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RESUME:

La présente contribution porte sur le probleme de la séparaveugle de sources a travers I'analyse en composantes in
dépendantes (ACI). Une combinaison linéaire des cumutaatginaux d’ordre quatre (kurtosis) de la sortie du séparatst
un contraste valable pour I'ACI sous I'hypothése de préthiament si les poids ont le méme signe que les kurtosis desesau
Si les poids sont égaux aux kurtosis des sources, nous prsune le contraste est un critére d’adaptation de cumubases
sur le principe de maximum de vraisemblance. Si les kurtiestssources sont différents et les poids aussi (méme s’'gsmte
pas adaptés aux premiers), le contraste élimine 'amid@igldtpermutation de I'ACI, car les sources estimées sonnhoksks a
la sortie du séparateur selon leur kurtosis dans le méme qgrdr les poids. Dans le cas de deux signaux, la variance asymp
totique de I'estimateur de I'angle de Givens résultant éstrininée algébriquement. Le contraste peut étre maxinfaible
co(t de calcul par un algorithme itératif de type Jacobi apgsur des paires des signaux. Une étude expérimentade Ves
caractéristiques de la technique proposée et la compaefrels méthodes basées sur des contrastes.

MOTS CLES:
Séparation aveugle de sources, fonctions de contrasigsarma composantes indépendantes, optimisation de Jacoto-
sis, analyse de performances

ABSTRACT.

The present contribution deals with the problem of blindreeiseparation via independent component analysis (ICA). A
linear combination of the separator output fourth-ordergimeal cumulants (kurtoses) is a valid contrast functionl€@A under
the prewhitening assumption if the weights have the samreasghe source kurtoses. If the weights equal the sourcedasi
we prove that the contrast is a cumulant matching criteraseld on the maximum likelihood principle. If the source éseis are
different and so are the linear combination weights (evemisimatched from the former), the contrast eliminates tlmpgation
ambiguity typical to ICA, as the estimated sources are daté¢he separator output according to their kurtosis vatugse same
order as the weights. In the two-signal case, the asymptatiance of the resulting Givens angle estimator is deteedhin
closed form. The contrast can be maximized by means of asffisient Jacobi-type pairwise iteration. An experimerstady
validates the features of the proposed technique and ce®fido related previous methods.

KEY WORDS:
Blind source separation, contrast functions, independemtponent analysis, Jacobi optimization, kurtosis, perénce
analysis
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Abstract

The present contribution deals with the problem of blind source separation via independent
component analysis (ICA). A linear combination of the separator output fourth-order marginal
cumulants (kurtoses) is a valid contrast function for ICA under the prewhitening assumption if the
weights have the same sign as the source kurtoses. If the weights equal the source kurtoses, we prove
that the contrast is a cumulant matching criterion based on the maximum likelihood principle. If the
source kurtoses are different and so are the linear combination weights (even if mismatched from the
former), the contrast eliminates the permutation ambiguity typical to ICA, as the estimated sources
are sorted at the separator output according to their kurtosis values in the same order as the weights.
In the two-signal case, the asymptotic variance of the resulting Givens angle estimator is determined
in closed form. The contrast can be maximized by means of a cost-efficient Jacobi-type pairwise
iteration. An experimental study validates the features of the proposed technique and compares it to

related previous methods.
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Blind source separation, contrast functions, independent component analysis, Jacobi optimization,

kurtosis, performance analysis.
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I. INTRODUCTION

We consider the problem of blind source separation (BSS) where a g€tmissibly complex-
valued sources = [sq, s, ... ,sN]T e CV are mixed and observed aN sensors. After spatially

prewhitening the data, the observation model takes the form:

z = Qs (1)

where Q is an unknown ¥ x N) unitary matrix, and vectoz € CY represents the whitened
observations. The goal is to recover the source realizations from the sole observation of the whitened
realizations. To this end, a separating malfixs sought so that the separator output vegtct Fz

is equal to the source vectsrup to admissible indeterminacies. The BSS problem has found a wide
range of applications in domains as diverse as telecommunications, geophysics and finance, to name
but a few, which helps explain the great interest in this topic witnessed over the last two decades.

