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Abstract—The non invasive analysis of atrial fibrillation (AF)
arrhythmia represents a challenge nowadays. The fibrillatory
pattern of AF, known as f -wave, is partially masked by the
ventricular activity of the heartbeat in the surface electrocardio-
gram (ECG). Classical techniques aiming to extract the f -wave
are based on average beat subtraction (ABS) or blind source
separation (BSS). They present limitations in performance and
require long ECG records as well as multi-channel records in
the case of BSS. The originality of the present work consists
in exploiting the sparsity of the atrial activity (AA) signal in
the frequency domain to extract the full f -wave using a recent
data acquisition technique called compressed sensing (CS). The
present contribution takes a step forward in the extraction of the
f -wave by exploiting the time rather than the space dimension.
We intend to recover the AA signal with a variant of CS
where classical random sampling is replaced by a block sampling
scheme. Our breakthrough finding consists in the ability of our
method to accurately extract the AA from a short ECG record
of just one heartbeat, with a normalized mean squared error of
15%, which is unfeasible with ABS, BSS and other variants that
require longer observation windows.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained ar-
rhythmia encountered in clinical practice. Held responsible of
up to 25% of strokes, this cardiac condition is considered
as the last great frontier of cardiac electrophysiology as it
continues to puzzle cardiologists [1]. In order to better charac-
terize this arrhythmia, scientists are interested in analyzing the
pattern of AF noninvasively by extracting the f -waves of atrial
activity (AA) from surface electrocardiogram (ECG) records
[2]. The main classical cardiac signal processing tools for non
invasive AA signal extraction are 1) average beat subtraction
(ABS) [3], and 2) blind source separation (BSS) [4], [5].
To provide adequate performance, these techniques require
records of sufficient length. Other techniques like interpolation
are also adapted to AA extraction [6].
The present work aims at overcoming the limitations of ABS
and BSS. We intend to extract the AA and separate it from
the dominating ventricular activity (VA, QRST complex) using
compressed sensing (CS). This method takes advantage of the
sparsity property of the fibrillatory signal in the frequency
domain. To our knowledge, this is the first time CS is
applied to noninvasive AA extraction. Our second contribution
consists in introducing a block sampling scheme as opposed

to the random sampling classically used in CS. We start by
preliminary tests on simple signals in order to validate the
implementation of our solution and its accuracy. The tests
focus on the influence of the compression ratio on the quality
of signal recovery added to the effect of block sampling.
Second, CS is computed on synthetic f -waves. Third, we move
to more realistic scenarios by applying CS to synthetic ECG
signals with fibrillatory pattern. We compare CS performance
to a state of the art ABS technique, adaptive singular value
cancellation (ASVC) [3]. Comparison is mainly based on the
quality of AA extraction, sensitivity to ECG record length and
computational cost.
This work is outlined as follows. Section II presents the
signal extraction problem and summarizes classical cardiac
signal processing tools used for f -wave estimation. Section
III introduces CS in the context of AF ECG analysis. We
study its mathematical definition and properties. Our results of
CS signal reconstruction with different sampling approaches
are presented in Section IV. Finally, the conclusions and
perspectives of the work are summarized in Section V.

II. NONINVASIVE EXTRACTION OF AA IN AF
A. AF Diagnosis

AF occurs when there exists an irregular and chaotic ac-
tivation in the atrias, the upper chambers of the heart. Then
instead of beating effectively to eject blood into the ventricles,
the atria start quivering or fibrillating, thus causing irregular
fluctuations in the baseline. As a result, the ventricular rate
becomes more rapid and irregular.

The ECG of patients suffering from AF is different from
normal sinus rhythm. It is characterized by the absence of
P -wave and the presence of f -waves visible in the TQ
segments between consecutive beats. A TQ segment is the
time interval between the end of a T -wave (end of a heartbeat)
and the beginning of the next Q-wave (beginning of the next
heartbeat), whereases a QT segment corresponds to the interval
between the beginning and the end of a given heartbeat. The
AA occurs all throughout the recoding, but it is obscured by
VA at each heartbeat [2]. Indeed, in the ECG we distinguish
two kinds of intervals:

1) TQ segments: only AA takes place and it is perfectly
known since the ventricles are inactive.
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2) QT segments: both AA and VA happen simultaneously
but the AA is masked by the QRST complex.

