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ABSTRACT
Despite the increasing popularity of catheter ablation (CA) for treat-
ing atrial fibrillation (AF), the identification of patients who would
actually benefit from the therapy remains a challenging open issue.
This study aims at noninvasively predicting CA outcome by quanti-
fying the spatio-temporal variability of the atrial activity (AA) signal
measured on the standard 12-lead electrocardiogram. The normal-
ized mean square error (NMSE) between consecutive atrial segments
and their principal component approximations is computed for each
lead, as a recent noninvasive index of AF organization. In the present
work, the multilead NMSE array is decomposed by means of a non-
negative matrix factorization (NNMF) with two different initializa-
tions. The reconstruction error between the original NMSE matrix
and its low-rank NNMF approximation is taken as a classification
feature. A dataset of persistent AF patients undergoing CA reveals
that the proposed feature is able to predict the therapy outcome with
a notably higher level of statistical significance than recent single-
lead indices.

Index Terms— Atrial fibrillation, catheter ablation, electro-
cardiogram, nonnegative matrix factorization, principal component
analysis.

1. INTRODUCTION

Affecting up to 10% of the adult population over 80 years of age,
atrial fibrillation (AF) is the most common sustained cardiac ar-
rhythmia encountered in clinical practice. Often referred to as “the
last great frontier of cardiac electrophysiology”, this supraventric-
ular arrhythmia is characterized by the generation and propagation
of irregular electrical activation patterns throughout the atrial my-
ocardium, inducing an ineffective atrial contraction and an increased
risk of stroke due to blood stagnation in the atria. Radiofrequency
catheter ablation (CA) is becoming a first-line therapeutic option for
persistent AF treatment, yet inconsistent success rates are reported
by clinical centers [1]. This has motivated a number of attempts
of an a priori selection of positive responders to CA, thus avoiding
unnecessary and/or dangerous procedures.

Among the studies aiming at CA outcome prediction, special
emphasis has been laid on the analysis of the 12-lead electrocardio-
gram (ECG), a standard noninvasive tool in clinical practice. The
fibrillatory wave amplitude measured in one lead (V1 or II) is a valid
predicting feature [2] but, as shown in [3], its manual computation
is prone to errors and lacks robutness to the intrinsic variability of
the ECG signal across different leads. More recently, the AF spatio-
temporal complexity measure proposed in [4] computes the normal-
ized mean square error (NMSE) between the original ECG and its
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reduced rank approximation in one lead only. This single-lead index
can noninvasively quantify the level of AF organization according
to Konings’ criteria for endocardial recordings [5], but is unable to
distinguish successful from failing CA procedures [6].

This work takes a step forward in the noninvasive spatio-
temporal analysis of AF and its relation with CA outcome by taking
into account the variability of the atrial signal across ECG leads. To
this end, the NMSE index data are stored in the form of a matrix with
nonnegative elements, and subsequently approximated by a nonneg-
ative matrix factorization (NNMF) with reduced rank. Experimental
results on a database of persistent AF ECG recordings demonstrate
that the reconstruction error of this approximation presents clinical
value for patient selection, as it is able to successfully predict CA
outcome before the procedure with a statistical significance level
well over that of single-lead indices. NNMF has extensively been
used in areas as diverse as text processing, data mining and image
processing, among other application domains [7]. To our knowl-
edge, the present work reports the first application of this matrix
decomposition technique in ECG signal processing.

2. AF SPATIO-TEMPORAL COMPLEXITY

This section introduces the quantitative, noninvasive measure of AF
spatio-temporal complexity proposed in [4]. The starting point of
this measure is the segmentation, mean correction and concatenation
of TQ intervals, thus isolating the atrial activity (AA) contribution
to the standard ECG while neglecting other sources of interference,
such as ventricular activity and noise (Fig. 1). We denote y!(t) the
AA signal at sample instant t on lead !, 1 ≤ ! ≤ L, with L = 12
the number of ECG leads. Thus, the resulting AA signal matrix is:

