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Blind Source Separation in Persistent Atrial
Fibrillation Electrocardiograms Using Block-Term
Tensor Decomposition with Löwner Constraints
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Abstract—The estimation of the atrial activity (AA) signal from
electrocardiogram (ECG) recordings is an important step in the
noninvasive analysis of atrial fibrillation (AF), the most common
sustained arrhythmia encountered in clinical practice. This prob-
lem admits a blind source separation (BSS) formulation that has
been recently posed as a tensor factorization, using the Hankel-
based block term decomposition (BTD), which is particularly
well-suited to the estimation of exponential models like AA during
AF. However, persistent forms of AF are characterized by short
R-R intervals and very disorganized (or weak) AA, making it dif-
ficult to model AA directly and perform its successful extraction
through Hankel-BTD. To overcome this drawback, the present
work proposes a tensor approach to estimate QRS complexes and
subtract them from the ECG, resulting in a signal that, ideally,
only contains the AA component. Such an approach tackles the
problem of blind separation of rational functions, which models
QRS complexes explicitly. The data tensor admitting a BTD is
built from Löwner matrices generated from each lead of the
observed ECG. To this end, this paper formulates a variant of the
recently proposed constrained alternating group lasso (CAGL)
algorithm that imposes Löwner structure on the decomposition
blocks. This is done by performing an orthogonal projection,
which we explicitly derive, at each iteration of CAGL. Results
from experiments with synthetic data show the consistency of the
proposed Löwner-constrained AGL (LCAGL) in extracting the
desired sources. Experimental results obtained on a population of
20 patients suffering from persistent AF show that the proposed
variant outperforms other tensor-based methods in terms of atrial
signal estimation quality from ECG records as short as a single
heartbeat.

Index Terms—Atrial Fibrillation, Block Term Decomposi-
tion, Constrained Alternating Group Lasso, Electrocardiogram,
Löwner Matrices.

I. INTRODUCTION

ARRHYTHMIAS are heart diseases characterized by an
irregular rate and/or rhythm of the heartbeats. Being the

most frequent sustained arrhythmia diagnosed in clinical prac-
tice, decreasing life quality and increasing healthcare costs,
atrial fibrillation (AF) is a supraventricular tachyarrhythmia
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distinguished by an uncoordinated and irregular atrial depo-
larization [1]. Persistent AF represents a particularly complex
form of this arrhythmia, where extensive atrial remodelling
has taken place due to sustained AF, significantly affecting
atrial activity (AA) and causing AF perpetuation. This cardiac
rhythm disturbance is considered an economical burden, as a
patient suffering from AF costs, anually, approximately $8 700
more to healthcare providers than a patient without AF in the
USA. It is also associated with a higher morbidity, representing
a major health concern, since about half million hospitaliza-
tions with AF as the primary diagnosis are registered every
year, also in USA [1]. If the number of new diagnosis stays
stable, it is estimated that AF will increase from 2.3 to at
least 12.1 million patients in the USA by 2050 [2], and from
8.8 to about 17.9 million in the European Union by 2060 [3],
becoming then a new epidemic. Worldwide, the number of
AF patients was estimated to be around 33.5 million in 2010
[4]. Considering these worrisome statistics and the fact that
the electrophysiological mechanisms of AF are not totally
understood, it is not surprising that this challenging cardiac
condition has been a topic of intense research in the past few
years, and is expected to be investigated even more deeply.

During AF episodes, the atrial depolarization, represented
by the P wave during normal sinus rhythm, is replaced by
fibrillatory waves, or f waves, which are present continuously
throughout the electrocardiogram (ECG) recording. The f
waves are masked by the QRS-T complex that corresponds
to the ventricular depolarization and repolarization, i.e., the
ventricular activity (VA), in each heartbeat. Figure 1 illustrates
an example of a persistent AF ECG recording with short R-
R intervals and fine AF, i.e., when the AA has a very low
amplitude. These two characteristics are quite common in
persistent AF ECGs.

In order to provide a better understanding of the complex
mechanisms behind AF, a detailed analysis of the AA signal
is necessary. A cost-effective noninvasive method to perform
this task is to extract the AA from the standard 12-lead
ECG. During AF, the AA and the VA signals are typically
assumed uncoupled, which makes the extraction of AA from
the ECG admit a blind source separation (BSS) formulation
[5]. The block-term decomposition (BTD) built from Hankel
matrices, proposed as a technique to solve BSS problems in
[6], was used to noninvasively extract the AA signal from AF
ECG recordings, and shown to outperform the matrix-based
techniques in this particular application [8]-[11]. Also, tensor-
based techniques do not require orthogonality or mutual inde-
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Fig. 1: An example of a persistent AF ECG recording, with
short R-R intervals and fine AF.

pendence between the sources, enjoying essential uniqueness
under mild constraints, and can perform BSS from rather short
signal records, on a beat-to-beat basis.

The BTD tensor model is flexible, as it can accommodate
sources with different characteristics, i.e., with diferent number
of poles (or degrees, in the case of rational functions). Two
commonly used methods for computing this decomposition are
the nonlinear least squares (NLS) method implemented in the
Tensorlab MATLAB Toolbox [12] and the alternating least
squares method with enhanced line search (ALS-ELS) [13].
However, their performance depends considerably on their
initialization and model structure, i.e., the rank of the matrix
factors and the number of blocks of the tensor.

To overcome these limitations, an algorithm to compute the
BTD called alternating group lasso (AGL) and a variant called
constrained AGL (CAGL) that deals with linear constraints
over block matrices were recently proposed [14]. The principle
of AGL is to compute BTD as the minimization of a least
squares (LS) fit term plus a regularization term in order
to penalize the rank of the blocks. AGL is able to find
an approximate BTD with weak assumptions on its model
parameters (number of block terms and multilinear ranks),
since only an upper bound is imposed on these parameters.
In CAGL, approximate projections are performed at each
iteration to ensure that the block matrices have low rank
and belong to a specified subspace, a problem known as
structured low-rank approximation (SLRA) [15]. Indeed, the
estimation of low-rank block matrices is a crucial condition to
extract the desired information contained in the (unique) model
parameters. CAGL was also assessed as an AA extraction
tool in [14], showing its ability to extract more information
of the AF ECG signal than other existing techniques, as
this method could extract two possible atrial source signals,
probably having their origin in different parts of the atria.

