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RÉSUMÉ :
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ABSTRACT:
The degree of organization in the atrial activity (AA) during atrial fibrillation (AF) has been observed to be related to its

chronification and then potentially to better lead its treatment. Motivated by this potential relevance in clinical making decision,
a number of previous studies have attempted to distinguish between organized and disorganized states of AF by analyzingatrial
electrograms. More recent works have attempted a noninvasive evaluation of AF organization through ECG recordings, demon-
strating the possibility of visually evaluating differentactivation patterns in AF patients, similar to those observed invasively, but
exploiting body surface potential maps (BSPM) recordings.This work puts forward a novel automated approach to noninvasively
evaluate the degree of spatio-temporal organization in theAA during AF. A quantitative evaluation of AA organization is carried
out by means of PCA by assessing the reflection of the spatial complexity and temporal stationarity of the wavefront patterns
propagating inside the atria on the surface ECG. Complexityand stationarity are investigated through newly-proposedparameters
evaluating the structure of the mixing matrices derived by the PCA of the different AA segments across the BSPM recording.
The discriminative power of the parameters in distinguishing among different types of AF is also analyzed. The results suggest
that automated analysis and classification of AF organization in surface recordings is indeed possible and strongly support the
appropriateness of signal processing approaches exploiting spatial diversity in AF analysis.
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Noninvasive Assessment of the Complexity and

Stationarity of the Atrial Wavefront Patterns During

Atrial Fibrillation
Pietro Bonizzi∗, Olivier Meste, Vicente Zarzoso, Francisco Castells

Abstract

The degree of organization in the atrial activity (AA) during atrial fibrillation (AF) has been observed to be related to
its chronification and then potentially to better lead its treatment. Motivated by this potential relevance in clinical making
decision, a number of previous studies have attempted to distinguish between organized and disorganized states of AF by
analysing atrial electrograms. More recent works have attempted a noninvasive evaluation of AF organization through ECG
recordings, demonstrating the possibility of visually evaluating different activation patterns in AF patients, similar to those observed
invasively, but exploiting body surface potential maps (BSPM) recordings. This work puts forward a novel automated approach
to noninvasively evaluate the degree of spatio-temporal organization in the AA during AF. A quantitative evaluation of AA
organization is carried out by means of PCA by assessing the reflection of the spatial complexity and temporal stationarity of the
wavefront patterns propagating inside the atria on the surface ECG. Complexity and stationarity are investigated through newly-
proposed parameters evaluating the structure of the mixing matrices derived by the PCA of the different AA segments across the
BSPM recording. The discriminative power of the parameters in distinguishing among different types of AF is also analysed. The
results suggest that automated analysis and classification of AF organization in surface recordings is indeed possible and strongly
support the appropriateness of signal processing approaches exploiting spatial diversity in AF analysis.

Index Terms

Atrial fibrillation (AF), BSPM, PCA, spatial topographies.

I. INTRODUCTION

D
URING atrial fibrillation (AF) the atrial tissue is activated by multiple wavelets showing uncoordinated patterns, appearing

as an irregular heart rhythm disturbance with no detectable relationship between consecutive beats. Because of that, AF

has often been studied as a random phenomenon [1], [2]. Nonetheless, several studies have demonstrated the presence of

organization of atrial activation processes during AF, indicating that a certain degree of local organization exists during AF,

likely caused by deterministic mechanisms of activation [3], and inversely depending on the chronification of the pathology [4].

Moreover, several authors have observed that different types of AF patterns could be concurrently present at different locations

during experimental AF [5], [6]. Hence, from a pathophysiological point of view it can be inferred that AF is not a homogeneous

arrhythmia [7]. Different strategies for its treatment are selected in respect to the duration of its episodes [8], and their efficacy

can also be influenced by the degree of organization in the atrial activity (AA) [9].

