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Abstract. The analysis and characterization of atrial tachyarrhythmias requires 
the previous estimation of the atrial activity (AA) free from any ventricular ac-
tivity and other artefacts. This contribution considers a blind source separation 
(BSS) model to separate the AA from multilead electrocardiograms (ECGs). 
Previously proposed BSS methods for AA extraction exploit only the spatial 
diversity introduced by the multiple electrodes. However, AA typically shows 
certain degree of temporal correlation, featuring a narrowband spectrum. Tak-
ing advantage of this observation, we put forward a novel two-step BSS-based 
technique which exploits both spatial and temporal information. The spatiotem-
poral BSS algorithm is validated on real ECGs from a significant number of pa-
tients, and proves consistently superior to a spatial-only ICA method. In real 
ECG recordings, performance can be measured by the main frequency peak and 
the spectral concentration. The spatiotemporal algorithm outperforms the ICA 
method, obtaining a spectral concentration of 58.8% and 44.7%, respectively. 

1   Introduction 

Biomedical engineering is one of the research areas where the statistical tool of inde-
pendent component analysis (ICA) has demonstrated a remarkable success. Indeed, 
ICA techniques are suitable to solve a large number of biomedical problems in elec-
troencephalography (EEG) [1], magnetoencephalography (MEG), electrocardiogra-
phy (ECG) [2], functional magnetic resonance imaging (fMRI) [3], etc. In the area of 
cardiac signal analysis, ICA methods can be employed for the separation of the ven-
tricular activity (VA) and the atrial activity (AA). This separation is particularly use-
ful in the study of atrial arrhythmias, e.g., atrial fibrillation (AF) or atrial flutter (AFL) 
[4], where AA and VA are temporally and spectrally overlapped. 

The analysis and characterization of atrial arrhythmias from the ECG requires the 
previous estimation of AA. The main difficulty is that AA and VA appear mixed at 
the electrode outputs. The separation of these cardiac activities from the 12-lead stan-
dard ECG has already been modelled as a blind source separation (BSS) problem [5] 
although only spatial information has been utilized for imposing statistical independ-
ence in the estimated sources. Indeed, any prior information about the temporal struc-
ture of the sources is disregarded in most ICA algorithms applied to this problem.  
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Motivated by the observation that VA and AA present specific spatiotemporal sta-
tistical properties, the present study presents a novel separation method more adapted 
to the biomedical problem in hand. In effect, VA can be modelled as a supergaussian 
distribution [6] whereas AA signals are typically quasi-gaussian and exhibit a nar-
rowband spectrum with a main frequency of between 3.5-9 Hz [7][8]. Taking into 
account these considerations, a new BSS-based algorithm aiming to utilize more fully 
the spatiotemporal information of the ECG recordings is developed in a bid to en-
hance the quality of the estimated AA. The proposed approach combines ICA based 
on spatial-only higher-order statistics (HOS) with spatiotemporal second-order proc-
essing. The first stage is implemented with the FastICA method, whereas the second 
is carried out via the second order blind identification (SOBI) algorithm. 

2   Methods 

2.1   Statistical Source Analysis 

The sources contained in an ECG recording can be divided into three types. VA 
sources are the ECG components with the highest energy. These components have a 
high amplitude during ventricular depolarization and repolarization (QRS complex 
and T wave respectively), but the rest of the time they present values close to zero due 
to the inactive period. Accordingly, VA sources possess supergaussian random distri-
butions, even with kurtosis values above those of Laplacian distributions, as will be 
confirmed in the results section. 

In the second place, AA consists of small and continuous wavelets with a cycle be-
tween 125 ms and 300 ms. A statistical analysis of the sources shows that AA has 
kurtosis values very close to zero (as will be discussed later on), typical of quasi-
gaussian distributions. AA waves have a characteristic spectrum, with a main peak 
due to the refractory period. This fact, which is neglected by practically all AA ex-
traction methods to date, is exploited by the algorithm proposed in this paper. Fig. 1 
shows an example of VA and AA waveforms, and their corresponding distribution 
estimates.  

Finally, noise and other artefacts are the contributions with the lowest energy, al-
though in more than a few leads they could show an amplitude of the same order of 

 

Fig. 1. Examples of VA and AA, and their histogram including kurtosis values. 
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magnitude as the atrial sources, or even higher. The statistical behaviour of the noise 
may be different for each recording; even several noise sources with different statisti-
cal behaviour may be found in a single ECG. Hence, no assumption about the noise 
pdf or correlation can generally be made. The only noise assumption in the separation 
model we propose is that the noise and the AA source have different spectra. This 
hypothesis is verified in practically all cases. 