The Hankel-BTD has proven to be a useful and powerful
AA extraction tool in AF analysis, but a satisfactory perfor-
mance is only achieved for segments with long R-R intervals
and with well defined AA, visible in most of the segment.
However, as stated earlier in this section, recordings with short

R-R intervals (< 0.75 s) and fine AF (amplitude of the f waves
lower than 0.1 mV) are quite more common during persistent
AF episodes. When assessed in these challenging cases, the
Hankel-BTD as well as the matrix-based techniques do not
provide satisfactory results [16]. Automatically selecting the
AA signal among the estimated sources after performing BSS
is also an unsolved issue, since no systematic method is
reported in the literature for this purpose.

Aiming to avoid such limitations in these common and
challenging persistent AF scenarios, the present work proposes
the BTD built from Löwner matrices as a solution for BSS of
rational functions [17] to model the VA and separate it from
the AA. This strategy suits the characteristics of VA in ECG
recordings, since the QRS complex can be well approximated
by rational functions [18], [20], and when mapped onto
Löwner matrices, the degree of the rational function matches
the rank of the Löwner matrix [17]. Modeling VA instead of
AA is a reasonable strategy in these difficult cases (weak AA
and/or short R-R intervals), common in persistent AF episodes,
as the AA signal becomes very difficult to model [16]. The
VA estimated by the Löwner-BTD is then subtracted from the
ECG, resulting in a signal that contains mainly AA. Another
advantage of the proposed method is that no technique for
atrial source selection is needed, since the resulting signal is
already the desired signal.

The main contributions of the paper can be summarized as
follows:

• We put forward a new tensor-based method for non-
invasive AA estimation in the challenging scenarios of
low amplitude f-waves or short R-R intervals, typical of
persistent AF episodes.

• The new technique is based on a BTD variant based on
Löwner matrices modeling the VA interference present
in the recording. To compute the BTD with Löwner
constraints, we develop a new method that we denote
Löwner-constrained AGL (LCAGL), assuring the Löwner
structure of its matrix factors.

• To better gauge its capabilities in the context of this
biomedical application, the proposed method is compared
with state-of-the-art tensor-based algorithms such as the
Hankel-constrained AGL and the NLS-based Gauss-
Newton algorithm to compute the Löwner-BTD.

• Experiments with realistic synthetic AF signals are per-
formed to validate the proposed Löwner-based BTD
algorithm in simulated scenarios where the ground truth
is available.

• The clinical relevance of the proposed method is eval-
uated on a database composed of 20 different patients
suffering from persistent AF.

This work is a significant extension of the preliminary
results reported in the conference paper [16]. Indeed, while the
NLS method is used to compute the Löwner-BTD and tested
in a reduced database in [16], we provide herein an improved
method for Löwner-BTD computation and statistically more
significant results by doubling the size of the AF patient
database. This paper formulates a variant of CAGL that
deals with Löwner constraints, imposing a low-rank Löwner
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structure. We show how this constraint can be enforced by
an alternating projection approach, for which we derive an
explicit expression of the projection onto the subspace of
Löwner matrices. The resulting LCAGL is compared to the
Löwner-BTD computed with the NLS method (used in the
experiments reported in [16]), as well as the recently proposed
CAGL dealing with Hankel constraints. Experimental results
with synthetic and real AF ECG segments show the superiority
of the proposed technique in challenging cases of this complex
arrhythmia. Successful AA estimation is achieved from obser-
vation records as short as a single heartbeat, making the new
method potentially very attractive in real-time AF analysis.

The rest of this paper is organized as follows. Section II
presents the notation and some basic definitions of tensor
algebra. Section III recalls BTD as a tensor approach to solve
BSS problems and how to build a tensor from an ECG data
matrix. Section IV describes AGL for computing BTD, while
Section V formulates its variant with Löwner constraints and
derives the linear projection onto the Löwner subspace. A
numerical evaluation of the proposed approach is shown in
Section VI with synthetic signals. Section VII presents the
database setup and results of experiments with real AF data.
Section VIII discusses the advantages and limitations of the
present work and, finally, Section IX concludes the paper and
provides some prospects of future research.

II. NOTATION AND ALGEBRA PREREQUISITES

To ease the comprehension of the paper, this section sum-
marizes the notation used in the present work and introduces
some definitions that are not common in research fields outside
tensor algebra.

Scalars, vectors, matrices and tensors are represented by
lower-case (a, b, ...), boldface lower-case (a, b, ...), boldface
capital (A, B, ...) and calligraphic (A, B, ...) letters, respec-
tively. The matrix transpose operator is represented by (·)T ,
||·||F is the Frobenius norm and ◦ is the outer product. Diag(a)
builds a diagonal matrix by placing the elements of a along the
diagonal and IN represents an identity matrix of size N×N . A
third-order tensor A ∈ CI1×I2×I3 , with scalar entries ai1,i2,i3 ,
has its frontal slices represented by A..i3 ∈ CI1×I2 . A matrix
A ∈ CI1×I2 , with scalar entries ai1,i2 , has its ith1 row and ith2
column represented by ai1. and a.i2 , respectively. Symbol || · ||
denotes the l2-norm and || · ||2,1 denotes the mixed l2,1-norm,
defined for an arbitrary matrix A with I2 columns as:

||A||2,1 =

I2∑
i2=1

||a.i2 || . (1)

Given a vector y of length N , one can build a Hankel matrix
H ∈ RI×J , where I = J = N+1

2 if N is odd or I = N
2 and

J = N
2 + 1 if N is even, with entries:

hi,j , yi+j−1 (2)

with i = 1, ..., I , j = 1, ..., J .
One can also build a Löwner matrix L ∈ RI×J from y,

where I + J = N , with entries:

`i,j ,
yxi − yzj
xi − zj

(3)

where i = 1, ..., I , j = 1, ..., J and ytn is the tthn time sample
of y, sampled in the time set T = {t1, t2, ..., tN}, which
is partitioned into two different non-overlapping time sets:
X = {x1, x2, ..., xI} and Z = {z1, z2, ..., zJ}. Two simple
partitioning methods are the interleaved partition, i.e., X =
{t1, t3, t5, ...}, and Z = {t2, t4, t6, ...}, and the block partition,
i.e., X = {t1, t2, ..., tI}, and Z = {tI+1, tI+2, ..., tN}. As
stated in [17], both partitioning methods give similar perfor-
mance in a BSS scenario.