Under the assumption of statistically independent sources, these can be estimated with the tool
of independent component analysis (ICA) [1]. ICA is typically performed by means of contrast
functions quantifying the statistical independence of the separator-output components. Most of these
contrasts are functions of cumulant-based approximations of information-theoretical measures such
as maximum likelihood (ML) and mutual information (MI) [1], [2]. As in the contrast maximization
(CoM2) method of [1], based on the sum of the separator-output squared kurtoses, conventional ICA
can at best obtain a source-vector estimate of the fprm APs, where A is an invertible diagonal
matrix andP is a permutation matrix. While the scale indeterminacy representet isyimmaterial
in most applications, the permutation ambiguity can lead to an increased computational complexity
in situations where only a source, or a small set of sources, is required. In sequential separation
schemes, failure to find the source(s) of interest among the first extracted components leads to a poor
signal estimation quality caused by error propagation through successive deflation stages.

To overcome these drawbacks, recent works have aimed at reducing the permutation ambiguity
of ICA. Reference [3] has proven that the prior knowledge of the source kurtosis signs can fix the
permutation ambiguity between sources with different kurtosis signs. As a result, it is possible to
directly extract the source of interest if it is the only one to have positive (or negative) kurtosis in the
mixture. A computationally efficient Jacobi-type signal-pair sweeping algorithm can be employed to
perform source separation or extraction based on this contrast [3].

The present contribution takes a step further in this line of research. A functional based on a
weighted linear combination of the separator-output kurtoses is put forward and proven to be a
contrast under certain assumptions on the weight coefficients relative to the source kurtosis values.

The contrast of [3] and the cumulant-based approximate ML principle of [2] appear as particular
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instances of the new criterion. In addition, the new contrast eliminates the permutation ambiguity if
the source kurtoses are distinct. As in [1], [3], the optimization of the new contrast function can be
performed by the cost-effective Jacobi-like iterative technique. Numerical experiments illustrate the

comparative performance of the proposed method.

Il. PRELIMINARIES AND ASSUMPTIONS

In what follows, all random variables are assumed to have zero mean and unit variance; this
conventional standardization is enforced by the prewhitening process and preserved under unitary
transformations. The separator-output 4th-order marginal cumulant or kurtosis, defined -as
Cum{y;, yi,y;, y; }, is related to the whitened observation 4th-order cumulants,, = Cum{zy,, zn, 2, 2; }
through the multilinear relationship:

where F;; = [F];; and symbol* stands for complex conjugation. If we dendiethe global filter,
i.e., G = FQ with elements|G];; = G;;, the separator-output cumulants can also be related to the

source kurtoses,, as:
N
n=1

In the sequel, indices are assumed, without loss of generality, to be such#has non decreasing:
Kn+l = Kn, VN.

First assumption (A1)Assume that the firgh sources are known to have negative kurtosijs<
0, 1 <n <p, and the remaining{ — p) positive kurtosisx, >0, p <n < N.

DenotesS the set of sources satisfying this assumption, gnithe set of observations generated by
the orthogonal grou® acting onS. The following result is proven in [3]:

Proposition 1: The optimization criterion defined as:

N
Uo(y) =) e 4
=1
whereeg; = —1for1 < i < p, ande; = 1 for p < i < N is a contrast function over the set of

observationsy = Q - S.

Second assumption (A2ssume that the real numbefs; } , are related to the unknown source
kurtoses{k; fil via an unknown but strictly increasing functiof{-) passing through the origin:
a; = f(ki)-

In other words, we know not only how many positive and negative kurtoses there are (as in
assumption A1), but we also know how many are equal and which ones. For instanges ifi; <

as < 0 < ay, then it means that; < ks < k3 < 0 < k4. Note that because; is non decreasing,
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so isa;. In practice, we often have enough information to know such an ordering, but not enough to
know the source kurtosis values with good accuracy. This lack of accuracy prevents us from resorting
to the ML criterion [2], and we are generally bound to ignore the knowledge of ordering and execute
a standard ICA algorithm [1]. The contrast proposed in the next section, while incorporating some
prior knowledge on the source kurtosis values, is rather robust to inaccuracies in their estimation.

This feature will be illustrated in Sec. V.

