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RÉSUMÉ :
La présente contribution porte sur le problème de la séparation aveugle de sources à travers l’analyse en composantes in-

dépendantes (ACI). Une combinaison linéaire des cumulantsmarginaux d’ordre quatre (kurtosis) de la sortie du séparateur est
un contraste valable pour l’ACI sous l’hypothèse de préblanchiment si les poids ont le même signe que les kurtosis des sources.
Si les poids sont égaux aux kurtosis des sources, nous prouvons que le contraste est un critère d’adaptation de cumulantsbasé
sur le principe de maximum de vraisemblance. Si les kurtosisdes sources sont différents et les poids aussi (même s’ils nesont
pas adaptés aux premiers), le contraste élimine l’ambiguité de permutation de l’ACI, car les sources estimées sont ordonnées à
la sortie du séparateur selon leur kurtosis dans le même ordre que les poids. Dans le cas de deux signaux, la variance asymp-
totique de l’estimateur de l’angle de Givens résultant est déterminée algébriquement. Le contraste peut être maximiséà faible
coût de calcul par un algorithme itératif de type Jacobi opérant sur des paires des signaux. Une étude expérimentale valide les
caractéristiques de la technique proposée et la compare à d’autres méthodes basées sur des contrastes.

MOTS CLÉS:
Séparation aveugle de sources, fonctions de contraste, analyse en composantes indépendantes, optimisation de Jacobi, kurto-

sis, analyse de performances

ABSTRACT:
The present contribution deals with the problem of blind source separation via independent component analysis (ICA). A

linear combination of the separator output fourth-order marginal cumulants (kurtoses) is a valid contrast function for ICA under
the prewhitening assumption if the weights have the same sign as the source kurtoses. If the weights equal the source kurtoses,
we prove that the contrast is a cumulant matching criterion based on the maximum likelihood principle. If the source kurtoses are
different and so are the linear combination weights (even ifmismatched from the former), the contrast eliminates the permutation
ambiguity typical to ICA, as the estimated sources are sorted at the separator output according to their kurtosis valuesin the same
order as the weights. In the two-signal case, the asymptoticvariance of the resulting Givens angle estimator is determined in
closed form. The contrast can be maximized by means of a cost-efficient Jacobi-type pairwise iteration. An experimentalstudy
validates the features of the proposed technique and compares it to related previous methods.

KEY WORDS :
Blind source separation, contrast functions, independentcomponent analysis, Jacobi optimization, kurtosis, performance

analysis
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Abstract

The present contribution deals with the problem of blind source separation via independent

component analysis (ICA). A linear combination of the separator output fourth-order marginal

cumulants (kurtoses) is a valid contrast function for ICA under the prewhitening assumption if the

weights have the same sign as the source kurtoses. If the weights equal the source kurtoses, we prove

that the contrast is a cumulant matching criterion based on the maximum likelihood principle. If the

source kurtoses are different and so are the linear combination weights (even if mismatched from the

former), the contrast eliminates the permutation ambiguity typical to ICA, as the estimated sources

are sorted at the separator output according to their kurtosis values in the same order as the weights.

In the two-signal case, the asymptotic variance of the resulting Givens angle estimator is determined

in closed form. The contrast can be maximized by means of a cost-efficient Jacobi-type pairwise

iteration. An experimental study validates the features of the proposed technique and compares it to

related previous methods.
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Blind source separation, contrast functions, independent component analysis, Jacobi optimization,

kurtosis, performance analysis.
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I. I NTRODUCTION

We consider the problem of blind source separation (BSS) where a set ofN possibly complex-

valued sourcess = [s1, s2, . . . , sN ]T ∈ CN are mixed and observed onN sensors. After spatially

prewhitening the data, the observation model takes the form:

z = Qs (1)

where Q is an unknown (N × N ) unitary matrix, and vectorz ∈ CN represents the whitened

observations. The goal is to recover the source realizations from the sole observation of the whitened

realizations. To this end, a separating matrixF is sought so that the separator output vectory = Fz

is equal to the source vectors up to admissible indeterminacies. The BSS problem has found a wide

range of applications in domains as diverse as telecommunications, geophysics and finance, to name

but a few, which helps explain the great interest in this topic witnessed over the last two decades.