III. TENSOR-BASED BSS OF ECG DATA

This section discusses the tensor-based BSS formulation and
its connection with AF ECGs. First, Section III.A describes the
matrix-based BSS formulation with its constraints to guarantee
uniqueness, motivating the formulation of a tensor-based BSS
problem with uniqueness under mild conditions. The Hankel-
BTD for modeling the AA is recalled in Section III.B, whereas
its Löwner-constrained version to model the VA is introduced
in Section III.C.

A. BSS Formulation
An ECG recording composed of K leads and N time

samples can be modeled as a matrix factorization:

Y = MS ∈ RK×N (4)

where M ∈ RK×R is the mixing matrix, modeling the
propagation of the cardiac electrical sources from the heart
to the body surface, S ∈ RR×N is the source matrix that
contains the atrial and ventricular sources and R is the number
of sources. Since the goal is to estimate M and S from matrix
Y only, one can see that source estimation in ECG recordings
is a BSS problem.

As previously stated, matrix-based methods require some
constraints in order to guarantee the uniqueness of the fac-
torization in (4). For example, principal component analysis
(PCA) [19] requires the columns of the mixing matrix M
to be orthogonal, whereas independent component analysis
(ICA) [7] methods require statistical independence between
the sources and non-Gaussianity. Although mathematically
coherent, such constraints may lack physiological grounds,
hindering the interpretation of the results. By contrast, tensor-
based techniques do not require such constraints and can
ensure uniqueness under relaxed conditions.

As it will be detailed later, the BTD with constrained matrix
factors can well suit the characteristics of ECG signals, which
makes this tensor factorization technique a powerful tool for
AA extraction from AF ECGs. The BTD of an arbitrary third-
order tensor T ∈ RI×J×K is written as:

T =

R∑
r=1

Er ◦ cr (5)

where R is the number of blocks, cr ∈ RK is nonzero and
Er ∈ RI×J is a structured matrix that has rank Lr, admitting
the factorization Er = ArBTr , where Ar ∈ RI×Lr and Br ∈
RJ×Lr have rank Lr. We may then rewrite (5) as:

T =

R∑
r=1

(
ArBTr

)
◦ cr . (6)



4

Fig. 2: Graphical representation of the BTD of an arbitrary
third-order tensor.

One can see that the BTD is a decomposition of T in
multilinear rank-(Lr,Lr,1) terms [6], represented by a sum of
the outer product of its matrix and vector factors, as illustrated
in Figure 1. Note that the number of sources R equals the
number of blocks in the BTD model (5)–(6). Several results
can be invoked to guarantee the essential uniqueness of this
tensor decomposition. For example, in [6, Theorem 2.2], it
is shown that the BTD is essentially unique if the following
conditions are satisfied:

1) The matrix factors A =
[
A1 A2 . . . AR

]
∈

RI×
∑R

r=1 Lr and B =
[
B1 B2 . . . BR

]
∈

RJ×
∑R

r=1 Lr are full-column rank, which requires∑R
r=1 Lr ≤ min(I, J).

2) Matrix C =
[
c1 c2 . . . cR

]
∈ RK×R does not

contain proportional columns.
For the processed ECG segments, we typically have that

min(I, J) ≈ N+1
2 ≥

∑R
r=1 Lr. Also, matrix C corresponds to

the mixing matrix M, whose columns represent the contribu-
tion of each source to the ECG leads, which are unlikely to
be proportional. Essentially unique means that the structure of
the decomposition does not change if the rth

1 and rth
2 terms

are permuted, as long as they have equal ranks, and if Er is
rescaled, as long as cr is counterscaled. Milder uniqueness
conditions can be found in [6].

If the matrices Er are linearly structured in the sense that
they belong to a given subspace US , then the frontal slices of
T , given by T..k, also belong to US . For the BSS application
of this decomposition, two commonly used structures are
the Hankel structure, that focuses on separating complex
exponential functions, and the Löwner structure, focusing on
the separation of rational functions. In the following, we will
describe the principles behind these choices.

B. AA Modeling via Exponential Functions

The Hankel-BTD is especially adapted to source signals
composed of a sum of complex exponentials:

s(t) =

F∑
f=1

λfz
t
f (7)

where zf ∈ C is a possibly complex pole, λf the associated
scale factor (that can also be complex-valued), 1 ≤ f ≤ F ,
and t denotes continuous time. This model is indeed a good
representation of the quasi-periodic behaviour of the AA signal
in AF episodes [26].

It is shown in [6] that a BTD built from Hankel matrices
solves the BSS problem (4) when the underlying sources
follow the exponential model (7). This results relies on the fact
that a Hankel matrix associated with an F -pole exponential
model has a rank bounded by F , which follows from the
Vandermonde decomposition of the Hankel matrix. To exploit
this idea to perform BSS, a tensor is first obtained from
the data matrix Y by mapping each of its K rows into a
Hankel matrix H(k) ∈ RI×J , 1 ≤ k ≤ K, according to (2).
Next, the tensor is built by stacking each Hankel matrix along
the third dimension, as frontal slices, of a third-order tensor
YH ∈ RI×J×K , that is:

Y..k = H(k) =

R∑
r=1

mk,rH
(r)
S (8)

where H(r)
S is a Hankel matrix built from the rth source of S.

Because the described mapping is linear and each row of Y is
a linear combination of the sources with weights determined
by one row of M, it follows that the third-order tensor YH
admits a BTD model and can be written as:

YH =

R∑
r=1

H(r)
S ◦m.r. (9)

The Hankel-BTD suits the characteristics of AA in AF
episodes since atrial signals can be approximated by a sum
of complex exponentials like (7) and mapped into Hankel
matrices with rank equal to the number of poles [8]. However,
in persistent AF, ECG recordings present short R-R intervals,
significantly masking the AA in the recording. Also, f-waves
during AF are characterized for being disorganized with very
low amplitude, sometimes lower than the noise. Such issues
make it difficult to fit the AA signals to this exponential model,
compromising the AA extraction via Hankel-BTD.