Motivated by their potential relevance in clinical making decision, a number of previous studies have attempted to distinguish

between organized and disorganized states of AF by analysing atrial electrograms [10], [11]. Konings et al., in the attempt of

reconstructing and classifying the patterns of human right atrial activations during electrically induced AF, defined three types

of AF based on the degree of complexity of atrial activations. An increasing fractionation of the observed atrial activations was

associated with an increasing number of interacting wavefronts and then a higher complexity. Faes et al. ( [12]) used principal

component analysis (PCA) in order to quantify the number of dominant components in the atrial activations, as an estimate

of the AA complexity. These authors noticed that single-lead electrograms recorded at different sites and presenting different

AA organization were shown to be represented by a different number of principal components, with a reduced number of

components representing more organized AA [12].

On the other side, since surface electrocardiogram (ECG) has been demonstrated to be a valuable tool for studying AF [13],

more recent works [14] have attempted a noninvasive evaluation of AF organization through ECG recordings, demonstrating

the possibility of visually evaluating different activation patterns in AF patients, similar to those observed invasively by Konings

et al. [11], but exploiting body surface potential maps (BSPM) recordings [15]. BSPM is a technique previously applied to

the study of many cardiac diseases [16], [17], and having the advantage over the conventional ECG of a much higher spatial

resolution. By means of it, Guillem et al. observed interindividual differences of surface atrial fibrillatory activation patterns

characterized by an excellent short-term reproducibility [14].

In line with this study, this work puts forward a new automated method for noninvasively evaluating the degree of spatio-

temporal organization of the atrial activations during AF. By means of PCA, AA organization is evaluated quantitatively by

∗P. Bonizzi, V. Zarzoso and O. Meste are with the Laboratoire I3S, UNSA/CNRS, Sophia Antipolis, 06903 France e-mail: bonizzi@i3s.unice.fr.
F. Castells is with ITACA - Bioingenieria, Universitat Politecnica de Valencia, 46022 España.
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Fig. 1. (a) Arrangement of the electrodes and belt used for their attachment to the patient. Electrode positions are represented as open circles while V1 and
V1post are denoted by black and grey circles, respectively. Electrodes were placed around V1 and V1post as a uniform grid. (b) Definition of the different
cardiac waves and intervals of interest. At the top, example of normal sinus rhythm ECG recording (NSR), showing the different cardiac waves. At the bottom,
example of ECG recording during AF, showing a TQ interval (off:offset; on:onset).

assessing the spatial complexity and temporal stationarity of atrial activation patterns from the analysis of BSPM recordings.

PCA has been attested to be a valuable tool both for addressing diverse issues in ECG analysis [18], and for quantifying

AA organization complexity in invasive recordings [12]. Moreover, the spatial information derivable from the PCA of the

different ECG components in a multi-lead recordings has turned out to be useful as a first step in the extraction of the AA

from surface ECG [19], [20]. Hence, complexity and stationarity are quantified with novel parameters that assess the structure

of the mixing matrices derived by the PCA of the different AA segments in the BSPM recording. Furthermore, the ability

of these parameters to distinguish among different degrees of AF organization is explored, in order to achieve a noninvasive

classification of the AF. Results are then compared to those reported by Guillem et al. on the same dataset [14], who performed

a visual classification of AF making use of a noninvasive method based on wavefront propagation mapping, according to the

same criteria and terminology for classification as those of Konings et al. [11], although applied to surface recordings instead

of electrograms. The paper is outlined as follows: the method is presented in Section II, the results in Section III, and a

discussion of the method in terms of ability in describing the degree of AF organization and in performing AF classification

is found in Section IV.

II. MATERIALS AND METHODS

A. BSPM Data and Acquisition System

The same dataset composed of 14 patients as the one introduced in [14] was employed in this study. One BSPM signal was

recorded for each patient. All recordings presented persistent AF. The acquisition system employed in [14] consisted of a total

of 56 chest and back leads acquired simultaneously for each subject. Chest leads (n=40) were arranged as a grid around V1

with an interelectrode distance of 2.2 cm, while back leads (n=16) were arranged in a similar way around a lead opposite to

V1 (V1post), as shown in Fig. 1(a). Only the first 60s of each BSPM recording were analysed in this study.