Y = [y(1),y(2), . . . ,y(N)] (1)

where y(t) = [y1(t), . . . , yL(t)]
T and N denotes the number of

samples in the concatenated TQ segments; (·)T is the transpose op-
erator. The AF spatio-temporal organization measure put forward
in [4] is based on the similarity between the principal subspaces of
the AA signal along consecutive time intervals, and can be sum-
marized as follows. Each row of Y is split into a fixed number S
of equal-length segments. Every segment is composed of NS =
[N/S] samples, so that Y = [Y(1),Y(2), . . . ,Y(S)], with Y(s) =
[y((s−1)NS +1),y((s−1)NS +2), . . . ,y(sNS)], s = 1, . . . , S.
Each segment is then decomposed by the principal component anal-
ysis (PCA) according to the linear model Y(s) = M(s)X(s), s =
1, 2, . . . , S. The principal components (PCs) X(s) are stored in de-
creasing order of variance. The columns of the mixing matrix M(s)

represent the principal directions, and quantify the relative spatial
contribution of the PCs to the ECG leads. The n dominant direc-
tions of a reference segment Y(r) are stored in the first n columns
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Fig. 1. ECG recording on lead V1 during AF and its fiducial points.
Dotted boxes highlight the TQ intervals whose concatenation forms
the AA signal matrix Y in eqn. (1).

of matrix M(r)
n . The AA signal in segment s #= r is then projected

onto the subspace spanned by M(r)
n , yielding:

Ŷ(s,r)
n = M(r)

n [M(r)
n

T
M(r)

n ]−1M(r)
n

T
Y(s). (2)

We can consider Ŷ(s,r)
n as the estimation of the AA signal seg-

ment Y(s) function of Y(r). The normalized mean square error
NMSE(s,r)

!,n between the original sth-segment signal y(s)
! (t) and its

reconstruction ŷ(s,r)
!,n (t) on the !th-lead is computed as:

NMSE(s,r)
!,n =

NS∑
t=1

[y!
(s)(t)− ŷ(s,r)

!,n (t)]2

NS∑
t=1

[y(s)
! (t)]2

. (3)

In [4], the average of NMSE(s,r)
!,n values over all segments quan-

tifies AF organization noninvasively in V1 (! = 7), as it typically
shows the best atrial-to-ventricular amplitude ratio. Interestingly,
this single-lead index seemed to be closely related to Konings’ crite-
ria for AF complexity classification based on endocardial signals, but
it did not provide a significant predictive value for CA outcome [6].

3. ANALYSIS OF THE NMSE MATRIX
The present work aims at a more elaborate analysis of the NMSE
index defined in eqn. (3). Processing the NMSE data with more so-
phisticated techniques is expected to gather further subtle informa-
tion about AF complexity that is otherwise neglected in the single-
lead analysis. The key idea is to exploit the spatial diversity inherent
to the multilead ECG recording. As a result of this diversity, NMSE
indices of different leads are expected to share some common under-
lying factors that may be estimated by suitable signal decomposition
techniques. The reconstruction error between the original NMSE
indices and their truncated decomposition can be used as a mea-
sure of the overall complexity of the AA signal across the whole
12-lead ECG and not just for a single lead. Since, by definition,
NMSE values cannot be negative, a nonnegative matrix factorization
(NNMF) [8] appears as a natural choice for this particular scenario.

3.1. Nonnegative Factorization of the NMSE Matrix

More specifically, the NMSE values can be arranged into an
(
L ×

β
)

matrix A, where β = S(S − 1), with nonnegative elements
by storing NMSE(s,r)

!,n in entry [A]!,(r−1)(S−1)+(s−1) if r < s or
in entry [A]!,(r−1)S+(s−1) if r > s, for r, s = 1, 2, . . . , S, s #=
r. Matrix A contains the NMSE for all leads over all segments,
using consecutively every segment as a reference. To approximate
these multilead data via low-rank subspace decompositions while

preserving nonnegativity, we resort to a NNMF, which yields the
approximate rank-R factorization:

A ≈ WH (4)

where W and H with size (L×R) and
(
R×β

)
, respectively, are the

nonnegative factors, i.e., matrices with nonnegative entries. These
can be computed as the minimizers of the objective function:

Ψ(W,H) =‖A−WH‖2F (5)

where ‖·‖F stands for the Frobenius norm. This minimization can be
carried out through an alternating least squares (ALS) algorithm [8].
Criterion (5) is also a measure of approximation performance. Thus,
the root mean square residual (RMSR) between A and its low-rank
approximation (4), defined as:

RMSR =

√
Ψ(WH)

Lβ
(6)

can naturally be introduced as a multilead measure of the AA spatio-
temporal complexity as reflected on the NMSE array.

