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Abstract: The problem of blind identification and equalisation (BIE) of finite impulse response
(FIR) channels in multiuser digital communications is investigated. The non-Gaussian nature and
statistical independence of the users’ data streams is exploited by resorting to blind signal
separation (BSS) based on higher-order statistics (HOS). Two such techniques are put forward. The
first technique is composed of an extension to the multiuser case of a second-order BIE method,
followed by a BSS-based space-equalisation step. The second technique achieves joint space–time
equalisation through the direct application of a HOS-based BSS method followed by a blind
identification algorithm. In a number of numerical experiments, the first procedure proves less
costly and more effective for short data records. Despite their computational complexity, interesting
features such as constellation-independent channel identification and symbol recovery, and
robustness to ill-conditioned channels in high SNR environments render HOS-BSS based BIE
methods an effective alternative to BIE techniques exploiting other spatio-temporal structures.
1 Introduction

In digital communications, linear distortion effects such as
multipath propagation and limited bandwidth cause inter-
symbol interference (ISI) in the received signal, producing
errors in symbol detection. A variety of equaliser designs
can be employed to compensate for the channel effects [1].
As opposed to traditional techniques, blind channel
identification and equalisation (BIE) methods do not require
training sequences, and are thus able to use the bandwidth
resources more efficiently and to perform in a wider range of
communication environments. Due to their many desirable
properties [2], blind methods have aroused great research
interest.

Tong et al. first proved [3] that non-minimum phase
(NMP) finite-impulse response (FIR) channels can be
identified using only second-order statistics (SOS) if the
received signal exhibits cyclostationarity. Cyclostationarity
naturally leads to the so-called single-input multiple-output
(SIMO) model, a multichannel signal structure with one
input (the transmitted symbol sequence) and several
outputs. By relying only on the subspace information
contained within the sensor second-order correlation matrix,
BIE is possible in SIMO systems [3, 4].

In multiuser communication environments (e.g. cellular
wireless systems) the co-channel interference (CCI) caused
by other users simultaneously transmitting across the same
medium adds to multipath-induced ISI. To ensure reliable
detection, space–time equalisation must be performed.
Time equalisation aims at ISI removal, whereas space
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equalisation involves CCI elimination and the extraction of
the signal(s) of interest. The exploitation of temporal and/or
spatial diversity (fractional sampling and/or multiple
sensors) results in multiple-input multiple-output (MIMO)
signal models. Direct extensions of subspace-based SIMO
methods to the MIMO case achieve time equalisation but
are generally unable to separate the different source data
streams, i.e. CCI remains in the form of an instantaneous
linear mixture of the transmitted symbols [2, 5, 6].
To separate this spatial mixture, the fact that digital
communication signals possess a finite alphabet (FA) can
be exploited [2]. In a direct-sequence code-division multiple
access (DS/CDMA) system, [6] reports an unsatisfactory
performance of one such FA-based method, with probability
of error well above 10% even in the noise-free case.
Nevertheless, the spatial mixture can be resolved with the
aid of the users’ signature sequences [6], which are typically
known in a CDMA scenario. This semi-blind method is not
applicable to a general (i.e. using a multiple-access
technique other than DS/CDMA) multiuser digital com-
munication environment. The method of [6] is blind in that
it spares training sequences. However, the use of signature
sequences leads to a particular factorisation of the channel
matrix, whereas fully blind methods generally avoid such
parameterisations. Precisely there lies the robustness of
these methods to deviations from the assumed prior
information (e.g. calibration errors in beamforming) [7].

A more generic, fully blind approach sparing the prior
knowledge of the users’ signature sequences or FAs follows
from the plausible hypothesis that the signals transmitted by
different users are statistically independent. Hence, the
remaining spatial mixture after the SOS-MIMO stage adopts
a model of blind source separation (BSS) of instantaneous
linear mixtures. In addition, digital communication signals
are non-Gaussian, typically showing sub-Gaussian (or
platykurtic [8]) probability density functions (pdfs), so
BSS methods based on higher-order statistics (HOS) are
applicable. In the case where the transmitted symbols are
independent and identically distributed (i.i.d.), the source
extraction can directly be solved by HOS-based BSS
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techniques, as shown in [9–11]. However, the methods
presented therein are not designed to identify the channel.
A channel estimate may prove useful in a variety of tasks,
such as power control, source localisation, propagation
characterisation, or as a sensible initialisation for an
adaptive receiver.