Our goal is estimating the AA in the QT segments in AF
patients.

B. Atrial Activity Extraction

We aim to extract the AA and separate it from the VA in
ECG recordings. Several methods have been proposed for this
task like ABS and BSS. Although partially successful, the
latter methods present important limitations, as summarized
below:

a) ABS: Although multi-channel variants exist, ABS is
mainly adapted to single-lead ECGs [3]. This method com-
putes a representative beat by synchronized averaging of the
beats present in the recordings, thus requiring the recognition
of beat morphology from the ECG. ABS is very sensitive to
QRST wave variants and relies on high-quality cancellation
templates that are in practice difficult to obtain from short
single-lead ECG recordings.

ASVC of ventricular activity is a variant of ABS, developed
in [3], that intends to overcome ABS inherent limitations. The
method exploits the mutual information available in the set of
ECG beats in order to extract the basis signal corresponding
to the VA component. ASVC remains more robust than ABS
in ECGs with variable QRST morphology and in the presence
of ectopic beats. However, ASVC is limited by the number of
beats to be processed and the length of ECG signals.

b) BSS: BSS is a statistical tool that consists in sep-
arating unobservable source signals from a set of observed
mixture. Independent component analysis (ICA) belongs to
BSS and is proven in [4] to accurately recover AA in AF.
ICA reconstructs the unobservable independent sources of bio-
electric activity which generate, through instantaneous linear
mixing, a measurable set of signals. This approach exploits
the spatial diversity provided by multi-lead ECG recordings
with sufficient length to allow the estimation of higher order
statistics with enough accuracy.

III. PROPOSED APPROACH

A. Essence of Compressed Sensing

Compressed sensing (CS) is a data compression paradigm
that requires much less measurements than imposed by the
Nyquist rate. CS acquires a spread/dense signal f accepting
a sparse/compressible representation x, when expressed in the
proper basis Ψ:

f = Ψx. (1)

In practice we only observe a subset Ω ⊂ {1, .., N} of size
|Ω| = K � N , through a selection matrix Φ and the challenge
is to recover the N -dimensional sparse signal x from y the K-
dimensional measurement vector:

y = Φf = ΦΨx = Ux, (2)

U is a (K × N) matrix. The sampling scheme is generally
random.

CS recovers the sparse representation x through suitable
optimization tools [7]. The symbol ‖.‖1 stands for `1 norm:

min
x∈RN

‖x‖1 subject to y = Ux. (3)

From a linear algebra perspective, the reconstruction problem
is ill posed, because K < N . CS guarantees the accurate
reconstruction of the target signal through conditions and
problem regularizations like the Restrictive Isomery Property
(RIP) [7], [8].

B. Compressed Sampling for Noninvasive Atrial Activity Ex-
traction from the ECG

Based on the physiological finding that the ventricular and
atrial activities are uncoupled [1] and that the ECG is the
sum of both, added to interference from the activities of the
surrounding organs, vessels and noise due to the acquisition
system, we intend to extract the full AA from the observation
of its signal in the TQ segment. In this context, we suggest
to restrict the sample selection on the TQ segments from
the ECG, where VA is null. We call this sampling scheme
block sampling. The f -wave (fAA) is present all along the
ECG recording (fECG). The component fAA accepts a sparse
representation in the frequency domain as in Eq. (1). fV A is
the interfering component present in QT intervals of ECG.
fAA is present in both heart beating phases QT (fQT

ECG) and
TQ (fTQ

ECG):
fECG = fAA + fV A, (4)

fQT
ECG = fQT

AA + fQT
V A , (5)

fTQ
ECG = fTQ

AA . (6)

The measurement signal is y = fTQ
ECG = fTQ

AA . The CS
approach aims at reconstructing the full fAA, including the
unknown fQT

AA , from the only knowledge of y. We intend to
use the samples of AA in TQ segments (fTQ

AA ), which are
perfectly known, to estimate/reconstruct, through CS, the un-
known samples in QT intervals (fQT

AA ). Because the theoretical
demonstration of this approach is a difficult task, the goal is
to experimentally evaluate the block sampling scheme for AA
signal recovery.