C. VA Modeling via Rational Functions

To circumvent the aforementioned difficulty in the persistent
AF scenarios considered in this work, we turn to another
alternative: VA modeling. Indeed, the QRS morphology is not
significantly changed during AF, as compared to normal sinus
rhythm (NSR), and hence it is reasonable to focus on VA
estimation. When subtracting the VA estimate from the ECG,
the resulting signal will ideally contain the AA signal.

Previous works notice that QRS complexes can be approx-
imated by rational functions of low degree [17], [18], [20]:

s(t) = a(t) +

F∑
f=1

Df∑
d=1

cf,d
(t− pf )d

(10)

where a(t) is a polynomial of degree A, F is the number
of complex poles, denoted pf , Df is their multiplicity, and
cf,d = 1/(uf − vd) are the scalar entries of a Cauchy
matrix based on the vectors u ∈ CF and v ∈ CDf , with
uf 6= vd,∀f, d. Interestingly, a second kind of BTD suits
the characteristics of signal model (10). Instead of Hankel
matrices, this alternative BTD is based on Löwner matrices
built as in (3). The key result underying this decomposition
is that when a signal following model (10) is mapped into a
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Löwner matrix, the degree of the rational function matches the
rank of the matrix [17]. Hence, the idea is to map each row
of the data matrix Y into a Löwner matrix L(k) ∈ RI×J as
in (6), 1 ≤ k ≤ K. Next, the tensor is built by stacking each
Löwner matrix along the third dimension, as frontal slices, of
a third-order tensor YL ∈ RI×J×K . Similarly as with Hankel
matrices, one can show that:

Y..k = L(k) =

R∑
r=1

mk,rL
(r)
S (11)

where L(r)
S ∈ RI×J is a Löwner matrix built from the rth

row of S. One can see that the procedure for constructing
Y..k in (11) is a linear mapping and, for each r, the outer
product between matrix L(r)

S and the rth column of M, i.e.,
m.r, is performed to build a third-order tensor containing the
contribution of the rth source to the ECG tensor. Putting
together the contribution of all sources, the third-order tensor
YL admits a BTD model and can be written as:

YL =

R∑
r=1

L(r)
S ◦m.r. (12)

In short, the Löwner-BTD tensor model (12) is directly
related to the rational function model (10), and is therefore
well-suited to VA estimation in AF ECGs. To do so, one
first needs to estimate the BTD model factors from third-order
tensor YL, an important step that is addressed next.

IV. ALTERNATING GROUP LASSO ALGORITHM FOR BTD

In this section, the classical approach for the computation
of the BTD model factors and its limitations are recalled.
Then, we review the AGL algorithm, which was conceived
to overcome such limitations.

In general, an approximate BTD is computed by minimizing
the Euclidean distance between the observed data tensor Y ∈
CI×J×K and a model of fixed structure with respect to the
model components:

f(A,B,C) ,
∥∥∥Y −∑R

r=1

(
ArB

T
r

)
◦ cr

∥∥∥2

F
. (13)

In the special case of interest shown in eqn. (12), Lr must
belong to the subspace of Löwner matrices with dimensions
(N2 ×

N
2 ), denoted SL. The mode-3 slices Y..k of the ob-

served tensor are Löwner by construction. However, a solution
(Â, B̂, Ĉ) of (13) may not satisfy ÂrB̂

T
r ∈ SL, due to

noise and modeling imperfections. Note that even if the sum∑R
r=1(ÂrB̂

T
r )ĉk,r is Löwner, there is no guarantee that so

are matrices ÂrB̂
T
r , r = 1, 2, ..., R. Also, algorithms based

on (13) are strongly dependent of the initialization of their
matrix factors and do not estimate the model parameters, i.e.,
the number of blocks and their ranks.

To overcome such limitations, instead of using a fixed BTD
structure as (13), an algorithm called AGL and its constrained
version for Hankel matrices called CAGL, are introduced in
[14]. This method includes penalization terms promoting low-
rank blocks and controlling the number of blocks as:

F (A,B,C) , f(A,B,C) + γ g(A,B,C) (14)

where f(·, ·, ·) is the same as in (13), γ > 0 is a regularization
parameter and g is a regularization function of the form:

g(A,B,C) , ‖A‖2,1 + ‖B‖2,1 + ‖C‖2,1 . (15)

Due to the geometric properties of the mixed `2,1-norm,
solutions where A, B and C have null columns (for sufficiently
high γ values) will be induced, allowing one to select the
relevant low-rank blocks. This method is called group lasso
and is a generalization of the the lasso estimator principle [22].

Since problem (14) is nonconvex (and nonsmooth), but
convex by blocks, a block coordinate descent (BCD) approach
is employed in [14]. BCD consists in partitioning the set
of optimization variables and sequentially solving convex
subproblems in each subset of variables, fixing the others.

Consider Â(ν), B̂(ν) and Ĉ(ν) the estimates of A, B and
C, respectively, obtained at iteration ν. Fixing B = B̂(ν) and
C = Ĉ(ν) in (14) the subproblem in A of iteration (ν + 1)
can be written as [14]:

min
A

1

2
‖Y−W

(ν+1)
A (A)‖2F +γ ‖A‖2,1 + τ

2‖A−Â
(ν)‖2F (16)

where W
(ν+1)
A is a linear map that depends on B̂(ν) and Ĉ(ν)

and τ is positive.
Analogously, strictly convex subproblems can be derived

for B and C. AGL solves these subproblems alternatively,
through the updates of Â(ν), B̂(ν) and Ĉ(ν), in this order, at
each iteration ν. When all subsets are updated, one iteration
of the algorithm is completed. Iterations are repeated until
convergence.

V. LÖWNER-CONSTRAINED ALTERNATING GROUP LASSO

In order to ensure the Löwner structure of the matrix factors
at the end of iterations, this section explains how Löwner
constraints can be imposed in CAGL, and then details the
linear projection that can be implemented in SLRA algorithms.