3.2. NNMF Rank Selection

Some issues must carefully be taken into account before applying
NNMF, namely, the choice of the approximation rank R and the
initialization of the nonnegative factors W and H. An appropriate
decision on R is critical in practice, and it is very often problem-
dependent [8]. In our study, as we can think about WH as a com-
pressed form of A, we have decided to strongly reduce A dimen-
sionality and perform a rank-2 approximation. Indeed, the decom-
position has been computed for every value of R ranging from 1 to
(L− 1) for both initializations explained in the sequel. Experimen-
tal evidence reveals that R = 2 is the minimum rank value such that
statistically significant differences between the categories examined
can be observed; hence, the choice of this value to carry out data
decomposition.

3.3. NNMF Initialization

Another important point is that NNMF methods are iterative, and
thus sensitive to initialization of W and H. Nearly all NNMF al-
gorithms use random initializations that are simple but often provide
unsatisfactory performance. A good initialization can improve their
speed and accuracy, as it can sidestep some of the problems linked
to convergence to spurious local minima [7]. Our investigation has
considered two algorithms returning the initial matrices W0 and H0

as outputs. The first algorithm searches for the two leads (rows) char-
acterized by the maximum mean square value (MSV) of the NMSE
index in A. This choice is somewhat inspired by the maximum-
variance formulation of PCA. Just as PCA achieves the best rank-R
subspace approximation by maximizing the variance of the princi-
pal components, one could expect that the rows of A with maximal
MSV may lie not too far from the NNMF components in H minimiz-
ing the objective (5). Under these assumptions, such rows have been
selected from A to form H0. Then, the initial value of the factor W
is returned by the ALS algorithm under the positivity constraint as:

W0 = AHT
0 (H0H

T
0 )

−1
(7)

and then setting all W0 nonnegative elements to zero.
The second initialization strategy stems from the “concept vec-

tor” notion proposed in [9]. The idea is to compress the data by
partitioning them into clusters and use their centroids to form the
unknown matrices. This approach becomes quite time-consuming
when processing high-dimensional data, which has led to several



clustering variants looking for a trade-off between compression and
preservation of the most essential data. In keeping with [10], we ex-
ploit the singular value decomposition (SVD) of A, given by A =
USVT, to form R-dimensional centroid basis vectors. In particular,
we apply the Euclidean k-means algorithm on the β vectors of the
first R orthogonal right-singular vectors in V and we identify R bi-
dimensional clusters. Such a strategy allows a considerable reduc-
tion in complexity as a lower dimensional matrix is processed and
successive operations are computationally less expensive. Finally,
we locate columns of A corresponding to clusters of V and deter-
mine their centroids, which then form the columns of W0. Thanks
to this grouping action, a sort of temporal quantization of AF infor-
mation carried by every segment is fulfilled, unlike the first initial-
ization proposed above, in which a spatial selection of ECG leads is
accomplished instead. Matrix H0 is finally output as:

H0 = (WT
0 W0)

−1
WT

0 A. (8)

4. EXPERIMENTAL ASSESSMENT

4.1. Experimental Protocol and ECG Preprocessing

This study examines 21 persistent AF patients treated by CA at
the Cardiology Department of Princess Grace Hospital in Monaco.
Preprocedural standard 12-lead ECGs were acquired at a 1-kHz
sampling rate with the aid of Prucka CardiolabTM and Biosense
CARTOTM electrophysiological measurement systems. AF proce-
dural termination was defined as the conversion either directly to
sinus rhythm or intermediate tachyarrhythmia, directly by ablation
or by CA followed by electrical cardioversion. Postoperative out-
come was observed within a 3-month blanking period. According
to this short-term criterion, 17 successful procedures were accom-
plished. For every patient, the ECG recording is first processed by
a fourth-order zero-phase Chebyshev bandpass filter with −3-dB
cutoff frequencies of 0.5 Hz and 30 Hz to suppress baseline wander
and high frequency noise (e.g., power line interference, myoelectric
artifacts) outside the AF dominant frequency range. Then, R-peak
time instants are estimated on V1 by Pan-Tompkins’ algorithm; an
improved version of Woody’s method allows detection of Q wave
onset and T wave offset, from which TQ segments are concatenated
giving rise to the AA signal matrix defined in Sec. 2.