TABLE I
BLOCK SAMPLING OF ECG.

Compressed sampling algorithm for AA extraction from the ECG

Input: ECG signal of length N , fECG

Output: f̂AA

1 CS matrix computation:
2 Block Sampling: select blocks of TQ intervals from ECG to form the
measurement signal y, of size K < N
3 Recovery: reconstruct optimal x̂.
4 Estimation: f̂AA = F−1(x̂), F is Fourier transform matrix

Block Sampling: Classical sampling process takes K ran-
dom measurements. Our proposed sampling scheme consists
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in taking blocks of the measurement of size (p), corresponding
to fTQ

ECG = fTQ
AA , alternated by blocks of unobserved signals

fQT
ECG of size (q), as illustrated in Fig. 1. We call this scheme

(p, q) sampling. In practice, we measure the TQ and drop the
QT intervals.

Fig. 1. Observed signal formation with (p,q) sampling scheme.

Our suggestion for block sampling needs to be experi-
mentally validated and mathematically proven. We find in
the literature a prior work that neglected parts of signal
(image rows/columns) in the sampling, when applying CS
to ultrasound images in [9]. This technique showed accurate
signal reconstruction even under high compression ratios.

IV. EXPERIMENTAL RESULTS

This section investigates the performance of CS technique
for atrial signal (fAA) recovery in the case of patients with
AF. In particular, interest is focused on the influence of block
as opposed to random sampling in CS, as we intend to recover
the fAA from measures restricted to the TQ segment in ECG
recordings. Our solution is validated and tested on synthetic
ECG signals containing AF patterns.

Complexity is added at each experiment level. The influence
of the compression ratio on the accuracy of signal recovery
is analyzed. In order to quantify the recovery quality, the
normalized mean squared error (NMSE) between the original
and the reconstructed signals is computed. Then, signal is
sampled by equal-sized-blocks of measurement instead of the
standard random sampling protocol (block-sampling). First
experiments are conducted on synthetic f -wave signals (fAA
with AF pattern) generated according to the model of Stridh
[11]. Second experiments are conducted on synthetic fAA

superimposed to real ECG signals of VA (fV A) of subjects
in sinus rhythm. The resulting signal approximates the ECG
of an AF patient. Third, the CS approach is applied to a
complete ECG with AF patterns available in an open source
database. Finally, the performance of CS is compared to that
of ASVC in AA extraction from ECG. The experiments on CS
are conducted with MATLAB software using the `1-MAGIC
toolbox [10].

A. CS Recovery of isolated f-wave

1) Genesis of Synthetic f-wave: We simulate synthetic f -
wave according to Stridh model [11]. The dynamics of AF
have a modulated sawtooth-like shape, approximated by a
sinusoid and (M − 1) harmonics. The sawtooth amplitude is
given by a time-varying amplitude ai, a phase θ(n) and cycle
length, thus introducing a non-stationary behavior:

f(n) =
M∑
i=1

ai(n)sin(iθ(n)), n = 1, .., N. (7)

We recall θ depends on the fundamental frequency of this
pattern, typically in the range of [3, 9] Hz. We simulate
a paroxysmal AF pattern with M = 5 harmonics, main
amplitude a = 150 µV (ai depends on a) and dominating
frequency of 6 Hz as in [11].

2) Influence of Block Size and CR on the NMSE: We
perform bare AF signal recovery (f = fAA) for different
combinations of p and q yielding the compression ratio (CR):

CR =
p

p+ q
. (8)

After sampling, the recovery is assessed by the NMSE between
the original signal and the recovered one:

NMSE(f) =
‖f − f̂‖2

2

‖f‖22
. (9)

Fig. 2 shows the curves of the NMSE versus different com-
binations of p and CR in logarithmic scale. The experiments
are conducted on a 6-second recording.