A. Imposing Löwner Constraints in Lr

We propose a formulation to deal with Löwner constraints
in CAGL, called here Löwner-constrained AGL (LCAGL). We
highlight that LCAGL follows the same principle of CAGL,
which is to ensure a specified structure over the block matrices.
However, instead of using a projection on the Hankel subspace
as described in [14], LCAGL uses an optimal projection on
the Löwner subspace that will be explicitly given later.

Löwner constraints can be enforced by solving a SLRA
problem for each block matrix at each iteration of LCAGL. For
this purpose, Cadzow’s Algorithm (CA) [21] is used at the end
of each iteration. CA performs alternating projections, where
the one that leads to the set of matrices with rank up to Lr
is performed by the truncated singular value decomposition
(SVD), whereas the one that leads to the Löwner subspace
is formulated below. It is important to highlight that, in
practice, the rank used in the SVD truncation step is computed
by counting the current number of simultaneously nonzero
columns of Ar and Br. The algorithm is summarized in
Table I.
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TABLE I: Löwner-Constrained Alternating Group Lasso
(LCAGL) algorithm.

Inputs: Data tensor Y , penalty parameter γ, proximal term weight τ ,
sampling period ∆, initialization (Â(0), B̂(0), Ĉ(0))

Outputs: Approximate BTD factors (Â, B̂, Ĉ)

1: ν ← 1
2: while stopping criteria not met do
3: Solve (16) to obtain Â(ν)

4: Solve (16) for B to obtain B̂(ν)

5: for r = 1, . . . , R do
6: (Â

(ν)
r , B̂

(ν)
r )← Cadzow(Â

(ν)
r (B̂

(ν)
r )T ,∆)

7: Solve (16) for C to obtain Ĉ(ν)

8: ν ← ν + 1

B. Orthogonal Projection onto the Löwner Subspace

In this work, we consider for simplicity signals with an even
number of samples, i.e., I = J = N/2, and the interleaved
partitioning method. In this way, we can rewrite the matrix
L(k) ∈ RN

2 ×
N
2 of Equation (3) as:

L(k) =


yk,t1

−yk,t2

t1−t2 . . .
yk,t1

−yk,tN

t1−tN
...

. . .
...

yk,tN−1
−yk,t2

tN−1−t2 . . .
yk,tN−1

−yk,tN

tN−1−tN

 . (17)

Considering that the signals are regularly sampled with a
sampling period ∆ = tn − tn−1, for n = 2, ..., N , (17)
becomes:

L(k) =


yk,t1

−yk,t2

−∆ . . .
yk,t1

−yk,tN

−(N−1)∆

...
. . .

...
yk,tN−1

−yk,t2

(N−3)∆ . . .
yk,tN−1

−yk,tN

−∆

 (18)

where each element is given by:

`
(k)
i,j =

yk,t2i−1 − yk,t2j
[2(i− j)− 1]∆

. (19)

Note that this formulation can be easily adapted to sig-
nals that are irregularly sampled. For this other scenario,
the denominator [2(i − j) − 1]∆ in (19) is replaced by
∆ij = t2i−1 − t2j . Since in practice the signals are regularly
sampled, the formulation of (19) will be kept in the sequel.

For a given matrix E(k) ∈ RI×J , its projection onto the
Löwner subspace can be obtained by minimizing the LS cost
function given by:

F(a,b) =

N/2∑
i=1

N/2∑
j=1

[
e

(k)
i,j −

ai − bj
∆[2(i− j)− 1]

]2

. (20)

where ai = ŷk,t2i−1
and bj = ŷk,t2j , for i, j = 1, ..., N/2,

with ŷk. being the estimate of yk..
Taking the derivative of F with respect to an arbitrary ap

we have:

N/2∑
j=1

2

[
e

(k)
p,j −

ap − bj
∆[2(p− j)− 1]

] [
−1

∆[2(p− j)− 1]

]
= 0 .

(21)

Then,

N/2∑
j=1

[
e

(k)
p,j +

bj
∆[2(p− j)− 1]

] [
−1

∆[2(p− j)− 1]

]
=

N/2∑
j=1

[
−ap

(∆[2(p− j)− 1])2

]
. (22)

In this way, the solution for ap, for p = 1, ..., N/2, can be
obtained as:

âp =

∑N/2
j=1

[
e

(k)
p,j +

bj
∆[2(p−j)−1]

] [
1

∆[2(p−j)−1]

]
∑N/2
j=1

[
1

(∆[2(p−j)−1])2

] . (23)

Similarly, for bp we have:

b̂p =

∑N/2
i=1

[
e

(k)
i,p −

ai
∆[2(i−p)−1]

] [
1

∆[2(i−p)−1]

]
−
∑N/2
i=1

[
1

(∆[2(i−p)−1])2

] . (24)

The necessary conditions for optimality can be expressed
as: {

âp − α−1
p

∑N/2
j=1 up,jbj = zp

b̂p + β−1
p

∑N/2
i=1 vi,pai = wp

(25)

for p = 1, ..., N/2, where:

αp =

N/2∑
j=1

up,j , for up,j = 1/{∆[2(p− j)− 1]}2 (26)

βp =

N/2∑
i=1

vi,p , for vi,p = −1/{∆[2(i− p)− 1]}2 (27)

and

zp =

{N/2∑
j=1

yp,j
∆[2(p− j)− 1]

}
α−1
p (28)

wp =

{N/2∑
i=1

yi,p
∆[2(i− p)− 1]

}
β−1
p . (29)

Hence, a system of linear equations can be solved in order
to estimate â = [â1, ..., âN/2] and b̂ = [b̂1, ..., b̂N/2]:[

IN/2 −Diag(α−1)U
Diag(β−1)VT IN/2

] [
â
b̂

]
=

[
z
w

]
(30)

where matrices U and V, and vectors α, β, z and w are
constructed from up,j , vi,p, αp, βp, zp and wp in (29), (30),
(31), (32) and (33), respectively. Note that this linear system
has an infinite number of solutions because the block matrix
of (30) has rank N − 1, as a consequence of the vertical
shift invariance of the Löwner structure. Indeed, the Löwner
construction is invariant to a vertical shift of the signal because
the Löwner matrix built from signal yk. is equal to the one
built from y′k. = yk. + c, for any constant c ∈ R. To fix this
ambiguity, without loss of generality, we can assume that the
first sample is null, i.e., a1 = 0, so that the linear system has
now N −1 linearly independent equations in N −1 variables,
thus providing now a unique solution. A matrix with Löwner
structure can then be reconstructed from estimated vectors â
and b̂.
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TABLE II: Parameters of the synthetic AA signal models.