Signals were acquired at a sampling frequency of 2,048 Hz, with a resolution of 1 µV and an anti-aliasing low-pass bandwidth

of DC-500 Hz.
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Fig. 2. Schematic example of AA recording generation on lead 18 only (lead V1). Each lead recording is split in consecutive and non-overlapping 10s
segments, and all TQ intervals inside a specific segment s are joint in order to get the AA recording Y

(s).

B. ECG Signal Preprocessing

Signals were processed by applying a third-order zerophase high-pass Chebyshev filter with a −3 dB cut off frequency

at 0.5 Hz to remove baseline wandering due to physiologically irrelevant low frequency signal interference (< 1 Hz), like

breathing influence [21], followed by a third-order zerophase low-pass Chebyshev filter with a −3 dB cut off frequency at

100 Hz to remove high frequency noise, like myoelectric artifacts. Finally, a zerophase notch filter at 50 Hz was used to

suppress power line interference.

All leads in all recordings were visually inspected. Leads presenting noticeable noise contributions, typically due to a

transient loss of contact in one electrode, were discarded. This preserved the following PCA from being impaired by the

abnormal statistical behaviour of these observations. Since the average of discarded leads was 1 per recording, and taking

into account the large number of leads at our disposal, we considered the number of remaining leads sufficient for subsequent

analysis, avoiding the interpolation of the discarded leads.

C. Atrial Activity Recordings

In this study only the TQ segments in the BSPM recording were analysed. For this purpose, the R wave peak, the Q

wave onset, and the T wave offset were detected (see Fig. 1(b) for the definition of the different cardiac waves). Each BSPM

lead recording was split in 6 consecutive 10s-length intervals, and an AA signal was obtained for each interval concatenating

only the TQ segments inside it. In this way, for each 56−lead BSPM recording we constructed 6 consecutive 56−lead AA

recordings.

Each lead l in the sth AA recording (with s = 1, . . . , 6) is represented by a row vector:

y
(s)
l = [y

(s)
l (1), . . . , y

(s)
l (N)] (1)

where N is the number of samples inside the interval. Then, the entire ensemble of leads is compactly represented by the

n × N matrix:

Y(s) =









y
(s)
1
...

y
(s)
56









A schematic example of this procedure is illustrated in Fig. 2 for the sake of clarity, for lead l = 18 only, corresponding to

V1.

D. Principal Component Analysis

ECG is a signal with a high spatial redundancy [18]. One manner to analyse the complex information contained in the

ECG is to transform the original set of signals in a set of components by minimizing the redundancy among them. This can

be achieved by PCA. Indeed, spatial uncorrelation provided by PCA involves a linear transformation of the mean corrected

observed signals Y ∈ Rn, which produces a set of mutually uncorrelated waveforms with unit variance X ∈ Rm with (m ≤ n).

The PCA of Y yields an estimate of the following noiseless model:

Y = MX ⇒ X =
[

MTM
]

−1
MTY = M♯Y (2)

where X is an estimate of the true vector of the unknown components, M is the mixing matrix, and symbol ♯ stands for the

pseudo-inverse operator. Even if the model in (2) is supposed to be noiseless, this model is usually employed in the presence
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of noise as well. In that case, the number of principal components (PCs) generally matches the number of measured signals,

and the last PCs are associated with noise. The ith column of M represents the source direction or spatial topography that

links the ith component of X with the observed signals Y. The spatial topography describes the relative contribution of the

uncorrelated components at each electrode. PCA reduces the dataset of the observed signals to few representative components.