Under the assumption of statistically independent sources, these can be estimated with the tool

of independent component analysis (ICA) [1]. ICA is typically performed by means of contrast

functions quantifying the statistical independence of the separator-output components. Most of these

contrasts are functions of cumulant-based approximations of information-theoretical measures such

as maximum likelihood (ML) and mutual information (MI) [1], [2]. As in the contrast maximization

(CoM2) method of [1], based on the sum of the separator-output squared kurtoses, conventional ICA

can at best obtain a source-vector estimate of the formy = ΛPs, whereΛ is an invertible diagonal

matrix andP is a permutation matrix. While the scale indeterminacy represented byΛ is immaterial

in most applications, the permutation ambiguity can lead to an increased computational complexity

in situations where only a source, or a small set of sources, is required. In sequential separation

schemes, failure to find the source(s) of interest among the first extracted components leads to a poor

signal estimation quality caused by error propagation through successive deflation stages.

To overcome these drawbacks, recent works have aimed at reducing the permutation ambiguity

of ICA. Reference [3] has proven that the prior knowledge of the source kurtosis signs can fix the

permutation ambiguity between sources with different kurtosis signs. As a result, it is possible to

directly extract the source of interest if it is the only one to have positive (or negative) kurtosis in the

mixture. A computationally efficient Jacobi-type signal-pair sweeping algorithm can be employed to

perform source separation or extraction based on this contrast [3].

The present contribution takes a step further in this line of research. A functional based on a

weighted linear combination of the separator-output kurtoses is put forward and proven to be a

contrast under certain assumptions on the weight coefficients relative to the source kurtosis values.

The contrast of [3] and the cumulant-based approximate ML principle of [2] appear as particular
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instances of the new criterion. In addition, the new contrast eliminates the permutation ambiguity if

the source kurtoses are distinct. As in [1], [3], the optimization of the new contrast function can be

performed by the cost-effective Jacobi-like iterative technique. Numerical experiments illustrate the

comparative performance of the proposed method.

II. PRELIMINARIES AND ASSUMPTIONS

In what follows, all random variables are assumed to have zero mean and unit variance; this

conventional standardization is enforced by the prewhitening process and preserved under unitary

transformations. The separator-output 4th-order marginal cumulant or kurtosis, defined asµi =

Cum{yi, yi, y
∗
i , y

∗
i }, is related to the whitened observation 4th-order cumulants,γmnpq = Cum{zm, zn, z∗p , z∗q},

through the multilinear relationship:

µi =
∑
mnpq

FimFinF
∗
ipF

∗
iqγmnpq (2)

whereFij = [F]ij and symbol∗ stands for complex conjugation. If we denoteG the global filter,

i.e., G = FQ with elements[G]ij = Gij , the separator-output cumulants can also be related to the

source kurtosesκn as:

µi =
N∑

n=1

|Gin|4κn. (3)

In the sequel, indicesn are assumed, without loss of generality, to be such thatκn is non decreasing:

κn+1 ≥ κn, ∀n.

First assumption (A1).Assume that the firstp sources are known to have negative kurtosis,κn <

0, 1 ≤ n < p, and the remaining (N − p) positive kurtosis,κn > 0, p < n ≤ N .

DenoteS the set of sources satisfying this assumption, andY the set of observations generated by

the orthogonal groupQ acting onS. The following result is proven in [3]:

Proposition 1: The optimization criterion defined as:

Ψε(y) =
N∑

i=1

εiµi (4)

whereεi = −1 for 1 ≤ i ≤ p, and εi = 1 for p < i ≤ N is a contrast function over the set of

observationsY = Q · S.