4.2. Statistical Analysis and Results

Output parameters are computed using S = 4 segments, and PCA
approximation has been performed by retaining the first spatial to-
pography (n = 1). They are expressed as mean ± standard deviation
for each of the two patient classes in the database; these classes are
referred to as “AF termination” and “non AF termination” by CA
according to the above protocol. After testing normal distribution
by Lilliefors’ test, differences between the two groups of patients
are statistically validated by an unpaired Student’s t-test if data fol-
low a Gaussian distribution, a two-sample Kolmogorov-Smirnov test
otherwise, under a confidence level α = 0.05. Such results are
shown in Table 1, besides p values of each unpaired test. Classifi-
cation performance is quantified by the receiver operating character-
istic (ROC) curve parameters, namely, the area under curve (AUC)
and the related p-value, based on the maximization of sensitivity and
specificity, i.e., the rate of true positives and true negatives, respec-
tively. The AUC index quantifies the overall ability of the parameter
under test to discriminate between the classes examined: the closer
to unity its value, the more accurate its predictive power. All values
are reported in Table 3, assuming again a confidence level α = 0.05.
Evaluation indices are computed for both NNMF initialization meth-
ods described in Sec. 3.3, yielding (RMSR)MSV and (RMSR)SVD,

Table 1. Interpatient statistical analysis
AF Non AF

p-valuetermination termination
(RMSR)MSV 4.84± 5.13 6.54± 3.17 0.040
(RMSR)SV D 4.83± 5.13 6.54± 3.17 0.040
(NMSE)V1 82.7± 22.4 77.1± 33.7 0.683

D12 0.035± 0.016 0.018± 0.010 0.034
µ1 61.59± 16.52 83.86± 14.27 0.040

(NMSE)PCA 99.4± 0.728 98.8± 0.756 0.350
D(V1) 0.072± 0.021 0.053± 0.021 0.128

respectively. Tables 1 and 3 also draw a comparison with previ-
ous studies. Special attention is paid to the single-lead descriptor of
AF organization developed in [6, 11], i.e., the average NMSE on
lead V1 as summarized at the end of Sec. 2. Moreover, the f-wave
amplitude, originally proposed as a CA-outcome predicting feature
but obtained manually in [2], is automatically computed as in [3]
both on V1 (D(V1)) and from all standard ECG leads (D12). The
inter-lead weighted mean µ1 proposed in [11] is also compared with
our parameter with respect to its accuracy in classifying patients and
characterizing AF. Finally, NNMF is evaluated by comparing its per-
formance with PCA rank-2 decomposition of the same input matrix
and subsequent estimation evaluation by NMSE ((NMSE)PCA).

4.3. Discussion
The results reported above prove that both RMSR-based classifiers
are effectively capable of discriminating between the two categories
of patients before ablation. Table 1 shows that higher index values
are correlated with a lower probability of a successful procedure, in
the same way as the multilead NMSE-based classifiers of [11]. By
contrast, the AF complexity as measured by the single-lead NMSE
of [4] (recalled in Sec. 2) does not seem to be linked to CA out-
come, as already observed in [6]. These results also demonstrate
the superiority of the proposed multilead index over single-lead ap-
proaches. Differences in CA outcome are statistically significant and
p value is comparable with that of index D12. However, unlike our
RMSR-based descriptors, there is no evidence of its ability to char-
acterize AF organization by exploiting f-waves properties. As far
as (NMSE)PCA is concerned, we can remark that AA estimation by
PCA does not help retrieving significant differences between the two
classes, and data nonnegativity is not preserved at all in our specific
application, in contrast with NMSE definition.

NNMF has proved to be a suitable tool for the compression of
the input matrix, as only ECG electrodes which can actually help
patients’ classification have been selected during the initialization
step. If we look at W0 as the set of nonnegative bases where to
project our data and H0 as the corresponding coefficients, we can
study directions of interaction of W0 factors with the ECG obser-
vations through matrix B = (WT

0 W0)
−1

WT
0 in eqn. (8), whose

elements (bij), i = 1, . . . , R, j = 1, . . . , L are not necessarily posi-
tive and weigh the influence of the jth lead over the ith nonnegative
factor; large positive values denote a more significant contribution
over the leads of interest. To this aim, such matrix has been com-
puted for each patient and the number of occurrences of (bij) hav-
ing positive values per class has been analyzed, as shown in Table
2. The higher the numerical entry in Table 2, the higher the number
of patients whose AF pattern is better characterized by the nonneg-
ative factor on the lead associated with the entry itself. Subscripts
SUCC and FAIL refer to successful and failing procedures respec-
tively, whereas MSV and SVD refer to NNMF initialization meth-
ods. NF1 and NF2 represent the nonegative factors output by the
decomposition, namely, the first and the second row of B. Their
relation with the observations is quantified by the parameter ε in Ta-