The mixing matrix M can be obtained, e.g., from the singular value decomposition of the observation matrix Y = UΣVT,

where M = UΣ
√

N . In addition, each PC is associated with a singular value σi, which indicates how representative is the

ith PC in the global data ensemble. The PCs are usually arranged so that the singular value sequence appears in a decreasing

order. This sequence reflects some information regarding interlead variability. In fact, a fast fall-down is associated to a low

spatial variability, while a slow fall-down indicates a large spatial variability. The ability of PCA to concentrate the original

information in only k components (number of significant components, (k < m)) can be assessed by the cumulative normalized

variance vk, an index that reflects how well the subset of the first k principal components approximates the ensemble of original

observations in energy terms:

vk =

∑k
i=1 σ2

i
∑m

i=1 σ2
i

(3)

E. Assessment of Spatio-Temporal Organization of the AA

The degree of spatio-temporal organization of the AA during AF is noninvasively evaluated as the spatial complexity and

temporal stationarity of the wavefront pattern propagating inside the atria, supposed to be reflected on the surface ECG. These

two aspects are investigated through the structure of the mixing matrices derived by the PCA of the different AA segments in

the BSPM recording, introduced in Section II-C. Complexity will be analysed in terms of the number of components required

for explaining 95% of the variance of the underlying AA, while stationarity in terms of the repetitiveness of the mixing matrix

along the BSPM recording, as subsequently described in Sections II-E1 and II-E2, respectively.

1) AA Spatial Complexity: A more organized AA is supposed to be reflected in the structure of the PCA mixing matrix

in terms of a lower number of significant components needed to describe its variance. To this end, the average number of

significant components k required to explain 95% of the variance (k0.95) is considered a first indication of the AF organization.

Then, for a given patient, the PCA of the sth segment yields an estimate of the noiseless BSS model 2:

Y(s) = M(s)X(s) (4)

and the average number k0.95 is derived over all PCA mixing matrices M(s). The underlying idea is that when the eigenvalues

associated to the first components are much larger than those associated to other components, the ensemble exhibits a low

morphological variability, whereas a slow fall-down of the principal components values indicates a large variability, and so a

higher complexity of the underlying AA.

2) AA Temporal Stationarity: To increase the discriminative power of the analysis, the data in the sth segment are reprojected

on the spatial topographies associated with the k0.95 most significant principal components of the initial segment, stored in the

first k columns of matrix M(1). The projection can then be expressed as:

Ŷ(s) = M
(1)
k

[

(M
(1)
k )TM

(1)
k

]

−1

(M
(1)
k )TY(s)

= M
(1)
k (M

(1)
k )♯Y(s) (5)

where T stands for the transpose operator. From this relationship, the normalized error between the data present in the sth

segment and their reconstruction from the k0.95 most significant topographies of the initial segment is computed. This error

measures the temporal stationarity or repetitiveness of the AA observed in the BSPM recording, as the ability of M(1) derived

for the initial segment Y(1) to retrieve the AA components of subsequent segments. It is assumed as inversely dependent on

the AF organization, and then directly on its complexity. This model looks similar to the one proposed by Rieta et al. in [22],

used to corroborate that an AF recording satisfies the independent component analysis model (in terms of stationarity of the

projection coefficients). Differently from this model, mixing matrix repetitiveness is herein analysed in terms of similarities

between the original observations and the reconstructed ones. Indeed, the closer matrices M(s) and M(1) are, the closer the

reconstructed observations with the originals are. Hence, more organized states of AF are reflected on an increased repetitiveness

of the principal spatial topographies across the surface recording. An example of the procedure is illustrated in Fig. 3.

The reconstruction error is computed in terms of normalized mean squared error (NMSEk0.95
) on lead 18, corresponding

to V1 (this is the lead from the standard 12-lead ECG that usually exhibits atrial fibrillatory waves with larger amplitude).

Subscript index 18 is substituted by V1 in the following for clarity:

NMSE
(s)
k0.95

=

∑N
i=1(y

(s)
V 1(i) − ŷ

(s)
V 1(i)

2)
∑N

i=1(y
(s)
V 1(i)

2)
(6)

where y
(s)
V 1 denotes the reference signal, ŷ

(s)
V 1 an estimate of it, and N its length. High values indicate notable differences

between the original and reconstructed AA signals, while values close to zero are associated with very similar AA signals.
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Fig. 3. Example of the proposed procedure. AA recording on segment s (Y(s)) is projected on the spatial topographies associated with the most significant

principal component of the initial segment M
(1)
k

, giving the projection Ŷ
(s).