Model P x ∆x fx fs f0 ∆f ff
1 5 150 50 0.08 1000 6 0.2 0.10
2 3 60 18 0.50 1000 8 0.3 0.23

VI. NUMERICAL EVALUATION ON SYNTHETIC DATA

This section presents some numerical results on synthetic
data, which are convenient for assessing the performance of
LCAGL since in these scenarios the ground-truth is known.
This assessment is carried out using two different synthetic
signals that simulate persistent AF recordings. Both signals
contain 12 leads, generated by a random mixing matrix and 3
sources: AA, VA, and noise.

To simulate the VA signals, two synthetic QRS complexes
modeled by rational functions were generated according to the
model proposed in [25]:

SV A[n] = R(e−iΘrma [ein]) (31)

where Θ is the coefficient parameter, responsible for the
symmetric/asymmetric behavior of the model, R(·) is the real
part of its complex argument, and rma [·] is a basic normalized
rational function given by:

rma [z] :=

[
1− |a|
1− āz

]m
(32)

where ā is the reciprocal of the pole a and m is a multi-
plicity parameter. Two synthetic QRS complex models with
parameters a = 0.8, m = 2, and Θ = {π/2, 0} are generated.

To simulate the AA signal during AF, the model proposed
in [26] that mimics the f waves is used. This model with P
harmonics is given by:

SAA[n] = −
∑P
p=1 xp[n] sin (p θ[n]) (33)

with modulated amplitude and phase respectively given by:

xp[n] = 2
pπ

[
x+ ∆x sin

(
2π fxfs n

)]
(34)

and
θ[n] = 2π f0fsn+

(
∆f
ff

)
sin
(

2π
ff
fs
n
)

(35)

where x is the sawtooth amplitude, ∆x is the modulation peak
amplitude, fx is the amplitude modulation frequency, fs is the
sampling frequency, f0 is the frequency value upon which θ[n]
depends linearly, ∆f is the maximum frequency deviation and
ff is the modulation frequency. Two synthetic f-wave models
were generated with the parameters presented in Table II

To simulate the interference typically present in an ECG,
additive white Gaussian noise (AWGN) with zero-mean and
variance σ2, respectively, is introduced. Finally, the mixing
matrix is also generated according to a Gaussian distribution,
with scaling factors chosen to obtain an average power ratio
between the components consistent with clinical ECGs.

One generated ECG signal mimics the challenging scenario
where the AA is weak, while the other synthetic signal mimics
the scenario where the R-R interval is short. Both synthetic
AF ECG signals are illustrated in Figure 3.

The normalized mean square error (NMSE) between the
estimated and original VA source signals is computed to

0 100 200 300 400 500 600 700 800 900
-0.5

0

0.5

0 100 200 300 400 500 600 700 800 900

n

-0.2

0.2

0.6

Y
(n

)

Fig. 3: Synthetic AF ECG models simulating the challenging
cases where the AA signal is weak (Model 1, top) and the
R-R intervals are short (Model 2, bottom). Solid blue, dashed
red and dash-dotted yellow lines represent VA, AA and noise,
respectively.

evaluate estimation quality. As LCAGL is relatively robust to
initialization, no Monte Carlo runs were performed and the
value of γ between 8× 10−4 and 10−2 that provided the best
solution was chosen.

Figure 4 shows the VA estimates (blue dashed line) and the
respectives ground-truths (gray solid line) for the two synthetic
signals along with the computed NMSE described previously
and the rank of the block. The low NMSE shows that a
successful source extraction is achieved while the Löwner
structure of the block is guaranteed. Also, one can see that
the rank of the block, rankB, increases with the number of
QRS complexes in the segment, as expected, since the signal
has more transient components, needing more poles to be well
modeled.

VII. EXPERIMENTAL RESULTS IN REAL AF ECGS

In order to validate the proposed tensor approach, exper-
imental results using real AF ECG recordings, comparing
LCAGL with the Löwner-BTD computed using the NLS
method, and with CAGL imposing Hankel constraints, are
reported and discussed in this section. First, the indices used
to measure AA quality and the observed database are summa-
rized. Then, the experimental results from the two challenging
scenarios of this arrhythmia, which were previously described
in Section I, are shown and discussed.

A. Signal Quality Measurement in AF Episodes

Measuring estimation quality (or the AA content) of real
signals is a difficult task. Since in practice there is no ground
truth for comparison, one needs to take advantage of some
features which are typically present in AA during AF episodes
and use them as surrogate performance criteria. For example,
in the frequency domain, the AA during AF has a peak
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Fig. 4: Synthetic AF ECG models. Original and estimated VA
signals in blue dashed and gray solid lines, respectively, along
with the estimation NMSE (dB) and the rank of the associated
Löwner matrix factor, rankB.

between 3 and 9 Hz. The position of this peak is called
dominant frequency (DF). In this section, two parameters used
to measure AA estimation quality are presented. The first
one, used to measure AA extraction quality, is the spectral
concentration (SC), defined as the relative amount of energy
around the DF. The SC is computed as in [23]:

SC =

∑1.17fp
fi=0.82fp

PS(fi)∑Fs/2
fi=0 PS(fi)

(36)

where fp is the value of the DF, Fs is the sampling frequency,
fi is the discrete frequency and PS is the power spectrum of
the source signal computed using Welch’s method, as in [23].

The second parameter, that also provides a quality measure-
ment of AA extraction, is the power contribution to lead V1,
denoted P (r), given by [9]:

P (r) =
1

N
||mV 1,rsr.||2 (37)

in mV2, where mV 1,r is the contribution of the rth source to
lead V1 and sr. is the rth source in time domain. The P (r)
of an AA source is expected to be relatively strong (> 10−4

mV2), since lead V1 is the one that typically best reflects AA
in AF ECGs, as this lead strongly correlates with the AA from
the right atrium and moderately correlates with that from the
left atrium [24].