This contribution discusses the exploitation of the non-
Gaussian i.i.d. source property in the FIR–MIMO BIE
problem. In particular, we study two techniques which rely
on such an assumption through the application of BSS. The
first technique is composed of the extension to the MIMO
case of a SOS-based SIMO method, completed by a BSS-
based space-equalisation stage. The second technique
consists of joint space–time equalisation through the direct
application HOS-based BSS followed by a suitable
algorithm for channel identification. The benefits and
drawbacks of exploiting non-Gaussianity are also high-
lighted throughout.

A signal model is presented which will be used in the
mathematical developments. The two BIE methods are put
forward and simulation results are reported. Other relevant
issues are also discussed.

Notations
C is the set of complex numbers. Vectors and matrices are
represented, respectively, by boldface lower-case and
upper-case symbols. ðAÞij denotes the (i, j)-element of
matrix A. Symbol In refers to the n � n identity matrix, and

e
ðnÞ
i ¼ ½0; . . . ; 0;|fflfflfflfflffl{zfflfflfflfflffl}

i�1

1; 0; . . . ; 0�|fflfflfflffl{zfflfflfflffl}
n�i

T

is the ith canonic basis vector of Cn: Superindices ð·Þ�; ð·ÞT;
ð·ÞH; ð·Þ�1 and ð·Þy indicate the complex conjugate, transpose,
Hermitian (conjugate-transpose), inverse and Moore–Pen-
rose pseudoinverse operators, respectively. E[·] stands for
mathematical expectation, and ^ denotes the Kronecker
product.

2 Signal model

The signal model of [4] is extended to the multiple-input
case. An oversampled single-sensor receiver is considered,
although the model also holds for spatially separated
multiple physical sensors. The system assumptions are:

(i) K data sources simultaneously transmit mutually-inde-
pendent information-bearing non-Gaussian i.i.d. symbols
fsk;mgK

k¼1 2 C at a known rate 1/T bauds, with E½sk;
� ¼ 0
and E½jsk;
j2� ¼ 1:
(ii) The impulse responses hkðtÞ representing the propa-
gation between the kth source and the sensor (including the
effects of the transmitter and receiver filters, carrier-pulse
shaping, etc.) span at most M þ 1 data symbols.
(iii) The additive measurement noise v(t) is white, zero-
mean and uncorrelated with the data sequences; its variance
is �2:

The implicit source power normalisation in assumption (i)
stems from the fact that a complex scalar can be
interchanged between the channel and the data without
altering the received signal. This scalar factor is an
admissible indeterminacy in blind equalisation, and cannot
be resolved without resorting to further prior information.

In contrast to [2], herein source alphabets can be assumed
unknown and not necessarily identical for all users; neither
the alphabets need be constant modulus. The source data
need not even be discrete. We only require that their kurtosis
[8] be different from zero (at most one non-kurtic source is
70
allowed [12]). Assumption (ii) demands channel stationar-
ity, at least over the observation window. This hypothesis is
verified in time non-selective scenarios, such as block-
fading multipath channels, whose coherence time is large
compared to the baud period [13].

With the above assumptions, the continuous-time com-
plex baseband received signal can be expressed as

xðtÞ ¼
XK

k¼1

X1
m¼�1

sk;mhkðt � mTÞ þ vðtÞ ð1Þ

Sampling at a rate 1=Ts ¼ L=T ; with L integer, from an
initial instant t0 ¼ 0 s (without loss of generality) yields

xðiÞn ¼
XK

k¼1

XM

m¼0

sk;n�mh
ðiÞ
k;m þ vðiÞn ; i ¼ 0; . . . ; L � 1 ð2Þ

in which x
ðiÞ
n ¼ xðiTs þ nTÞ; h

ðiÞ
k;n ¼ hkðiTs þ nTÞ and

v
ðiÞ
n ¼ vðiTs þ nTÞ: Hence, fractionally-spaced sampling

effectively generates L virtual channels excited by the
same input. Let us now store N consecutive output samples
of virtual channel i in vector x