Additionally to the experiment previously describe, a further study is carried out considering a fixed number of topographies

for all patients, instead of k0.95. More specifically, in this study we consider k = 3, since the three most significant components

are supposed to contain most of the information of the ECG, at least in signals with low complexity. Indeed, some studies claim

that the ECG can be well explained using only three components, so that just with the first three eigenvectors and eigenvalues

the essential information of the ECG is contained. This property motivated, e.g., the definition of the T-wave residuum [23],

which accounts for the proportion of the data that lies out of the aforementioned three dimensional space where cardiac signals

have been usually represented, such as the vectorcardiogram (VCG). The idea behind the study proposed here is that patients

with more organized AA patterns will probably require a lower number of components to represent 95% of the variance in the

original data. Similarly, if a fixed number of components is selected, a better reconstruction is expected in the same patient

group. As a result, the reconstruction error is once more computed and defined as NMSEk=3. With this experiment, the effects

of the spatial complexity and temporal reproducibility of AA patterns are joined in a single parameter, and therefore, it is

expected to emphasize the differences between more organized and less organized AF groups.

In order to enhance the hypothesis that complexity held in the analysed signals is really something related to AA, two

additional analysis are carried out. Firstly, the influence of the noise on the complexity of the signal is investigated looking

at the correlations of both k0.95 and NMSEk=3, respectively, with the energy of the AA segments. Second, the correlation

between the difference NMSEk0.95
− NMSEk=3 and k0.95 is investigated in order to test the influence of the method on the

increase of the correlation between complexity and NMSE when fixing k = 3.

F. Noninvasive Classification of AF

The spatio-temporal analysis presented in Section II-E, can be seen as a new way for noninvasively assessing the degree of

spatio-temporal organization of the AA during AF. Consequently, it appears worthy to explore the ability of parameters k0.95

and NMSE to distinguish among different degrees of AF organization, in order to achieve a noninvasive classification of AF.

To this extent, a cluster analysis is performed on the whole dataset in order to analyse the discriminatory power of k0.95 and

NMSEk=3. A k-means algorithm for clustering is used, based on an iterative partitioning which minimized the sum, over all

clusters, of the within-cluster sums of point-to-cluster-centroid distances. The standard metric chosen is the squared euclidean

distance

d =

K
∑

j=1

N
∑

i=1

‖g(j)
i − cj‖2 (7)

where g
(j)
i is a data point of cluster j, cj is the cluster center, and d is an indicator of the distance of the N data points from

their respective cluster centers.

Results of the cluster analysis will be compared to those reported by Guillem et al. on the same dataset [14]. These authors

performed a visual classification of AF making use of a noninvasive method based on wavefront propagation mapping, according

to the same criteria and terminology for classification as those of Konings et al. [11], although applied to surface recordings

instead of electrograms. Hence, according to [14], 6 patients have been classified as AF type I (single wavefront propagating

across the body surface) and 8 as AF type II/III (no observable clear wavefront or multiple wavefronts that do not propagate

across the body surface observed simultaneously). Results of the classification on each patient are summarized in Table I.

G. Statistical Analysis

Mean values of parameters NMSEk0.95
and NMSEk=3 have been calculated for each patient averaging their values over

segments s = 2, . . . , 6. Mean values of parameter k0.95 have been calculated for each patient averaging its values over segments

s = 1, . . . , 6. Pearson’s coefficient r is calculated for each relation analysed in the study. Statistical significances have been

evaluated by means of Whelchs t-test.
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Fig. 4. Mean values of the parameters k0.95 and NMSEk0.95
for each patient, calculated as in Section II-G. Dashed line summarizes the linear interpolation.

Values of the correlation coefficient r and its significance p are also reported.
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Fig. 5. Mean values of the parameters k0.95 and NMSEk=3 for each patient, calculated as in Section II-G. Dashed line summarizes the linear interpolation.
Values of the correlation coefficient r and its significance p are also reported.