Assuming typical durations of QT and TQ segments in
normal heart rhythm [12], the CR is approximated by the ratio

TQ
TQ+QT :

CR ' TQ
TQ+QT

∈ [0.4, 0.6]. (10)

For CR ∈ [0.4, 0.6], the NMSE resulting from block sampling,
for all values of p are in [−10, 0] (dB). For values of CR close
to 0.9 and 1, the NMSE curves tend to −∞ in (dB).

Fig. 2. NMSE (dB) of reconstructed synthetic atrial signal for block sampling
for different combinations of p (number of samples) and CR.

B. CS Recovery of f-wave Corrupted by VA

1) Genesis of Synthetic ECG with Fibrillatory Pattern:
Similarly to the process of data synthesis in [1], we suggest
to generate synthetic ECG contaminated by AF pattern by su-
perimposing synthetic f -waves generated by the above Stridh
model [11] to a VA signal containing only QT complex. The
fV A is generated from a surface ECG of a healthy subject
after the following steps:

1) Acquire sinus rhythm surface ECG data of healthy adults
from the PTB Diagnostic ECG Database (PTB) [13], at a
sampling rate of 1 KHz. 2) Denoise the data and remove
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baseline wander and powerline interference using a forward-
backward bandpass type-II Chebyshev IIR filter with cut-off
frequencies of 0.5 Hz and 30 Hz. 3) Manually delete P -waves
as they explicitly reflect the AA in sinus rhythm. The P -waves
are segmented and then suppressed by spline interpolation
between their onset and offset points.

We focus our experiments on ECG signals acquired from
the precordial V 1 lead because the AA is significantly clearer
and measurable in the chest position where this lead is placed.

Fig. 3. Synthetic ECG with AF pattern.

C. Extraction of f -wave from Full Synthetic ECG

1) Long recording: Fig. 4 shows that both algorithms,
CS and ASVC succeed in estimating a fibrillatory pattern in
both locations of QT segments. However, ASVC outperforms
CS with an NMSE of fAA recovery in TQ segments (fTQ

AA )
equal to 0.406 compared to 1.4. Accuracy is also better when
recovering non measured segments NMSE(fQT

AA ). The CS
algorithm running time takes 0.5 h compared to 1.05 s in the
case of ASVC.
Recovery of isolated f -wave: We use the same sampling

scheme as previously explained to recover the isolated f -
wave using the CS solution. The overall recovery quality is
acceptable with an NMSE(fAA) = 0.201. Also, the recovery
error is below machine precision in the sampled data (TQ
segments).
However, ASVC computes a synchronous mean of the heart
beats then subtracts the average QRST complex from ECG.
For this purpose this techniques operates on recordings having
full QRST complexes.

2) Short recording: We have seen in the previous experi-
ment that the ASVC outperforms CS and that its computational
cost is significantly less important due to the complexity
of solving an optimization convex program in CS compared
to synchronously averaging beats in ASVC. However, these
experiments also lead us to the following observations:

One-Heartbeat ECG: CS is able to recover the signal from
a recordingas short as 1 s, containing 1 heartbeat in average,
as illustrated in Fig. 6. However, ASVC is not designed to

Fig. 4. Extraction of f -wave from synthetic ECG using CS (green) and ASVC
(red) vs. the original fibrillatory signal (blue).

Fig. 5. Extraction of f -wave from synthetic ECG using CS (green) and ASVC
(red) vs. the original fibrillatory signal (blue).

work in this case, as its performance is said to be acceptable
for an ECG recording containing at least 10 beats [3], that
is, almost 15 s (15000 samples for a high resolution ECG
sampling frequency fs = 1 Khz).