2.2   Two Stage Methodology 

The body-surface potentials as a result of cardiac electrical activity can be modelled 
as a blind source separation (BSS) problem: 

( ) ( )t t=x As
 (1) 

where x(t) is a length-m vector which represents the electrode outputs at time instant t, 
s(t) is a length-n (n � m) vector that represents the bioelectric sources, and A is the 
m n×  mixing matrix which models the propagation from sources to electrodes. For 
the standard ECG, we have 12m = . Neither the original sources nor the transfer coef-
ficients from the epicardial surface towards the body surface are known. 

 

Fig. 2. Block diagram of the proposed hybrid approach to AA signal extraction. 

In order to separate the AA free from VA and other interference, we propose a 
two-stage methodology, as illustrated in Fig. 2. The first stage exploits the super-
gaussian character of the VA to remove the ventricular contributions, and is imple-
mented with spatial-only HOS-based ICA. Since ventricular components show the 
highest amplitude, this stage, if successful, eliminates the major source of interfer-
ence. The remaining non-ventricular components (AA, artefacts and noise) are the 
inputs of the second stage. This step, which is implemented with spatiotemporal SOS-
based ICA, takes advantage of the characteristic spectrum of AA in order to enhance 
the AA estimation quality.  

2.2.1   First Stage: Higher-Order Spatial Information (HOS-Based ICA) 
In general, ICA methods estimate a separation matrix B such that the estimated 
sources 

( ) ( )ˆ t t=s Bx
 (2) 

fulfil certain statistical independence criterion. HOS-based ICA techniques are most 
suitable to separate independent nongaussian sources. These techniques are able to 
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estimate the independent sources by using certain measures of independence provided 
by the HOS of the multilead signal [9][10]. In this study we have chosen an algorithm 
that estimates nongaussianity as a function of the following approximation of negen-
tropy J( · ) [11]: 

( ) ( )
( )
( ) E E

log cosh

J y G y G v

G y y

 ∝ −       
=

 

(3) 

where y is the output signal and v is a unit variance Gaussian variable. The maximisa-
tion of the contrast function can carried out, after pre-whitening, by means of a robust 
fixed point algorithm known as FastICA [12]. Note that the aim of this paper is not to 
emphasize the convenience of a specific ICA algorithm but to demonstrate the suit-
ability of HOS-based ICA as a general concept for this first processing stage. 

HOS-based ICA algorithms are especially equipped to extract all nongaussian 
sources, but are unable to separate gaussian sources since their HOS are null. Hence, 
all gaussian sources will appear mixed at the ICA output. The practical consequence 
over AF recordings is that VA sources will be correctly extracted, but the AA source 
can appear combined with gaussian-like sources of interference such as thermal noise 
and other artefacts. Due to the very low amplitude of the AA signal, the separation of 
AA from these sources of interference becomes an important necessary task. This task 
will be carried out in the second stage, which is described next. 

2.2.2   Second Stage: Second-Order Spatiotemporal Information (SOBI) 
The inputs to the second processing stage are the non-ventricular source components 
estimated by the first stage. The decision as to which components belong to the ven-
tricular subspace and which components belong to the non-ventricular subspace can 
be done automatically. Due to the existence of the QRS complex, the ventricular 
sources are highly kurtic; by contrast, AA usually displays kurtosis values marginally 
different from zero. Consequently, a kurtosis-based threshold can be employed to 
distinguish between ventricular and non-ventricular sources. Preliminary experiments 
show that a conservative normalized-kurtosis threshold of around 1.5 allows us to 
retain the AA information in the non-ventricular subspace (the signal subspace which 
lies orthogonal to that spanned by the mixing-matrix columns associated to the ven-
tricular sources) and reject all other sources that contain QRS complexes. 

The so-called second-order blind identification (SOBI) is designed to separate a 
mixture of uncorrelated sources with different spectral content through a second-order 
statistical analysis which capitalizes on the source temporal information [13]. For this 
purpose, SOBI aims to find a transformation that simultaneously diagonalizes several 
correlation matrices at different lags. Since, in general, no transformation may exist 
that accomplishes such a stringent condition, a function that objectively measures the 
degree of joint approximate diagonalization (JD) at different lags is employed instead. 

Let z denote the non-ventricular sources inaccurately estimated at the first process-
ing stage, and s the associated actual sources, among which the desired AA source 
appears. In the simplified two-signal case, the real sources s and the whitened obser-
vations z are related through a Givens transformation: 
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 ,     
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θ θ

− 
= =  

 
z Qs Q

 
(4) 
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where θ  is an unknown rotation angle. The rotation angle that maximizes the JD 
criterion allows the recovery of the original sources. The extension of this procedure 
to more than two signals is easily carried out through a Jacobi-like iteration. Full 
details are given in [13], and are omitted here due to the lack of space. 