ðiÞ
n ¼ ½xðiÞn ; . . . ; x

ðiÞ
n�Nþ1�T:

Parameter N is referred to as the smoothing factor [14] or
stacking level [9]. Similarly, gather the N samples of the L

virtual channel outputs in vector xn ¼ ½xð0ÞT
n ; . . . ; x

ðL�1ÞT
n �T

(with similar notations for the noise vector vn). Then, the
following matrix model holds:

xn ¼ Hsn þ vn ð3Þ
where sn ¼ ½sT1;n; . . . ; sTK;n�T; sk;n ¼ ½sk;n; . . . ; sk;n�N�Mþ1�T;
H ¼ ½H1; . . . ;HK � is the LN � KðM þ NÞ channel filtering

matrix, with Hk ¼ ½Hð0ÞT
k ; . . . ;H

ðL�1ÞT
k �T; H

ðiÞ
k representing

the N � ðM þ NÞ Toeplitz convolution matrix asso-
ciated with the linear filter h

ðiÞ
k ¼ ½hðiÞ

k;0; . . . ; h
ðiÞ
k;M�

T: To abbre-

viate, in the sequel we denote P¼D LN; C ¼D M þ N and
D¼D KðM þ NÞ ¼ KC:

The objective of BIE is to estimate H (blind channel
identification) and sn (blind channel equalisation [ISI
cancellation] and source separation [CCI cancellation])
from the only observation of the received vector xn: These
tasks are equivalent to recovering the channel coefficient

vector h ¼ ½hT
1 ; . . . ; hT

K �T; with hk ¼ ½hð0ÞT
k ; . . . ; h

ðL�1ÞT
k �T;

and the source vector

s ¼ EH
1 sn ¼ ½s1;n; . . . ; sK;n�T ð4Þ

where Ei ¼ IK � e
ðCÞ
i :

A necessary condition for blind identifiability is that the
filtering matrix be full column rank, which can occur only if
H has more rows than columns, P � D; or, equivalently,
L > K and N � KM=ðL � KÞ: This condition is not
sufficient. It is required that polynomial matrix H(z) be
‘irreducible and column reduced’, where ðHðzÞÞij is the
z-transform of h

ðiÞ
j [5].

Note that with the information of assumptions (i)–(iii) we

can obtain at best a channel estimate ĤH such that ĤHyH ¼
GK � IC; where GK is an arbitrary K � K permutation
matrix with unit-norm nonzero entries; signal blocks of
different users present an order indeterminacy, which can
only be surmounted if further information is available
(e.g. users’ signature sequences in a CDMA system).

3 SOS-based time equalisation and BSS-based
space equalisation

3.1 Multiuser extension of SIMO methods

Tong et al. [3] realised that blind channel identification of
NMP FIR channels is possible from SOS alone in the
IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 1, February 2004



single-user cyclostationary case, which results in the SIMO
signal model. (The signal model in [3] is slightly different
from that presented in the previous Section (with K ¼ 1).
Tong’s signal model involves a different arrangement for
the signal vectors and channel matrix, and allows for
noninteger (fractional) values for the stacking level.
However, both models are totally analogous, so that we
can use the model of Section 2 without loss of generality.)
Their approach takes advantage of the particular structure of
the observed-vector correlation matrix RxðmÞ ¼ E½xnxH

n�m�
at two different lags ðm ¼ 0; 1Þ. The direct application of
this blind identification method to the MIMO case yields the
following identifiability result [15].

Theorem 1: Suppose that H and sn satisfy the linear model
(3) and its constraints (i)–(iii). Then H is determined from
Rxð0Þ and Rxð1Þ up to a post-multiplicative factor of the
form Q� IC; where Q 2 CK�K is a K � K unitary matrix.

A similar indeterminacy is observed in the multiuser
extension [2, 16] of the subspace method of [4], in which
Q becomes an arbitrary K � K invertible matrix. Indeed,
theorem 1 may be generalised to the MIMO extension of
any SIMO BIE method [2].