Second assumption (A2).Assume that the real numbers{αi}N
i=1 are related to the unknown source

kurtoses{κi}N
i=1 via an unknown but strictly increasing functionf(·) passing through the origin:

αi = f(κi).

In other words, we know not only how many positive and negative kurtoses there are (as in

assumption A1), but we also know how many are equal and which ones. For instance, ifα1 < α2 ≤

α3 < 0 ≤ α4, then it means thatκ1 < κ2 ≤ κ3 < 0 ≤ κ4. Note that becauseκi is non decreasing,
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so isαi. In practice, we often have enough information to know such an ordering, but not enough to

know the source kurtosis values with good accuracy. This lack of accuracy prevents us from resorting

to the ML criterion [2], and we are generally bound to ignore the knowledge of ordering and execute

a standard ICA algorithm [1]. The contrast proposed in the next section, while incorporating some

prior knowledge on the source kurtosis values, is rather robust to inaccuracies in their estimation.

This feature will be illustrated in Sec. V.

III. N EW CONTRAST FUNCTION

Proposition 2: Under assumption A2, the optimization criterion

Ψα(y) =
N∑

i=1

αiµi (5)

is a contrast function over the set of observationsY = Q · S.

See Appendix A for a proof. Now, it was shown in [2] that, for independent sources and prewhitened

observations, the 4th-order cumulant approximation to the ML function results in expression (5) with

αi = κi, 1 ≤ i ≤ N [cf. eqn. (3.9) therein]. This cumulant-based approximation, however, was never

shown to be a contrast. Proposition 2 not only proves that such a criterion is indeed a contrast, but

also extends its validity to other values of{αi}N
i=1 as long as they fulfil condition A2. Moreover, we

show next that this contrast makes it possible to recover the sources in an order specified beforehand

by these coefficients.

Proposition 3: If Ψα(y) = Ψα(s), theny = ΛPs, where permutationP is equal to the identity

matrix for every rowi (or columni) for which αi 6= αj , i 6= j, and the entries of diagonal matrixΛ

are of unit modulus.

This result is proven in Appendix B. Proposition 1 (Proposition 2 of [3]) may now be seen as

a particular case of Proposition 3, where coefficientsαi are set to±1 according to the source

kurtosis signs. However, if the source kurtosis values are all distinct, the maximization of contrast (5)

guarantees the recovery of the sources in the order determined by such values relative to weight

coefficientsαi. The permutation ambiguity typical to ICA is thus avoided with the use of the

new contrast. Again, perfect knowledge of the source kurtoses is not necessary for resolving the

permutation ambiguity. Rough guesses of these quantities may suffice, as it is only required that

{αi}N
i=1 fulfil the conditions of assumption A2.

In [4], a family of cumulant-based contrasts for the blind extraction ofP ≤ N sources is proposed

that resemble (5). Such contrasts are based on the absolute value ofrth-order cumulants, and the

associated weights must be strictly positive. The natural gradient algorithm used for their maximization
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does not ensure source recovery free from permutation. IfP = N and r = 4, contrast (5) can be

seen as a generalization of [4] guaranteeing permutation-free source separation.

IV. CONTRAST OPTIMIZATION

As for functional (4), the Jacobi-like pairwise iterative procedure originally proposed in [1] can

also be employed to optimize contrast (5). For simplicity, we shall focus on the case of real-valued

sources and mixtures. At each iteration, the contrast is maximized for a pair of separator-output

signals,yij = [yi, yj ]T , 1 ≤ i 6= j,≤ n, by means of a suitable Givens rotation

F(ξ) =
1√

1 + ξ2

 1 ξ

−ξ 1

 ξ ∈ R (6)

acting on the corresponding whitened-signal pairzij = [zi, zj ]T . The following claims are proven

in Appendix C. Due to the multilinearity relationship of cumulants recalled in eqn. (2), the contrast

becomes a rational function of a single parameterξ with (αi, αj) and the 4th-order cumulants ofzij

as coefficients:

Ψα(yij) = αiµi + αjµj =
∑4

k=0 akξ
k

(1 + ξ2)2
(7)

wherea0 = αiγiiii+αjγjjjj , a1 = 4(αiγiiij−αjγijjj), a2 = 6(αi+αj)γiijj , a3 = 4(αiγijjj−αjγiiij)

anda4 = αiγjjjj+αjγiiii. The local extrema of this functional are given by the roots of the 4th-degree

polynomial

a3ξ
4 + 2(a2 − 2a4)ξ3 + 3(a1 − a3)ξ2 + 2(2a0 − a2)ξ − a1 (8)

which can be obtained algebraically through Ferrari’s formula for quartics. The above equation is the

same as that found for contrast (4) in [3], but replacingεi by αi in the expressions for coefficients

{ak}4
k=0. Among the four roots, the one, sayξ0, maximizing eqn. (7) is retained; this is theglobal

maximizer ofΨα(ξ) in R. The separator-output signal pairyij is then updated by applying matrix

F(ξ0) onto zij . The process is repeated for all signal pairs over several sweeps until convergence.

Instead of the whitened observations, the most recent update of each separator-output signal is used

at each iteration.

Note that in the two-signal case, functionf(·) linking coefficientsαi with their respective source

kurtosesκi (Assumption A2) may not pass through the origin. It actually suffices that:

α1κ1 + α2κ2 > 0 and (α1 − α2)(κ1 − κ2) > 0 (9)

These are the necessary conditions for the two-signal contrast (7) to have its global maximum at the

separation solution without permutation (Appendix C).
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V. A SYMPTOTIC PERFORMANCEANALYSIS

In the two-signal scenario, the source separation problem reduces to the identification of the rotation

angleθ characterizing the Givens rotationQ in model (1). The asymptotic (large-sample) variance

of the estimator of this angle through the maximization of contrast (5) for i.i.d. sources is given by:

var(θ̂) =
α2

1E{s61}+ α2
2E{s62} − 2α1α2E{s41}E{s42}
T (α1κ1 + α2κ2)2

(10)

whereT denotes the sample size (Appendix D). The asymptotic variance of (4) is similarly obtained

by replacingαi by εi in eqn. (10). Ifα1 = κ1 andα2 = κ2, i.e., the weight parameters are adapted to

the source kurtoses, the above expression can be shown to be the asymptotic variance of the MI-based

CoM2 method of [1] and the approximate ML estimator of [2]. Eqn. (10) can be written as a function

of a single parameter, the ratioα2/α1. The optimal ratio minimizing (10) is readily computed as:

(α2/α1)o =
κ2E{s61}+ κ1E{s41}E{s42}
κ1E{s62}+ κ2E{s41}E{s42}

. (11)

To complete the optimal choice of weights(α1, α2), it remains to select the sign ofα1 fulfilling the

contrast applicability conditions in the two-signal case [eqn. (9)].

The above asymptotic performance results are analogous to those in [5], [6]. Reference [5] finds

the optimal weight between two estimators of angleθ based on fourth-order cumulants. Reference

[6] aims at the optimal relative weight for a composite contrast made up of squared third- and fourth-

order cumulants; CoM2’s asymptotic variance can also be obtained as a particular case of the analysis

developed therein (a general analysis of CoM2 and related contrasts can be found in [7]). However,

contrary to the present work, such contrasts are not designed to reduce the permutation ambiguity of

ICA.

VI. I F THE SOURCEKURTOSES AREUNKNOWN

In a fully blind problem, the source statistics are unknown and so are the weights{αk}N
k=1. The

optimal weights minimizing the asymptotic variance in the two-signal case cannot be found for the

same reason. To surmount this difficulty, a simple two-stage procedure can be proposed as follows.

In the first stage, a conventional separation technique such as the CoM2 method [1] is employed

to obtain an initial estimation of the sources. Then, the source estimates are ordered according to

their kurtosis values. Using the sample statistics of the estimated sources, the optimal weights are

computed for each source pair as explained in the previous section. Sweeps are then performed by

contrast (5) with the optimal weight coefficients for each signal pair.