III. RESULTS

A. Spatio-Temporal Organization of the AA during AF

To quantify the degree of spatio-temporal organization of the AA during AF, the structure of the mixing matrix derived

by the PCA of the AA segments in the BSPM recording was analysed in terms of its complexity (k0.95) and repetitiveness

(NMSEk0.95
). Fig. 4 shows the averages of the two parameters calculated for each patient.

Correlation coefficient r = 0.53(> 0.5) underlines a positive correlation between NMSEk0.95
and k0.95, which is represen-

tative of the ensemble of the data (p < 0.05). This positive correlation points out the inverse correlation between stationarity

and complexity, introduced in Section II-E. Selecting k = 3 most significant topographies of the initial segment, as introduced

in Section II-E2, the average reconstruction errors (NMSEk=3) across the remaining segments between the data in the original

segments and their projections on the 3 dominant principal topographies of the initial segment increased particularly in patients

presenting higher complexity k0.95 (> 4), as shown in Fig. 5. The significant increase (p < 0.001) in the correlation of the

two parameters is underlined by the reciprocal increase in the correlation coefficient r = 0.78. AA signal reconstruction is

generally better for signals showing low complexity. For each patient, mean NMSE was calculated averaging over segments
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s = 2, . . . , 6), while mean k0.95 was calculated averaging over segments s = 1, . . . , 6). No significant correlation was found

between both k0.95 and NMSEk=3, respectively, with the energy of the segments. Again, no significant correlation was found

between the difference of NMSEk0.95
− NMSEk=3 and k0.95.

Fig. 6 shows the values of k0.95 in segments 1 to 6 for each analysed patient, while Fig. 7 shows the values of NMSEk=3

in segments 2 to 6 for each analysed patient. Disparities in the number of displayed points per patient are due to equal and

then superposed values (relative to k0.95), or very close values (relative to NMSEk=3).

B. Noninvasive Classification of AF

Cluster analysis was carried out on the mean values of parameters k0.95 (s = 1, . . . , 6) and NMSEk=3 (s = 2, . . . , 6) for

each patient. Fig. 8 shows the output of the cluster analysis. Two clusters were identified in the ensemble of data. Hence,

two groups characterized by different types of AF organization were identified, the first (•) describing more organized AF,

characterized by low complexity and high stationarity (or repetitiveness of the PCA mixing matrix), at fixed complexity k = 3,

across the BSPM recording (low NMSEs), while the second (×) characterized by higher complexity and lower stationarity

(higher NMSEs), at fixed complexity. Parameter NMSEk=3 appeared more discriminant than k0.95 in distinguishing between

the two clusters (points not superposed compared to this parameter). In order to test it, a second cluster analysis was carried
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Fig. 8. Cluster analysis based on parameters k0.95 and NMSEk=3. Cluster 1 (•) associated to more organized AF (low complexity and high stationarity
across the BSPM recording, or low NMSEs), and Cluster 2 (×) associated to less organized AF (higher complexity and lower stationarity, higher NMSEs),
are shown. Misclassified patients are highlighted in the figure by their number.

TABLE I
PCA BASED AND WPM BASED CLASSIFICATION OF ALL AF ORGANIZATIONS

Patient ♯ PCA based WPM based

Patient 1 II/III II/III

Patient 2 I II/III

Patient 3 I I

Patient 4 I I

Patient 5 II/III II/III

Patient 6 I II/III

Patient 7 I I

Patient 8 II/III II/III

Patient 9 I II/III

Patient 10 I I

Patient 11 II/III II/III

Patient 12 I I

Patient 13 II/III II/III

Patient 14 II/III I

out exploiting NMSEk=3 only, which produced the same two cluster as the previous one.