According to the above result, the channel estimated by
the extended Tong’s method is of the form ~HH ¼ HðQ � ICÞ;
with Q an unknown K � K unitary matrix. Should we want
to carry out soft-symbol detection at this stage, the resulting
zero-forcing (ZF) equaliser output would be

yn ¼ ~HH
y
xn ¼ ðQH � ICÞsn þ ~vvn ð5Þ

in which

~vvn ¼ ~HH
y
vn ð6Þ

Now, defining y ¼ EH
1 yn; system (5) becomes

y ¼ QHs þ ~vv ð7Þ
where ~vv ¼ EH

1 ~vvn; and s is given by (4).

3.2 BSS-based space equalisation

Equation (7) represents a noisy unitary instantaneous linear
mixture of the source symbols. That is, CCI elimination
requires further processing. Since the components of s are
statistically independent [assumption (i)], (7) corresponds to
a BSS problem of instantaneous linear mixtures [17, 18].
Due to the i.i.d. assumption, SOS-based BSS methods fail,
but the source non-Gaussianity can still be exploited
through HOS. A few remarks indicate that HOS-based
BSS seems well suited as a second processing step:

3.2.1 Complexity reduction: The BSS problem
at this second stage has size K � K, which is considerably
reduced compared with the original dimensions of the BIE
system (3).

3.2.2 Robustness to ill-conditioned channels:
In the single-user case, the so-called uniform performance
property enjoyed by many BSS methods [19] translates into
a robust performance for ill-conditioned channels [9]. Note,
however, that uniform performance is only expected to hold
in the noiseless case [19].

3.2.3 Noise ‘Gaussianisation’: The central limit
theorem and (6) guarantee that the equalised noise ~vv will be
close to Gaussian, even if the actual sensor noise vn is not.
The well known HOS immunity to Gaussian noise would
IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 1, February 2004
then result in an increased robustness of the BIE method not
only to Gaussian noise but also to other kinds of non-
Gaussian noise, such as impulsive interference.

In the simulations of Section 5, we employ the joint
approximate diagonalisation of eigenmatrices (JADE) BSS
method [7]. This choice is somewhat arbitrary; we are
concerned with the application of BSS as a general strategy,
rather than assessing which particular BSS method provides
the best performance. JADE optimises a HOS cost function
through the joint diagonalisation of a particular set of fourth-
order cumulant tensor ‘slices’.

Once Q has been obtained via a HOS–BSS method, the
full channel estimate can be calculated as ĤH ¼ ~HHðQH � ICÞ:
From the channel estimate, soft-symbol detection can then
be accomplished from (3) as ŝsn ¼ GHxn with the ZF and
minimum mean square error (MMSE) equalisers

GZF ¼ ðĤHĤH
HÞ�1ĤH ð8Þ

GMMSE ¼ Rxð0Þ�1ĤH ð9Þ
whose subspace version from the channel matrix singular
value decomposition is given in [6].

Steps 2–5 of Table 1 summarise the BSS and detection
stages, which, in combination with the extended Tong
method, complete the first FIR–MIMO BIE algorithm
proposed in this paper.

4 BSS-based joint space–time equalisation and
channel identification

The i.i.d. assumption in (i) makes the components of the
source vector sn in (3) statistically independent. From this
perspective, (3) itself can also be considered as a BSS model
of instantaneous linear mixtures, and thus BSS techniques
may be directly applied to resolve it [11].

The whitening step of Tong’s method provides the
outputs [15]

zn ¼ Wxn ¼ Vsn þ wn ð10Þ
where wn ¼ Wvn and W represents the whitening matrix. In
a second step, a HOS-based BSS method, such as JADE [7],
can estimate the unitary mixing matrix V. Detection can be
carried out through ZF/MMSE equalisers (8)=(9).

Since in this case the BSS method operates over all the D
whitened components, the complexity reduction remarked
in the previous Section is lost. However, the key point to
note in the direct application of BSS techniques to the BIE
model is related to the source scale and order indetermi-
nacies inherent to the BSS problem [17, 18]. These
indeterminacies mean that a blind separation method

can provide any solution V̂V such that V̂V
y
V is an arbitrary

permutation matrix with unit-norm non-zero entries. In our
particular model (3), the arrangement and scale of the
recovered source components as well as the corresponding
columns of the filtering matrix are crucial, especially for

Table 1: Algorithm for SOS-based time equalisation and
BSS-based space equalisation

1. Obtain first estimate of the filtering matrix ~HH from the

extended Tong method [15].