B. AF Database and Experimental Setup

Real ECG data from 20 patients suffering from persistent
AF are used in this study. All the recordings belong to a
database provided by the Cardiology Department of Princess
Grace Hospital Center, Monaco. The recordings are acquired

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (s)

Fig. 5: Real AF ECG records. Top plots: an example of a
single heartbeat segment of an AF ECG recording with a weak
AA signal (solid green) and its respective AA signal estimate
(dashed red) by the Hankel-BTD method CAGL. Bottom plots:
an example of an AF ECG recording used in these experiments
with 3 QRS complexes (solid blue) and its respective AA
signal estimate (dashed orange), also by Hankel-BTD CAGL.
The segments are shown on lead V1.

at a 977 Hz sampling rate and are preprocessed by a zero-
phase forward-backward type-II Chebyshev bandpass filter
with cutoff frequencies of 0.5 and 40 Hz, in order to suppress
high-frequency noise and baseline wandering.

Out of the 20 different segments of ECG recordings, 10
segments have a disorganized and/or weak AA, and the other
10 have very short R-R intervals. Because in a standard 12-
lead ECG only 8 leads contain linearly independent signals,
the other ones being combinations thereof, we process only
these independent measurements (I, II, V1–V6) in order to
reduce computing cost while still exploiting all available
spatial diversity. The two types of segments used in these
experiments are illustrated on lead V1 in Figure 5 (solid lines):
short R-R intervals (bottom line) and disorganized/weak AA
(top line).

The 10 segments with disorganized and/or weak AA, from
patients P1 to P10 are composed of one heartbeat, i.e., the QRS
complex followed by the T wave and the visible f waves, and
have between 0.8 and 1.7 seconds. The other 10 segments with
short R-R intervals from patients P11 to P20 have 1.5 seconds
of duration with at least 2 QRS complexes. All the 20 segments
are downsampled by a factor of 10, since this significantly
reduces the computational complexity without any noticeable
loss of quality, as the signals’ energy is concentrated in lower
frequencies and no spectral aliasing is generated [14].

The NLS method used for comparison in the experiments
is available in Tensorlab MATLAB Toolbox and is set up as
in [16]. As this method is often very sensitive to initialization,
10 Monte Carlo runs are performed for each segment and the
best one is chosen. For CAGL and LCAGL, no Monte Carlo
runs are needed and the value of γ between 8×10−4 and 10−2
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VA

AA

5 10 15 20 25 30

Frequency (Hz)

SC = 58.73 % | DF = 6.67 Hz

Fig. 6: Real AF ECG records. Left: Original recording, VA
and AA estimates on lead V1 by LCAGL of Patient P2 in the
time domain. The AA signal is vertically shifted for clarity.
Right: Power spectrum of AA estimate.

that yields the best solution is chosen. For NLS, we try several
combinations of R = {2, 3} and Lr = L for r = 1, 2, ..., R,
with L taking values in the set {3, 4, 5, 6}, and then choose
the combination that yields the best solution. For LCAGL,
inital values of R = 3 and Lr = 10 where chosen, based on
previous experiments.

C. Segments With Disorganized and/or Weak AA
In Figure 6, we can see the observed recording, the esti-

mated VA and AA of the segment of Patient P2 processed
by LCAGL. The segments are shown now on lead V1 for
a better clarity of the estimated AA, in the time domain on
the left and in the frequency domain on the right, with a
DF equal to 6.67 Hz, typical of AA. It can be seen that the
SC provided by LCAGL is 58.73% and P (r) value equal to
2.02×10−4 mV2, while the ones provided using the Löwner-
BTD computed by the NLS method, choosing the best match
(R,Lr), are 5.36% and 1.59 × 10−4 mV2, respectively, for
the same segment. It should be noted that the Hankel-BTD
computed by CAGL was not able to extract the AA from this
recording, nor from any other used recording characterized by
a disorganized and/or weak AA. Indeed, Hankel-BTD attempts
to model the AA present in the ECG, which is a difficult task
under these conditions. Due to the weak AA amplitude, its
estimate is basically a straight line as shown in Figure 5 (Top).

Expanding the previous result to the population of 10
patients with segments presenting this particular characteristic,
Figure 7 (Top) shows the SC values of the AA source esti-
mated by the Löwner-BTD computed by the NLS method and
LCAGL, for each patient. Regarding this AA quality index,
LCAGL outperforms the NLS method in all but patient P4,
where the SC of NLS is 1% higher than the one provided
by LCAGL. In addition, the NLS method was not able to
successfully extract the AA from patient P7, and CAGL could
not successfully extract the AA from any of the 10 observed
patients, as stated before. Also, the average SC over the 10
patients is 45.48% for LCAGL and 27.12% for the NLS
method.

1 2 3 4 5 6 7 8 9 10
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LCAGL (P1-P10)

11 12 13 14 15 16 17 18 19 20
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NLS (P11-P20)

LCAGL (P11-P20)

Fig. 7: Real AF ECG records. SC values (%) of the AA
source estimated by NLS and LCAGL for each patient of
the observed database. Top: patients P1-P10 with disorganized
and/or weak AA signals. Bottom: patients P11-P20 with short
R-R intervals.
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Fig. 8: Real AF ECG records. Power contribution to lead V1
in mV2 of the AA source estimated by NLS and LCAGL for
each patient of the studied database. Left: patients P1-P10 with
disorganized and/or weak AA signals. Right: patients P11-P20
with short R-R intervals.

Figure 8 shows how the P (r) values vary through the
population of patients for both Löwner-based methods. No
significant difference between the methods can be observed.
However, a significant difference is observed between the
two patient populations. The P (r) of the patients with a
disorganized and/or weak AA signal is lower than the ones
characterized by short R-R intervals and varies in a shorter
range. These factors are indicative of fine AF.