IIl. NEw CONTRASTFUNCTION

Proposition 2: Under assumption A2, the optimization criterion

N
Valy) =D aipsi 5)
=1

is a contrast function over the set of observatiphs- O - S.

See Appendix A for a proof. Now, it was shown in [2] that, for independent sources and prewhitened
observations, the 4th-order cumulant approximation to the ML function results in expression (5) with
a; = ki, 1 <11 < N [cf. egn. (3.9) therein]. This cumulant-based approximation, however, was never
shown to be a contrast. Proposition 2 not only proves that such a criterion is indeed a contrast, but
also extends its validity to other values @f;}Y, as long as they fulfil condition A2. Moreover, we
show next that this contrast makes it possible to recover the sources in an order specified beforehand
by these coefficients.

Proposition 3: If ¥,(y) = ¥,(s), theny = APs, where permutatioP is equal to the identity
matrix for every row: (or columns) for which «; # o, i # j, and the entries of diagonal matrix
are of unit modulus.

This result is proven in Appendix B. Proposition 1 (Proposition 2 of [3]) may now be seen as
a particular case of Proposition 3, where coefficienisare set to+1 according to the source
kurtosis signs. However, if the source kurtosis values are all distinct, the maximization of contrast (5)
guarantees the recovery of the sources in the order determined by such values relative to weight
coefficients ;. The permutation ambiguity typical to ICA is thus avoided with the use of the
new contrast. Again, perfect knowledge of the source kurtoses is not necessary for resolving the
permutation ambiguity. Rough guesses of these quantities may suffice, as it is only required that
{a;}X | fulfil the conditions of assumption A2.

In [4], a family of cumulant-based contrasts for the blind extractio®of N sources is proposed
that resemble (5). Such contrasts are based on the absolute vattie-@fler cumulants, and the

associated weights must be strictly positive. The natural gradient algorithm used for their maximization



SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS (BRIEF PAPER) 5

does not ensure source recovery free from permutatio®. # N andr = 4, contrast (5) can be

seen as a generalization of [4] guaranteeing permutation-free source separation.

IV. CONTRAST OPTIMIZATION

As for functional (4), the Jacobi-like pairwise iterative procedure originally proposed in [1] can
also be employed to optimize contrast (5). For simplicity, we shall focus on the case of real-valued
sources and mixtures. At each iteration, the contrast is maximized for a pair of separator-output

signals,y;; = [yi,y;]7, 1 <14 # j, < n, by means of a suitable Givens rotation

1 L ¢

acting on the corresponding whitened-signal pair = [z;, z;]7. The following claims are proven
in Appendix C. Due to the multilinearity relationship of cumulants recalled in egn. (2), the contrast
becomes a rational function of a single paramétanth (o, ;) and the 4th-order cumulants of;
as coefficients:
_ Zi:o a€*

Vo (yij) = oupi + ajpj = W (7)

whereag = a;viiii+0;75555, a1 = 4(QYisij — Yijjz), a2 = 6(cs+0)viigj, a3 = 4(ijj5 — Vi)
andas = ;75555 +0viui- The local extrema of this functional are given by the roots of the 4th-degree
polynomial

azét + 2(ag — 2a4)§3 + 3(a; — a3)§2 +2(2a0 — a2)§ — a3 (8)

which can be obtained algebraically through Ferrari's formula for quartics. The above equation is the
same as that found for contrast (4) in [3], but replacindy «; in the expressions for coefficients
{ax}}_,- Among the four roots, the one, sgy, maximizing eqn. (7) is retained; this is tigéobal
maximizer of ¥, (¢) in R. The separator-output signal paif; is then updated by applying matrix
F (&) onto z;;. The process is repeated for all signal pairs over several sweeps until convergence.
Instead of the whitened observations, the most recent update of each separator-output signal is used
at each iteration.