2. Compute ISI-free output (5).

3. Estimate matrix Q from (7) with a HOS-based BSS method.

4. Update estimate of channel matrix as ĤH ¼ ~HHðQH � IC Þ:

5. Detect CCI-free source symbols [(8) and (9)].
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channel identification purposes. Hence, the solution
obtained via BSS needs to be refined if it is to be useful in
the BIE scenario.

We propose the algorithm outlined in Table 2. First, the
recovered source vector components are normalised to unit
variance, and the component with the largest absolute
normalised kurtosis is chosen. Given a unidimensional
observation x ¼ s þ v; then

~kkx
4 ¼ ~kks

4

SNR

1 þ SNR

� �2

where ~kkx
4 ¼ kx

4=ðkx
2Þ2; SNR ¼ ks

2=k
v
2 and kx

n and ~kkx
n

represent the nth-order cumulant and normalised cumulant,
respectively, of x [8]. Hence, if all sources have the same
distribution, the highest normalised kurtosis criterion selects
the least noisy component. Next, the correlation function
between that and all other components is computed in turns.
If the maximum absolute value of the correlation function is
above certain threshold, the two components are considered
to belong to the same source, their relative delay and phase
being given by the delay and phase of their joint correlation
function at its peak. (In the simulations of Section 5, an
initial threshold value of 0.7 was used, with a multiplicative
reduction factor (step 5 in Table 2) of 0.95.) Note that since
the relative delays between two components of the same
user’s signal lie in the interval ½�C þ 1;C � 1�; the cross-
correlation functions only need to be computed between
those lag limits, with the consequent reduction in complex-
ity. The components of the source vector and the channel
matrix are then scaled and ordered accordingly. The process
is repeated until no more source components remain to
be arranged. In an ideal situation (perfect estimation),

this algorithm outputs a channel estimate ĤH such that ĤH
y
H

¼ GK � IC:

Table 2: Algorithm for BSS-based joint space–time
equalisation and channel identification

Repeat steps below until no more estimated source

components remain to be ordered:

1. Select among remaining sources the component with

largest normalised kurtosis, ŝsi :

2. Estimate (e.g. via time averaging) the cross-correlation

functions

R ŝsi ŝsj
ðmÞ ¼ E½ŝsi ðnÞŝs

�
j ðn � mÞ�

for j within the group of components still to be arranged.

3. Obtain the lag position mij of the largest absolute value

j�ij jof R ŝsi ŝsj

mij ¼ arg max
m

jR ŝsi ŝsj
ðmÞj

�ij ¼ R ŝsi ŝsj
ðmij Þ

4. If j�ij j > threshold, source pair ðŝsi ; ŝsj Þ belongs to the same

user.

(a) Correct phase: multiply ŝsj by ej<�ij ; multiply the j th

column of ĤH by e�j<�ij :

(b) Rearrange the elements of ŝs and the columns of ĤH

according to the ordering of mij :

5. If no source pair was detected, reduce the threshold and

return to step 4.
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The above algorithm is based on the equalisation methods
‘A’ and ‘C’ of ([11], Section 5), but it improves them in that
it is also able to accomplish channel identification.

5 Simulation results

A few numerical experiments illustrate the behaviour of the
MIMO BIE methods presented in the previous Sections. We
first define a number of performance parameters. A natural
choice for the signal-to-noise ratio (SNR) is

SNR ¼ traceðHRsð0ÞHHÞ
traceðRvð0ÞÞ

¼ 1

�2P
traceðHHHÞ ð11Þ

which corresponds to the average source power contribution
over the average noise power in the received signal. To
measure the quality of the channel identification and the
space–time equalisation results, we choose the channel
mean square error (CMSE) and the average signal mean
square error (SMSE), respectively, which are defined as

CMSE ¼ kĥh � hk2

khk2
ð12Þ

SMSE ¼ 1

D
E
	
kŝsn � snk2



ð13Þ

The symbol error rate (SER) is computed as the number of
erroneous symbols in the components of ŝsn over the total
number of symbols in sn. Before calculating these
performance parameters, the estimated channel matrix and
source vector are first rearranged to ‘match’ the original
channel matrix and source vector, in a bid to correct the
GK � IC ambiguity term. It is important to note that this
rearrangement is based purely on the comparison of
consecutive C-column blocks of the estimated and original
channel matrices, so that the BIE results cannot possibly be
altered (improved) in this process.