Bias-corrected CS or Corrected CS (CCS): We notice in
the previous experiment (One-Heartbeat ECG) that although
the recovered AA with CS mimics almost perfectly the
original one, its NMSE is important (NMSE(fAA) = 1.797).
When observing Fig. 6, we notice the f̂AA seems biased
by a trend but its overall shape is accurate. To suppress the
bias, we suggest to subtract from the restriction of f̂AA to
each segment (f̂ segmenti

AA ) its mean, where (segmentsi)i=1..3

represent the samples of intervals TQ and QT alternatively. We
notice discontinuity between consecutive segments because
their means are different. To handle this issue, we suggest
to correct the CS technique by subtracting from f̂AA its
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full mean (mean(f̂AA )). The overall NMSE(fAA) after bias
correction equals just 0.150. Hence, the performance of CS

Fig. 6. Extraction of f -wave from synthetic ECG (1-heartbeat recording)
with bias-corrected CS (magenta) vs. standard CS (green) vs. the original
fibrillatory signal (blue).

TABLE II
NMSE OF f -WAVE EXTRACTION FROM SYNTHETIC AF ECG WITH

BIAS-CORRECTED CS FROM A 1-HEARBEAT ECG.

Algorithm NMSE(f segment1
AA ) NMSE(f segment2

AA ) NMSE(f segment3
AA )

CCS 0.127 0.194 0.115

is improved by mean subtraction for each TQ and QT segment.

V. CONCLUSIONS

The present contribution has put forward a new technique
for extracting the fibrillatory pattern of AF from surface ECG
based on the CS paradigm. To our knowledge, this is the first
time CS is applied to AA extraction. We suggest to exploit the
fact that the AA in the ECG has a sparse frequency distribution
and therefore it can be recovered using CS. We propose to
replace the classical random sampling of the measurement
signal in CS by a block sampling that selects only VA-
free segments from ECG and neglects QRS complexes, thus
recovering the full AA.

The results show that the accuracy of CS is lower than
ASVC in terms of NMSE when processing full long record-
ings. However, a breakthrough finding is the ability of CS to
extract AA from a short ECG recording containing only one
heartbeat, which is impossible with ASVC, which is said to
perform well for significantly longer recordings of at least
10 heartbeats. Based on the observation that CS performs
well on short recordings, it appears well suited to online
processing, where the AA is estimated beat-by-beat from the
ECG. In this manner, the CS approach may handle better
long recordings. On the other hand, ASVC needs to perform
heartbeats detection and classification before the extraction
process, thus being very sensitive to heartbeat morphology,
location and duration. A bias-corrected variant of our method
proves to be more accurate with an NMSE(fAA) equal 0.150

versus 1.797 in classical CS technique. Finally, we asses the
influence of the number of heartbeats on the accuracy of CS
recovery. A major drawback of CS is its high computational
cost. Despite these apparent limitations, experimental results
are encouraging. Further work should aim at justifying mathe-
matically the validity of block sampling according to the RIP
and validating our method on a full AF ECG database. The
sensitivity of our approach to heartbeat morphology should
also be verified.
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pressive sampling for ultrasound imaging,” Advances in Acoustics and
Vibration, vol. 2012, 2012.

[10] E. Candès and J. Romberg. “l1-magic: Recovery of sparse signals via
convex programming,” p. 14, 2005.

[11] M. Stridh and L. Sörnmo. “Spatiotemporal QRST cancellation tech-
niques for analysis of atrial fibrillation,” IEEE Transactions on Biomed-
ical Engineering, vol. 48, pp. 105–111, 2001.

[12] AA. Fossa, T. Wisialowski, K. Crimin, E. Wolfgang, JPH. Couderc, M.
Hinterseer, S. Kaab, W. Zareba, F. Badilini, and N. Sarapa. “Analyses
of dynamic beat-to-beat QT–TQ interval (ECG restitution) changes in
humans under normal sinus rhythm and prior to an event of torsades
de pointes during QT prolongation caused by sotalol,” Annals of
Noninvasive Electrocardiology, vol. 12, pp. 338–348, 2007.

[13] AL. Goldberger, L. Amaral, L. Glass, JM. Hausdorff, PCh. Ivanov, RG.
Mark, JE. Mietus, GB. Moody, C-K. Peng, and HE. Stanley. “Phys-
iobank, Physiotoolkit, and Physionet. Components of a New Research
Resource for Complex Physiologic Signals,” Circulation 101(23):e215-
e220, 2000.

2019 27th European Signal Processing Conference (EUSIPCO)