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS (BRIEF PAPER) 7

VII. E XPERIMENTAL PERFORMANCEEVALUATION

A few numerical experiments test the comparative performance of the contrast developed in this

paper. By analogy with function (4), called kurtosis sign priors (KSP) contrast [3], we refer to (5)

as “kurtosis value priors (KVP)” contrast. In the following, the source signals areN zero-mean

unit-variance pseudo-random binary sequences with different kurtosisκi, 1 ≤ i ≤ N . The source

distributions are skewed except forκi = −2. Each source realization, composed ofT = 1000 samples,

is mixed by a random orthogonal matrix with appropriate dimensions, so that no whitening is required.

The permutation-sensitive performance index

PI =
1
N

N∑
i=1

PIi, with PIi = (|Gii| − 1)2 +
N∑

j 6=i

G2
ij (12)

is averaged over 100 independent realizations of the sources and the mixing matrix. ForN = 2, this

index provides an estimate ofvar(θ̂) near permutation-free separation solutions. When considering

the CoM2 method of [1], its permutation ambiguity is resolved by suitably re-ordering the estimated

sources after separation.

Figure 1 illustrates the fitness of asymptotic variance (10) for the source pair with kurtoses(−2, 1).

The theoretical approximation is very accurate in the region where the validity conditions of the

KVP contrast hold; the location of the optimal ratio(α2/α1)o obtained in eqn. (11) agrees with the

experimental results. The approximation to CoM2 asymptotic variance, obtained from eqn. (10) with

αi = κi, i = 1, 2, is also very precise. KVP with the optimal weight ratio achieves a performance

gain of up to 20 dB relative to CoM2 for this particular source combination.

Next, the source kurtoses are randomly chosen without replacement from the set{−2,−1, 1, 2, 5}.

KVP’s weight coefficientsαi in (5) are matched to the theoretical source kurtoses, whereas KSP’s

εi in (4) are set to the source kurtosis signs. The average normalized KVP contrast, defined as

Ψα(y)/Ψα(s), is plotted as a function of the pairwise-iteration sweep number in Fig. 2(top). The

trajectories of index (12) are shown in Fig. 2(bottom). These plots confirm that the Jacobi-like

procedure of Sec. IV is able to maximize contrast (5) and, in turn, this maximization succeeds

in separating the sources without permutation. The sources are estimated as accurately as with the

original ICA method of [1] followed by re-ordering. The KSP method fails to resolve the source

permutation as soon as more than one source with the same kurtosis sign may appear in the mixture,

thus the poor average PI values. ‘KVP-opt’ in Fig. 2(bottom) denotes the procedure described in the

previous section that assumes no prior knowledge on the source kurtoses. For allN considered in

this experiment, using the optimal weight ratios for each signal pair reduces the PI by half (3 dB)

with just a single sweep over the sources estimated by CoM2.
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KVP’s robustness to the choice of weight coefficients in (5) is assessed by Fig. 3. For the above

mixtures realizations, coefficientαk is left to vary whileαi, i 6= k, are kept matched to their respective

theoretical source kurtoses. Five sweeps over all signal pairs are performed. A successful permutation-

free source separation is achieved for a range of weight values bounded by neighbouring source

kurtoses, as pointed out by assumption A2. The impact of the mismatch between the weight parameter

and the source sample kurtosis seems to depend on the corresponding source statistics.