5.1 Performance against sample size

The first simulation tests the extension of Tong’s method
followed by BSS on (7) (ETBSS), and the full BSS method
on (3) with the blind identification algorithm of Section 4
(FBSS). Two 4-QAM signals are transmitted over a
dispersive multipath channel with a short delay spread of
M ¼ 2 symbol periods. Reception takes place in additive
complex Gaussian noise. Nd symbol periods are observed,
with oversampling factor L ¼ 6 and stacking level N ¼ 2:
The channel coefficients are drawn from a complex
Gaussian distribution, forming a fixed 12 � 8 channel
matrix with condition number condðHÞ ¼ 5: Performance
parameters are averaged over n Monte Carlo (MC) runs,
with independent source and noise realisations at each run,
and maintaining �Nd ¼ 104. Figure 1 shows the CMSE and
SMSE results for a varying observation window length Nd

and several SNRs. At high enough SNR, ETBSS shows
good performance for a low sample size. FBSS needs
around 300 samples to provide satisfactory results, and then
consistently outperforms the other method, becoming about
twice as efficient. Figure 1b also shows that the methods
tend asymptotically to the large-sample MMSE at each SNR
value. In this experiment, SER counts are zero for both
methods from SNR ¼ 30 dB and Nd > 300 observed
symbol periods, approximately.

5.2 Performance against noise level

The environment of the second simulation tests the effects
of varying noise levels for different sample lengths, with
IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 1, February 2004



�Nd ¼ 105: Three 16-QAM modulations propagate in a
more severe frequency-selective channel of order M ¼ 5:
We choose L ¼ 12 and N ¼ 2; which result in a 24 � 21
channel matrix with condðHÞ ¼ 30: Figure 2 shows that the
ETBSS begins to obtain satisfactory BIE results from about
SNR ¼ 20 dB; even for low sample size, whereas FBSS
requires a few thousand samples to start performing.
However, for long observation windows, FBSS tolerates a
noise level of around 10 dB higher than ETBSS. Both
methods approach the optimal large-sample MMSE asymp-
totically, as displayed in Figs. 2b and 2c. In the SER plots,
the ‘optimal MMSE’ curve corresponds to the probability of
symbol error in the optimum detection (for an AWGN
channel [13]) of a single component with MSE equal to the
large-sample MMSE in the given simulation conditions
(channel matrix and SNR).

5.3 Performance against noise distribution

Figure 3 explores the impact of the noise distribution on the
BIE results, for large sample size ðNd ¼ 104Þ at various
SNRs. The sensor output is corrupted by additive noise with
complex generalised Gaussian distribution (CGGD) of
parameter a, whose pdf is given by pðzÞ! expð�jzjaÞ:
The CGGD becomes the complex Gaussian distribution for
a ¼ 2; a super-Gaussian distribution for a < 2 (e.g. the
complex Laplacian variable for a ¼ 1), and a sub-Gaussian
distribution for a > 2: The methods’ BIE results are

Fig. 1 Performance against sample size for two 4-QAM sources,
additive Gaussian noise, M ¼ 2, L ¼ 6, N ¼ 2, condðHÞ ¼ 5,
� MC runs, �Nd ¼ 104

a CMSE
b SMSE with MMSE detection
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virtually identical over the tested range of noise
distributions.

5.4 Performance against channel
conditioning

The effects of the channel matrix conditioning are assessed
in a final experiment, whose outcome is shown in Fig. 4.
At each MC iteration, a channel matrix of a given condition

Fig. 2 Performance against SNR for three 16-QAM sources,
additive Gaussian noise, M ¼ 5, L ¼ 12, N ¼ 2, condðHÞ ¼ 30,
� MC runs, �Nd ¼ 105

a CMSE
b SMSE with MMSE detection
c SER with MMSE detection
73



number as well as independent source and noise realisations
are randomly generated. For finite SNR, performance
worsens as cond(H) increases. The ill conditioning of the
channel matrix amplifies the noise in the whitening process,
hampering the HOS processing stage, which ‘sees’ a lower
SNR. In the noiseless case, no variation with the channel
matrix condition number is observed. For illustration and
comparison, the characteristics of some channels used in
this paper and elsewhere in the literature are summarised in
Table 3.