In order to compare our results with those obtained by Guillem et al. on the same dataset [14], patients belonging to the first

cluster were identified as AF type I, while those belonging to the second cluster as AF type II/III, relatively to the Konings’

types of wavefront propagation patterns reflected on the surface ECG. Table I summarizes the results of the AF organization

classification of each patient given by both studies. Notice that 10 out of 14 patients have been classified in the same way by

both methods, 5 as AF type I, and 5 as AF type II/III (7̃1% of agreement), while 4 out of 14 have been differently classified.

Precisely, patient 14 has now been classified as AF type II/III instead of type I, while patients 2,6, and 9 have now been

classified as AF type I instead of II/III. Then, the classification proposed in this study (PCA based) identified 8 patients as AF

type I and 6 as AF type II/III, while it was the opposite for the classification given by Guillem (Wavefront Propagation Maps

based, or WPM based), as reported in Section II-F.

A Whelch’s t-test was performed on the variances of parameters k0.95 and NMSEk=3 over all the AA segment recordings

for each patient, grouped as the two clusters. By means of this analysis, the differences in the variances of the two parameter

values, previously observed in Fig. 8, and introduced in Section III-A, were investigated. A significant difference was observed

for parameter NMSEk=3 (p < 0.01) between the two clusters, as portrayed in Fig. 9. This underlines the significant difference

in terms of reconstruction error, and then stationarity, between different types of AF, and the suitability of this parameter in

discriminating between them. Table II summarizes the statistics of the two parameters (mean±SD) for each obtained cluster.
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TABLE II
MEAN PARAMETER VALUES FOR THE AA SPATIO-TEMPORAL ANALYSIS, WITH k = 3

Parameter AF I AF III p-value

k0.95 3.81±1.71 8.64±3.49 p < 0.01
NMSEk=3 4.22±3.35 21.73±5.46 p < 10−4
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Fig. 9. Variances of parameter NMSEk=3 over all segments in the same patient, grouped according to cluster analysis in order to visually overemphasize
their significant difference between the two clusters. Misclassified patients are circled in the figure.

Rounded numbers of k0.95 are 4 for the first cluster (squares, range 1 to 11) and 9 for the second cluster (triangles, range 3

to 17).

IV. DISCUSSION

Although the degree of organization in the AA during AF has been observed to be related to its chronification and then

potentially to better lead its treatment, there is not nowadays a standard noninvasive procedure to assess AF organization, despite

its potential relevance in clinical decision making. This work put forward a novel automated approach to noninvasively evaluate

the degree of spatio-temporal organization in the AA during AF. A quantitative evaluation of AA organization was carried

out by means of PCA by assessing the spatial complexity and temporal stationarity of the wavefront patterns on the surface

ECG. Complexity and stationarity were investigated through novel parameters evaluating the structure of the mixing matrices

derived by the PCA of the different AA segments across the BSPM recording. Positive results encourage further research

efforts into noninvasive and quantitative AF analysis approaches exploiting spatial diversity. In this sense, the high positive

correlation observed for parameters k0.95 and NMSEk=3, evaluating the spatial complexity and temporal repetitiveness of the

mixing matrix, respectively, makes them suitable to distinguish among different AA organizations. Moreover, their robustness,

suggested by the independence of complexity on both the amount of noise in the signal and the procedure, as underlined in

Section III-A, makes them worthy of been exploited to distinguish between different types of AF. This is confirmed by the

significant difference in the variances of NMSEk=3 observed for the two obtained clusters, underlining the higher stationarity

of more organized AF, as shown in Fig. 9.

A. Comparison with Invasive Studies

Results presented in Section III-B on the number of significant components derived for each cluster are consistent with

those presented by Faes et al. [12]. In that study, using PCA, single-lead electrograms of more organized AF were shown to

be represented by a reduced number of principal components. Interestingly, both studies obtained the same results in terms of

number of significant components necessary to describe 95% of the variance in the AA (4 for AF type I, and 9 for AF type

II/III). Nonetheless, since analysing single-lead electrograms, Faes et al. presented a local measure of the temporal organization

of AF. On the contrary, this study introduced a noninvasive global measure of the spatio-temporal organization of the whole

AA inside the atria.
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B. Comparison with Noninvasive Studies