VIII. C ONCLUSIONS

A contrast function for ICA using fourth-order statistics has been put forward in this paper. The new

contrast generalizes a recently proposed function based on the source kurtosis signs [3], proves that the

approximate ML criterion of [2] is a contrast and extends it to the case where a mismatch between the

weight coefficients and the actual source kurtosis values may appear. In turn, this connection confers

the new criterion a certain degree of optimality in the ML sense. As a by-product, our analysis confirms

that the CoM2 method of [1], despite arising from the MI principle, presents ML-optimality features,

since it achieves, up to permutation, the same asymptotic performance as KVP with weights matched

to the source kurtoses. Since these are only approximate ML techniques, asymptotic performance can

be further improved by a judicious selection of the weight coefficients in the two-signal case according

to theoretical asymptotic analysis results. If the source kurtoses are distinct, only rough guesses on

their values suffice for the new contrast to avoid the ICA permutation ambiguity at the separator

output. In the case the source statistics are totally unknown a priori, a simple procedure based on the

weights with optimal pairwise asymptotic performance can be used to refine a conventional fully blind

ICA method. Although the convergence of the pairwise optimization technique used to maximize the

contrast is in theory not guaranteed, it has always proven satisfactory in our experiments. Further

research should aim at its theoretical proof of global convergence, and the extension of the present

contrast to single-source extraction.
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APPENDIX

A. Proof of Proposition 2

The proposition relies on the following result.
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Lemma 1:Let u andv be two vectors ofRN , and let the entries ofu be sorted in non decreasing

order. Then the permutationP that maximizes the scalar productuTPv is the one sorting the elements

of v in non decreasing order.

The proof of this lemma is simple and proceeds by contradiction. Assume that, for the optimal

permutation, there exist two entries ofv such thatvk > vk+p. By construction, we have(uk+p −

uk)(vk − vk+p) > 0. Expanding the product we getuk+pvk + ukvk+p > ukvk + uk+pvk+p, which

shows that transposing the two entries ofv increases the scalar product; hence, the permutation was

not optimal.

Now we are ready to prove Proposition 2. Two cases can be distinguished.

• Case 1: Distinctαi’s.

By definition (5) and relationship (3), we can write

Ψα(y) ≤
∑

i

|αi|

∣∣∣∣∣∣
∑

j

G2
ijG

2∗
ij κj

∣∣∣∣∣∣ ≤
∑
ij

|αi||Gij |4|κj |. (13)

SinceG is unitary, we have|Gij |4 ≤ |Gij |2 for any indices, so that:

Ψα(y) ≤
∑
ij

|αi||Gij |2|κj |. (14)

Yet, the matrix formed with entries|Gij |2 is itself bistochastic since its rows and columns sum up

to one. Hence, from Birkhoff’s Theorem [8], there exists a set of real positive numbersβ` such that

|Gij |2 =
∑

`

β`Pij(`), and
∑

`

β` = 1

whereP(`) are permutations matrices. This yields the inequality:

Ψα(y) ≤
∑
ij

|αi||κj |
∑

`

β`Pij(`).

The maximum of the right-hand side is reached when the convex linear combination reduces to one

of its vertex, that is, when allβ’s are null but one, sayβ(`o). Then, from Lemma 1,P(`o) precisely

relatesj and i, so that both|αj | and |κj | are sorted in increasing order:

Ψα(y) ≤
∑

j

|αjκj | = Ψα(s) (15)

If the equality holds, then the same reasoning as in [3] would show thatG = ΛP.

• Case 2: Possibly non distinctαi’s.

When αi’s are not distinct, we can group them by packets of equal values. LetAq denote the

qth such packet. Similarly, values ofκi can be grouped within the same packets, according to

assumption A2. Since permuting indices within a setAq does not change the value of the criterion,

the proof still holds true.�
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B. Proof of Proposition 3

Now we shall make use of the fact that not only moduli|αi| are sorted, but also weightsαi

themselves. If equality holds in (15), it means in particular that there exists a permutationP such

that:

Ψα(y) =
∑
ij

αiPijκj =
∑

j

αjκj = Ψα(s)

From Lemma 1, we know that permutationP is uniquely defined if there is a unique way to sort the

κn in increasing order. This will be the case if all source kurtosesκn are distinct. Should not this

be the case, the permutation is not unique: any permutation of indices keeping the order ofκn non

decreasing will still lead to the same maximum of the contrast. The permutation indeterminacyP is

then made up of diagonal blocksD(q), whose size corresponds to the number of elements in each

setAq. �

It should be remarked that the above proofs are proper to contrast (5) and not immediate extensions

of those in [3].