6 Discussion

A number of issues deserve special treatment, and are
discussed next.

6.1 Computational complexity and choice of
BSS method

The high cost involved in the computation of the higher-
order cumulants/moments is probably the weakest aspect of
HOS-based techniques. After Tong’s method, JADE
requires the calculation of the K4 elements of the fourth-
order cumulant tensor, followed by the diagonalisation of a
K2 � K2 matrix made from such cumulants. Consequently,
the direct application of BSS exhibits a C4-fold increase
in computations. Indeed, JADE becomes computationally
prohibitive for source vectors with many components,
which may easily arise in more realistic scenarios with large

Fig. 3 Performance against noise distribution for additive noise
with CGGD of parameter a, three 16-QAM sources, M ¼ 5,
L ¼ 12, N ¼ 2, condðHÞ ¼ 30, Nd ¼ 104 10 MC runs

a CMSE
b SMSE with MMSE detection
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delay spreads. Less costly schemes such as the FastICA
algorithm [18] may prove more convenient in these
practical situations. The methods of [12] and [20], which
can be used in real-valued mixtures, show a complexity of
the order of K5=2 flops per vector sample. For coloured
sources with different spectral content, computationally
efficient BSS techniques using only SOS [17, 18, 21] are
feasible after the application of a subspace method not
relying on the i.i.d. assumption (e.g. [4]).

Fig. 4 Performance against channel conditioning, for three 16-
QAM sources, additive Gaussian noise, M ¼ 5, L ¼ 12, N ¼ 2,
Nd ¼ 104, 10 MC runs

a CMSE
b SMSE with MMSE detection
c SER with MMSE detection
IEE Proc.-Vis. Image Signal Process., Vol. 151, No. 1, February 2004



Table 3: Some channels used in the literature and in this paper

Reference (K, L, M, N) Description Size cond(H)

[3] (1, 4, 5, 5) SIMO, raised cosine carrier pulses, three-ray multipath,

NMP subchannels

20 
 10 55.86

[9], case 1 (1, 2, 11, 11) SIMO, similar impulse response to [3], NMP subchannels 22 
 22 2:96 
 104

[9], case 2 (1, 4, 5, 5) SIMO, NMP subchannels 20 
 10 77.79

[11], example 1 (2, 8, 3, 1) MIMO, squared-half-cosine carrier pulses, flat fading,

NMP subchannels

8 
 8 181.14

Section 5.1 (2, 6, 2, 2) MIMO, complex Gaussian channel taps, NMP subchannels 12 
 8 5

Sections 5.2 and 5.3 (3, 12, 5, 2) MIMO, complex Gaussian channel taps, NMP subchannels 24 
 21 30
6.2 Blind identification from channel matrix
structure

The blind identification algorithm from the BSS results
proposed herein relies on preserving the source vector
structure only. The joint exploitation of the block-Toeplitz
structure of the channel matrix could lead to a reduction in
the sample size required for satisfactory identification
results. The minimum required sample size is ultimately
limited by the use of HOS.

6.3 Channels with different delay spreads

In realistic communication environments, channel delay
spreads of different users are likely to differ. The application
of a SOS subspace method would then result, even under
perfectly known channel orders, in a BSS problem of
convolutive mixtures [5], which is a challenging area
currently drawing intense research attention [18].

7 Conclusions

The present work has addressed the BIE of FIR channels in
multiuser digital communication systems. The non-Gaus-
sian property and statistical independence of the source data
have been successfully exploited through HOS-based BSS
techniques for CCI cancellation and for joint ISI-CCI sup-
pression. The two proposed BSS-based techniques exhibit
the same asymptotic performance, but the former is
computationally more efficient, and proves more effective
in short observation windows. Both approaches have shown
their robustness, relative to the Gaussian-noise case, against
non-Gaussian additive noise and impulsive interference.
Other salient features of the BSS approach are its robustness
to the channel matrix condition number in high SNR
situations and its constellation-independent BIE capabili-
ties. In conclusion, the BSS approach appears to be a strong
alternative to FIR-MIMO BIE techniques relying on the
exploitation of other spatio-temporal properties such as the
users’ finite alphabets, constant modulus or signature
sequences.
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