The possibility of analysing the global activity of the atria through noninvasive recordings during AF has been widely

observed [24]. The noninvasive assessment of human AF organization through Holter ECG recordings was previously described

by Alcaraz et al., both in the attempt of predicting the spontaneous termination of paroxysmal AF [25], and of describing

the paroxysmal atrial fibrillation time variation [26]. However, since the use of a limited number of leads could prevent from

exploiting the spatial diversity of multi-lead ECGs and might not be always representative of the voltages that can be recorded

from the whole body surface, additional information extracted from several sites is required, as inferred in [14]. In line with

this study, our observations have confirmed the possibility of identifying several activation patterns with different organization

degrees by exploiting the spatial diversity within BSPM recordings, despite the low signal-to-noise ratio of AF signals.

AF type classification of the same dataset performed by Guillem et al. and authors, respectively, showed high similarity

(10 out of 14 patient equally classified), strengthening the results of both methods, and pointing out the importance of the

high spatial diversity offered by BSPM recordings. Misclassified patients might be due to the different temporal resolutions

employed by the two methods. Indeed, in [14] each cycle was analyzed individually (160-ms for a typical atrial dominant

cycle length, but it varies for each patient), compared with 10-s employed in this study. Supposing that also AF type I might

sometimes present more complex activity, even if keeping its organized state on the whole, a high temporal resolution analysis

could by accident analyse short segments presenting this infrequent complexity, interpreting it as a more disorganized AF. This

could be prevented by carrying the analysis on longer segments, more able to extract the average state of complexity of the

underlying atrial activations.

However, this method is not suitable to estimate the pattern directions of the propagating atrial wavefronts, invasively

identified by Konings et al., and visually observed by Guillem et al. on surface BSPM recordings. Nonetheless, it appears

useful for quantifying the degree of AA organization during AF, providing information on the chronification of the arrhythmia,

and then to be useful for improving AF diagnosis and treatment, reducing risks related to invasive recordings, as well as health

care costs.

C. General Remarks and Limitations

Different studies based on invasive recordings have shown that the atrial electrical activity during AF presents a significant

spatial inhomogeneity, with coexistence of atrial areas characterized by different AA organization, which is more evident in

patients with paroxysmal AF [3], [5], [6], [12]. Particularly, in patients with chronic AF, a shortening of the AA intervals and a

greater prevalence of disorganized activity in all the atrial sites examined was observed. However, in patients with paroxysmal

AF, a significant dispersion of refractoriness was observed [6]. Direct correlation of our observations with these findings cannot

be inferred for the lack of simultaneous invasive recordings, so that the actual mechanisms of AF in each patient are unknown.

Moreover, the dataset is composed by only persistent AF recordings. Nonetheless, we might expect that the global perspective

on the underlying AA given by surface ECG recordings mainly reflects the behaviour of the atrial areas characterized by an

AF type similar to the predominant one observed on the body surface.

One limitation of this study is the absence of simultaneous electrograms in order to have an objective reference for a

Koning’s-like classification of the patients in different AF classes. A second limitation is that the method was applied only on

the TQ segments in the BSPM recording. This was done in order to avoid interferences on the estimation of the complexity

due to the presence of QRS complex residues in the remainder ECG, since a QRS-T cancellation or AA extracting method

able to produce a remainder ECG free from QRS residues still does not exist. Moreover, AA extracting methods containing a

first estimation based on PCA did not look consistent to authors with the analysis presented here, also based on PCA, since

the results of the latter could be in some ways biased by the former. Another limitation is that this study was conducted

in a consecutive but small series of patients. Nonetheless, significance of the obtained results makes them promising despite

the small dataset. Finally, despite of the undeniable usefulness of the high spatial resolution given by BSPM recordings, the

possibility to employ this analysis on standard 12-leads ECGs needs to be assessed in future works. The present method

suggests that automated analysis and classification of AF in surface recordings is indeed possible and positive results strongly

support the appropriateness of signal processing approaches exploiting spatial diversity in AF analysis.
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