The SOBI algorithm is appropriate for extracting sources with a narrowband spec-
trum; hence its suitability for AA estimation. The number of matrices for joint diago-
nalization and their respective time lags must be properly selected. Since the autocor-
relation of the AA source in AF episodes is quasi-periodic with a period around 160 
ms – i.e., 160 samples at a sampling rate of 1 Khz –, correlation matrices with time 
lags comprising two cycles (that is, 320 ms) are chosen. This choice guarantees that 
even for AF signals with larger AA cycle the lag range spans at least one complete 
cycle period. Choosing correlation matrices at evenly spaced lags of 20 ms (i.e., a 
total of 17 correlation matrices) guarantees a high proportion of significant (non-zero) 
autocorrelation values among the selected lags with an affordable computational 
complexity. 

We refer to the proposed two-stage hybrid method as ICA-SOBI. 

3   Results 

28 ECGs digitised during 30 s at a constant sampling rate of fs = 1 Khz with 16-bit 
amplitude resolution were employed in our study. All patients were suffering from 
atrial arrhythmias, including 17 AF and 11 AFL episodes. HOS-based ICA only 
(without the SOBI step) and ICA-SOBI were applied to this database. The estimation 
of the AA source was successful in all cases.  

A spectral analysis was carried out in order to detect the main frequency fp. The 
AA source estimated with ICA provided the same main frequency as the AA source 
estimated with ICA-SOBI, being of 6.19±0.73Hz for AF and 4.06±0.65 Hz for AFL. 
As an objective measure of AA extraction quality, the spectral concentration of the 
AA source around its main peak was computed according to the following expression: 
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where PAA  is the power spectrum of the AA signal, computed using the Welch’s 
method over a 8192-point FFT with a 50%-overlap 4096-sample Hamming window, 
and fi denote the FFT discrete frequency values.  

The AA source obtained with ICA-SOBI had a higher spectral concentration 
around the main frequency peak in all cases. In average, ICA obtained a spectral con-
centration of 37.1% for AF and 54.5% for AFL. The spectral concentration was in-
creased with ICA-SOBI up to 53.7% and 65.2% for AF and AFL, respectively. The 
higher spectral concentration of the AA signal obtained after SOBI processing indi-
cates that part of the noise present in the AA signal after ICA is effectively removed 
by SOBI. Fig. 3 compares the spectral concentration levels of the estimated AA using 
both methodologies. A typical example of the estimated AA and its spectrum where 
ICA-SOBI outperforms ICA is shown in Fig. 4. 
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Fig. 3. Box-and-whiskers plot of the spectral concentration of the estimated AA. 

 

Fig. 4. An example where ICA-SOBI outperforms ICA. 

Regarding the kurtosis values of the VA and the AA, the results confirm the hy-
potheses employed in the separation model. With a kurtosis value of 16.5±5.9 for the 
ECGs under test, VA is indeed supergaussian. In contrast, AA cannot be assumed 
nongaussian, with a kurtosis value of -0.21±0.45 for this database. The fact that the 
estimated ventricular and atrial sources fulfilled the hypothesis assumed in the prob-
lem formulation regarding their statistical behaviour and spectral characteristics en-
dorses the proposed approach for the enhanced estimation of AA in patients with 
atrial arrhythmias. 

The improvement in the quality of the estimated AA after the latter stage appears 
closely correlated with the gaussianity of the sources. In the cases where the AA 
source presented a nongaussian character (i.e., kurtosis values significantly different 
from zero) the improvement in the spectral concentration was more important than in 
those cases with a higher gaussianity degree (kurtosis near zero). Fig. 5 illustrates the 
improvement in the spectral concentration as a function of the AA kurtosis. 

4   Discussion and Conclusions 

This paper has demonstrated that the source temporal information is indeed relevant 
in the estimation of AA from multi-lead ECG recordings of atrial arrhythmias epi-
sodes. A spatiotemporal BSS algorithm adapted to this specific problem has been 
designed and implemented. The algorithm consists of an initial spatial-HOS based 
separation stage (ICA) aiming to remove nongaussian interference (mainly VA), fol-
lowed by a time-SOS based separation stage (SOBI) aiming to cancel gaussian-like 
noise. In this manner, the AA can be separated not only from VA, but also from other 
independent sources of noise and interference regardless of their distribution (gaus-
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sian or otherwise). An experimental study with real AF and AFL signals has validated 
the appropriateness of the proposed method. 

 

Fig. 5. Improvement in the spectral concentration as a function of AA source kurtosis. 

In the experimental results, AA estimation has always improved with the applica-
tion of the second separation stage exploiting temporal information. Even in ECGs 
where ICA had already estimated the AA accurately (because the existing AA was 
sufficiently nongaussian), the second step has been able to maintain the separation 
quality. Since the statistical behaviour of the AA source is not known a priori, but it 
may well change across patients, or even evolve in the same patient, it seems sensible 
to make use of the full two-step approach in all cases. 

This contribution improves the existing solutions for AF analysis. Once the AA has 
been extracted, it can be further analyzed for spectral characterization, pattern recog-
nition, time-frequency parameter extraction, etc. The proposed methodology thus 
emerges as a helpful tool in clinical diagnosis. 
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