C. Derivation and analysis of the contrast forN = 2

In the two-signal case, contrast (5) reduces toΨα(y) = α1µ1 + α2µ2, which is to be maximized

under a Givens transformation (6). Using the multilinearity property of cumulants (2), we have:

µ1 =
γ1111 + 4ξγ1112 + 6ξ2γ1122 + 4ξ3γ1222 + ξ4γ2222

(1 + ξ2)2
(16)

µ2 =
γ2222 − 4ξγ1222 + 6ξ2γ1122 − 4ξ3γ1112 + ξ4γ1111

(1 + ξ2)2
(17)

By weighing these expressions byα1 and α2, respectively, and adding them together, we readily

obtain (7).

ContrastΨα(y12) is actually a function ofξ only, and may be denoted asΨα(ξ) with some abuse

of notation. The first derivative of the contrast is given by:

Ψ′
α(ξ) =

ψα(ξ)
(1 + ξ2)3

(18)

whereψα(ξ) = P ′(ξ)(1 + ξ2) − 4ξP (ξ) andP (ξ) =
∑4

k=0 akξ
k. Simple polynomial products lead

us to ψα(ξ) =
∑4

k=0 bkξ
k with b0 = a1, b1 = 2(a2 − 2a0), b2 = 3(a3 − a1), b3 = 2(2a4 − a2)

and b4 = −a3. The contrast stationary points are the solutions ofψα(ξ) = 0, which is equivalent to

eqn. (8). From (18), the contrast second derivative is given by:

Ψ′′
α(ξ) =

ψ′α(ξ)
(1 + ξ2)3

− 6ξψα(ξ)
(1 + ξ2)4

. (19)



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS (BRIEF PAPER) 11

At the stationary points, the second term on the right-hand side cancels out, so that the convexity of

the contrast can be studied by analyzing the sign ofψ′α(ξ) at such points. Other candidate stationary

points are|ξ| → +∞. These are asymptotic horizontal directions with ordinate equal toa4.

By multilinearity [eqn. (2)], the contrast can be written as a function of the sources and the

global matrix entries by replacing the whitened observation cumulants by the source cumulants,

defined asκmnpq = Cum{sm, s
∗
n, sp, s

∗
q}, in coefficients{ak}4

k=0 and redefiningξ = tan(∆θ),

where∆θ = (θ− θ̂) is the rotation angle parameterizingG. When ensemble statistics are used (i.e.,

assuming infinite sample size), we have that

a0 = α1κ1 + α2κ2 a4 = α1κ2 + α2κ1 (20)

and ak = 0, k = 1, 2, 3. Then Ψα(ξ) has stationary points ifψα(ξ) cancels or when|ξ| → +∞.

Functionψα(ξ) = 4ξ(a4ξ
2 − a0) is null at ξ = 0 and ξ = ±

√
a0
a4

. The first root corresponds to the

desired permutation-free separation solution. The two other will generally be spurious and can appear

only if sign(a0) = sign(a4). The limit |ξ| → +∞ achieves source separation with permutation. As

explained before, the convexity of the contrast at the stationary points can be ascertained by looking

at the sign ofψ′α(ξ). We have thatψ′α(ξ) = 4(3a4ξ
2 − a0). Accordingly, the desired solutionξ = 0

is a local maximum only ifa0 > 0. In such a case, the spurious stationary points will be local

minima. For the local maximum to be also global, we also require thatΨα(0) > Ψα(ξ)||ξ|→+∞, that

is. a0 > a4. Taking into account eqn. (20), these conditions can be expressed as in eqn. (9).