D. Segments With Short R-R Intervals

Figure 7 (bottom) shows the SC values of the AA source
estimated by the Löwner-BTDs computed by the NLS method
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Fig. 9: Real AF ECG records. Original recording, VA and AA
estimates on lead V1 by LCAGL of Patient P20 (short R-R
intervals). The AA signal is vertically shifted for clarity.

and LCAGL, for each patient whose segments are charac-
terized by short R-R intervals. In 6 out of the 10 patients
of this population, LCAGL provided an AA estimate with
significantly higher SC than NLS, while for the other 4 patients
the SCs of both methods are practically the same. More
precisely, for those 4 patients LCAGL still produces a slightly
higher SC value (around 1%). In addition, the mean SC over
these 10 patients is 45.72% for LCAGL and 39.25% for the
NLS method.

Figure 9 shows the VA and AA estimates on lead V1 of
the processed segment of patient 20. One can see that the
several QRS complexes are well estimated, resulting in a
clear AA signal when subtracted from the original ECG. The
SC provided by LCAGL is 52.48%, practically equal to the
52.45% provided using the NLS method, manually choosing
the best match (R,Lr) for the same segment. LCAGL provides
a slightly stronger P (r), than the NLS method, which yields
3.11× 10−3 mV2 for this segment.

Figure 10 shows the observed segment of Patient P18 on
lead V1 and compares AA source estimations by the tensor-
based methods. The AA estimate by CAGL (blue line) is
deformed, probably due to the presence of 2 QRS complexes
and the shape of the AA that may not be well approximated
by an all-pole model, hampering the AA extraction. This
loss of physiological shape also occurs in Figure 5 (bottom).
Although the AA source estimated by NLS is better than the
one produced by imposing the Hankel structure, it contains
some ventricular residuals, due to an inaccurate VA source
estimation. Finally, it can be seen that for this segment,
LCAGL is the method that provides the best VA cancellation
from the original recording, yielding the best AA estimate
(green line).

We note that, for all but patients P8 and P17, both Löwner-
based methods (NLS and LCAGL) provide the same DF for
the AA source estimate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (s)

Ventricular residuals

AA shape deformed

CAGL

NLS

LCAGL

Lead V1

Fig. 10: Real AF ECG records. Estimated atrial sources
contribution to lead V1 in a segment of short R-R intervals of
Patient P18 by CAGL and the Löwner-BTDs computed by the
NLS method and LCAGL. AA signal estimates are vertically
shifted for clarity.

Before concluding this experimental assessment, it is im-
portant to highlight that classical techiques that estimate
the VA and subtract it from the ECG to retrieve the AA,
such as average beat subtraction and adaptive singular value
cancellation [27] will certainly fail in theses short recordings,
as they need sufficiently long ECGs to perform an accurate
VA estimation.

VIII. DISCUSSION

Extracting the AA from AF ECGs is a particularly chal-
lenging task when the AA presents a very low amplitude
and short R-R intervals appear often along the recording, as
typically occurs in persistent forms of AF. In these cases,
methods that focus on f-waves estimation do not provide
a clean AA extraction or even fail. The proposed LCAGL
method overcomes such limitations by taking into account that
QRS complexes can be well modeled by rational functions.
Estimating the VA can be simpler in such scenarios as the QRS
morphology is not significantly changed during AF episodes
as compared to NSR.

When compared to other tensor-based methods, LCAGL
is more robust to the initialization of model parameters, as
observed in the experiments on real and synthetic data. Also,
the method guarantees the Löwner structure of BTD matrix
factors. As compared to classical techniques for AA extraction
based on QRS cancellation, LCAGL can operate successfully
in very short ECG records, about one heartbeat long, whereas
competing techniques require recordings typically composed
of tens of seconds to estimate the QRS template well. This
interesting advantage is a direct consequence of the deter-
ministic signal model assumed by the BTD tensor approach,
and renders LCAGL very attractive for real-time AF analysis.
Another advantage lies in the fact that, after source separation,
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no additional processing is needed to automatically identify the
AA source of interest, since the AA contribution results from
the subtraction of the estimated VA from the original ECG.
In consequence, potential errors resulting from AA source
misidentification are avoided.

Limitations of the present work include the relative short
sample size (20 patients) of the persistent AF population used
in the experimental assessment, from which statistically solid
conclusions are difficult to draw. The instability of LCAGL
in estimating the T-wave should also be mentioned. Indeed,
Fig. 6 shows an example where the T-wave is also captured
with the QRS complex, whereas in Fig. 9 the T-waves are
missing in the VA signal estimated by the same method. A
possible explanation is that it is quite hard to distinguish the T-
wave from the AA signal in segments with short R-R intervals,
as one can see in Fig. 9. It should be remarked, however, that
T-waves pose difficulties to most AA extraction methods in
the literature.

IX. CONCLUSION

Persistent AF is an advanced stage of this arrhythmia where
the ECG typically presents a fast heart rate, resulting in short
R-R intervals and an AA signal that is difficult to identify,
making the AA extraction a challenging task. The present
work has put forward and investigated a tensor-based approach
to model the VA and separate it from the AA in persistent
AF ECGs, showing a number of benefits in these challenging
scenarios. This approach consists in explicitly modeling the
VA with rational functions and mapping them into Löwner
matrices in order to built a BTD tensor model. The factors of
this third-order tensor model are computed using the LCAGL
algorithm introduced in this work. The Löwner structure of
the matrices that compose the tensor is guaranteed by a linear
projection onto the Löwner subspace derived here.

After an evaluation on synthetic signals, the Löwner-BTD
computed by LCAGL was applied to a population of 20
patients suffering from persistent AF, whose segments are
characterized by short R-R intervals and a disorganized and/or
weak AA signal contribution. Experimental results with real
AF ECGs in very short observation windows (around 1–1.5
seconds) showed LCAGL’s better AA extraction performance
than two other tensor-based methods in this challenging clini-
cal scenario, while offering the possibility of beat-to-beat on-
line processing.

More robust tensor-based techniques should be studied in
future works, in order to derive methods for the computation
of an approximate BTD model that requires less parameter
tuning and is able to better capture the T-wave when hard
to discern from the f-waves. Also, experiments in a larger
population of AF patients are envisaged in order to confirm
the clinical relevance of these results.
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