estimates of Spectral Concentra-
tion (SC), kurtosis (k) and characteristic frequency ( fc) for
the different methods under analysis.

3. RESULTS

Since methods that exploit spatial constraints, even if in dif-
ferent ways from how presented here, already exist in the lit-
erature, the proposed method is named Spatial Constrained
ICA (SCICA), choosing the same name of that proposed by
Hesse and James [8]. This method for the automatic extrac-
tion of the AF from a set of observed ECG signals was ap-
plied to a dataset of 22 patients. Its performance is evaluated
both for the PCA- and the ICA-defined constraints, and they
are compared to those of some classical ones, among which,
a conventional ICA (COM2) [11], a spatio-temporal cancel-
lation approach (ST-Canc) [6] and a spatio-temporal BSS ap-
proach (SOBI) [7]. For completeness, the performance of the
presented method, using either hard or soft constraints, was
evaluated in terms of SC of the AA estimated source around
its main peak, characteristic AF frequency value at the peak,
and excess kurtosis of the estimated source. Mean value µ
and standard deviation σ of each index are presented for each
method.

Results are reported in Table 1, while an example of fi-
nal estimation of the AF source ŝAA(t) for different meth-
ods is shown in Fig. 1(b), when soft constraints are used
for SCICA. Finally, Fig. 2 shows the box and whisker plot of
the SC parameter only, for SCICA with soft constraints (both
ICA and PCA defined), and for the other methods.

From the values of the performance indeces (Table 1), we
note that SCICA shows good performances when soft con-
straints are used, obtained either using ICA or PCA, as in
Section 2.3, according to the SC values found for the dif-
ferent methods. Whereas, performance is not so good when
hard constraints are employed. Indeed, the variance of the
AA set of sources estimated using hard constraints is quite
high, attesting the strong correlation between the quality of
the estimated source and the appropriateness of the chosen
constraint.

4. DISCUSSION

This work has pointed out two important issues. Firstly, the
importance of using a suitable a priori information in combi-
nation with the ICA algorithm when the extraction of the AF
signal is addressed. Secondly, the use of SC as a preferential
parameter in the search for the optimal AF signal estimate.
The idea that AA and VA electrical vectors are spatially dif-
ferent supports the idea of using AF spatial topography esti-
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Figure 1: (a) Example of a 12-leads ECG recording. Signals in the figure are 10s long; leads, specific ECG leads. (b) V1
ECG lead and AA signals etimated using different methods. For SCICA only soft constraints are used. Values of Spectral
Concentration(SC), kurtosis (k) and characteristic frequency ( fc) are presented for each signal. A 4.5s segment is represented
for the bottom figure.
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Figure 2: Box and whisker plot of the Spectral Concentra-
tion (SC) values for diffent methods. The box has lines at
the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to
show the extent of the rest of the data. Outliers are data with
values beyond the ends of the whiskers, and are represented
as crosses; (%) percentage.

mate as spatial constraint.
The use of SC not simply as a performance parameter,

but as an optimization criterion inside the AF signal extrac-
tion model seems to improve the AA estimation quality. This
can be noted by looking at the ability of SCICA to get almost
the same performance as other methods suitable for the ex-
traction of the AF, but simply exploiting the statistical inde-
pendence between AA and VA, and the optimization of SC.

An important result is the capability of getting similar
performance for the proposed method when either SVD-
defined or ICA-defined constraints are used in a soft way.
This gives us the possibility to focus the attention mainly on
their construction using SVD, with benefits in terms of com-
plexity of the algorithm.

Finally, low performance values obtained when hard con-
straints are employed reveal it is inappropriate to apply the
AA topography estimate directly on the observation set. To
use it as soft constraint as a part of an optimization criterion
seems to be a more appropriate option, as shown by the re-
sults.

5. CONCLUSION

A new fully automated method for the extraction of AA
signals in ECG recordings of AF has been presented. The
method is based on an initial estimation of the AA source di-
rection or spatial topography from the T-Q segments. In con-
junction with a spectral concentration criterion, this topogra-
phy is employed to enhance the separation of AA from VA
and other artifacts in the whole recording. Results show that
the proposed methodology constitutes a cost-effective alter-
native to previous BSS-based methods. Indeed, a spatial ref-
erence computed from the PCA of the T-Q segments achieves
a satisfactory performance while preventing the manual se-
lection of parameters (e.g., kurtosis threshold or autocorrela-
tion time lags).

Future works aim to exploit simultaneously reference AA
topographies related not only to the AA source with the high-
est SC but also to other candidate AA sources in cases where
more than one AA source may be present during an AF
episode. A new definition of SC capable of describing the
information contained in the harmonics of the characteristic
frequency could allow a more efficient exploitation of this
parameter.
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