Table 2. Occurrences of B positive weights
I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 ε

(BMSV)SUCC
NF1 9 9 8 7 8 9 9 8 5 5 7 6 12/8
NF2 7 6 8 7 7 6 9 9 9 9 9 9 12/8

(BMSV)FAIL
NF1 0 1 2 0 2 2 3 1 2 1 0 1 9/1
NF2 4 4 2 4 3 4 2 3 3 3 4 4 12/3

(BSVD)SUCC
NF1 10 6 8 9 8 6 4 8 6 7 9 8 12/7
NF2 4 9 11 9 10 11 11 12 10 10 7 10 12/10

(BSVD)FAIL
NF1 0 0 2 0 2 1 3 2 2 1 1 0 8/1
NF2 4 4 2 4 3 3 1 2 2 4 4 4 12/3

ble 2, defined as the ratio between the number of leads with at least
one positive weight and the average value of all occurrences over
the row considered. Its value ranges between 0 (there are no leads
presenting (bij) positive values) and ε∗, which equals the ratio be-
tween L and the number of patients per class, namely, 12/14 if CA
is successful, 12/7 otherwise (all coefficients associated with each
lead are positive in each patient). It is worth noting that several leads
recur in almost all patients experiencing AF termination by CA, and
there is no preferential influence by any of the nonnegative compo-
nents over ECG observations. This results in ε values close to unity,
as the high average number of positive weights’ occurrences is bal-
anced by a fairly uniform contribution to all leads from each basis
factor. On the other hand, failing procedures are generally depicted
by NF1 through fewer leads, as some of them do not participate at
all to CA outcome prediction (e.g., I,II, aVR), regardless of the ini-
tialization modalities. On the contrary, NF2 always contributes to
some leads in all patients, for instance, I,II, aVF , V5, V6. This re-
sult demonstrates that AF dynamics in ineffective procedures can be
described by a smaller subset of leads, and it is confirmed by higher
ε values. Some electrodes probably have a more important role in
the description of AF maintenance thanks to their proximity to the
sources of asynchronous rhythm, which are still active in patients
not effectively treated by CA. This experiment points out the im-
provement made by NNMF not only on standard PCA, but also on
µ1. Indeed, our initialization methods enable an a priori selection of
data to be processed, discarding all redundant and noisy elements de-
riving from inter-lead relationships or misleading contributions due
to incorrect ECG acquisition (e.g., loose or disconnected leads). Ac-
tually, a spatial prefiltering process is performed, in contrast with
µ1, whose leveraging coefficients rather quantify AF temporal dis-
persion along the recording on each lead, regardless of their location.
Finally, concerning D(V1), even if numerical results are consistent
with those reported in previous works using manual measures [2],
they are not statistically significant, and the spatial variability typi-
cal of multilead ECG recordings is neglected as well. AUC values
in Table 3 underline the ability of our RMRS-dependent descriptors
to distinguish between successful and failing procedures, with a per-
formance comparable with that of classical CA outcome predictors.

5. CONCLUSIONS AND FURTHER WORK

This work has put forward a more elaborate analysis of AF spatio-
temporal complexity through the NNMF of the NMSE array. Such a
decomposition explicitly takes into account mutual correlations be-
tween ECG leads and identifies the most essential components of the
data while preserving their nonnegativity. The reconstruction error
of the low-rank NNMF approximation can successfully perform the
noninvasive prediction of CA outcome before ablation, thus estab-
lishing the clinical value of this surface measure of AF organization
as a therapy outcome predictor. Interesting open questions concern
the rank selection for the NNMF decomposition and the links of the
proposed predictor with recent indices exploiting the ECG multilead
character, as well as the application of our method to further ECG-

Table 3. CA outcome classification prediction performance
AUC p-value

(RMSR)MSV 0.79 4 · 10−3

(RMSR)SVD 0.79 4 · 10−3

(NMSE)V1 0.48 5 · 10−1

D12 0.84 4 · 10−4

(NMSE)PCA 0.75 2 · 10−2

µ1 0.86 7 · 10−5

D(V1) 0.75 2 · 10−2

derived features (e.g., AA amplitude).
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