D. Asymptotic analysis of the contrast forN = 2: derivation of variance (10) and optimal weight

ratio (11)

If the sample statistics used to compute{ak}4
k=0 from finite data length are asymptotically unbiased,

so will be the estimator based on the maximization of (5) in the two-signal case, i.e.,E{θ̂} → θ as

T →∞. The large-sample variance of the KVP estimator in the(2× 2) real-valued scenario can be

computed as shown next. First, we denoteξ = tan(∆θ), with ∆θ = (θ− θ̂), and express the separator

output cumulants in terms of the source cumulants, as in Appendix C. For finite sample size, ensemble

statistics are approximated by their sample counterparts, giving rise to the sample functionΨ̂α(ξ).

The estimating equation̂ψα(ξ) = 0 will yield a sample estimatêξ of the solution to the contrast

optimization. To work out its variance, let us consider the first-order Taylor expansion ofψ̂α(ξ)

aroundξ̂, which reads:ψ̂α(ξ) ≈ ψ̂α(ξ̂) + ψ̂′α(ξ̂)(ξ − ξ̂). The termψ̂α(ξ̂) is null since, by hypothesis,

ξ̂ maximizes the sample contrast. Then, evaluating the above expression at the permutation-free

ensemble solutionξ = 0 yields:

ξ̂ ≈ − ψ̂α(0)

ψ̂′α(ξ̂)
. (21)
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For sufficient sample size, we can assume thatξ̂ is close enough to the true solutionξ = 0 and

then ψ̂′α(ξ̂) ≈ ψ̂′α(0) = b̂1 ≈ −4â0 = −4(α1κ̂1111 + α2κ̂2222), where we have also considered that

the source sample cross-cumulants are negligible relative to the source kurtoses, and soâ2 � â0.

Moreover,ψ̂α(0) = b̂0 = â1 = 4(α1κ̂1112−α2κ̂1222). Under the working assumptions [eqns. (9)], the

numerator of (21) will be dominated by the denominator, which can be assumed to be constant and

equal to its ensemble average4a0 = 4(α1κ1 + α2κ2). As a result, the variability of̂ξ will mainly

stem from the variability of the numerator, so that:

E{ξ̂2} ≈ E{(α1κ̂1112 − α2κ̂1222)2}
(α1κ1 + α2κ2)2

. (22)

Now, for whitened sample cumulants estimated as

κ̂iiij =
1
T

T−1∑
n=0

s3i (n)sj(n) i 6= j (23)

some tedious but otherwise straightforward algebraic derivations show that:

E{κ̂2
iiij} =

1
T

E{s6i } E{κ̂iiij κ̂ijjj} =
1
T

E{s4i }E{s4j}.

Becausêξ ≈ 0, we have∆θ ≈ ξ̂ and thusvar(∆θ) ≈ var(ξ̂). The proof concludes by noticing that

var(θ̂) = var(∆θ), hence eqn. (10). Finally, the weight values minimizing the estimator’s asymptotic

variance is found by cancelling the derivative of (10) with respect to the ratio(α2/α1); this readily

leads to (11).�

The asymptotic variance of the CoM2 estimator [1] can be worked out similarly.
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Fig. 1. Fitness of theoretical asymptotic variance. Solid lines represent the average PI values obtained from the separation

of random orthogonal mixtures of sources with kurtoses(−2, 1) andT = 1000 samples over 100 independent realizations.

Dotted lines plot the theoretical asymptotic variance (10) using the source ensemble statistics. The vertical dashed line

marks the location of the optimal ratio(α2/α1)opt according to (11).
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Fig. 2. Source separation performance as a function of the sweep number. (Top) Normalized KVP contrast. (Bottom)

Permutation-sensitive quality index. Mixture sizes:N = 2 (solid), N = 3 (dashed),N = 5 (dotted).
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Fig. 3. Source separation performance on the mixture realizations Fig. 2 (N = 5, five sweeps) with varyingαk. Coefficients

αi, i 6= k, are matched to their respective source kurtoses; these are marked by vertical lines.