Note that in the two-signal case, functigi-) linking coefficientsw; with their respective source

kurtosesk; (Assumption A2) may not pass through the origin. It actually suffices that:
1K1 + agke >0 and (Oél — OéQ)(K/l - 162) >0 9)

These are the necessary conditions for the two-signal contrast (7) to have its global maximum at the

separation solution without permutation (Appendix C).
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V. ASYMPTOTIC PERFORMANCEANALYSIS

In the two-signal scenario, the source separation problem reduces to the identification of the rotation
angled characterizing the Givens rotatid) in model (1). The asymptotic (large-sample) variance
of the estimator of this angle through the maximization of contrast (5) for i.i.d. sources is given by:

AGE{s}} + a3E{s§} — 2a100E{s7}E{s3}
T(alm + 042,%2)2

var(f) = (10)

whereT denotes the sample size (Appendix D). The asymptotic variance of (4) is similarly obtained
by replacinga; by ¢; in egn. (10). Ifa; = k1 andas = ko, i.e., the weight parameters are adapted to

the source kurtoses, the above expression can be shown to be the asymptotic variance of the Ml-based
CoM2 method of [1] and the approximate ML estimator of [2]. Eqn. (10) can be written as a function

of a single parameter, the ratia,/«;. The optimal ratio minimizing (10) is readily computed as:

roE{s$} + k1 B{s1}E{s3}
k1E{sS} + roB{s{}E{s3}

To complete the optimal choice of weights;, az), it remains to select the sign of; fulfilling the

(a2/a1)o = (11)

contrast applicability conditions in the two-signal case [eqn. (9)].

The above asymptotic performance results are analogous to those in [5], [6]. Reference [5] finds
the optimal weight between two estimators of angleased on fourth-order cumulants. Reference
[6] aims at the optimal relative weight for a composite contrast made up of squared third- and fourth-
order cumulants; CoM2’s asymptotic variance can also be obtained as a particular case of the analysis
developed therein (a general analysis of CoM2 and related contrasts can be found in [7]). However,
contrary to the present work, such contrasts are not designed to reduce the permutation ambiguity of
ICA.

VI. |F THE SOURCEKURTOSES AREUNKNOWN

In a fully blind problem, the source statistics are unknown and so are the weighj$_,. The
optimal weights minimizing the asymptotic variance in the two-signal case cannot be found for the
same reason. To surmount this difficulty, a simple two-stage procedure can be proposed as follows.
In the first stage, a conventional separation technique such as the CoM2 method [1] is employed
to obtain an initial estimation of the sources. Then, the source estimates are ordered according to
their kurtosis values. Using the sample statistics of the estimated sources, the optimal weights are
computed for each source pair as explained in the previous section. Sweeps are then performed by

contrast (5) with the optimal weight coefficients for each signal pair.
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VIlI. EXPERIMENTAL PERFORMANCEEVALUATION

A few numerical experiments test the comparative performance of the contrast developed in this
paper. By analogy with function (4), called kurtosis sign priors (KSP) contrast [3], we refer to (5)
as “kurtosis value priors (KVP)” contrast. In the following, the source signals dvezero-mean
unit-variance pseudo-random binary sequences with different kurigsis < ¢ < N. The source
distributions are skewed except for = —2. Each source realization, composediof 1000 samples,
is mixed by a random orthogonal matrix with appropriate dimensions, so that no whitening is required.
The permutation-sensitive performance index

| X N
PI = NZPL, with PI; = (|Gii| — 1)* + ) G (12)
i=1 jAi
is averaged over 100 independent realizations of the sources and the mixing matiX.=Far this
index provides an estimate ®ﬁr(é) near permutation-free separation solutions. When considering
the CoM2 method of [1], its permutation ambiguity is resolved by suitably re-ordering the estimated
sources after separation.

Figure 1 illustrates the fitness of asymptotic variance (10) for the source pair with kufte®els.

The theoretical approximation is very accurate in the region where the validity conditions of the
KVP contrast hold; the location of the optimal rafiaz/«1), obtained in eqn. (11) agrees with the
experimental results. The approximation to CoM2 asymptotic variance, obtained from egn. (10) with
o; = K, 1= 1,2, is also very precise. KVP with the optimal weight ratio achieves a performance
gain of up to 20 dB relative to CoM2 for this particular source combination.

Next, the source kurtoses are randomly chosen without replacement from the2setl, 1,2, 5}.

KVP’s weight coefficientsy; in (5) are matched to the theoretical source kurtoses, whereas KSP’s

g; in (4) are set to the source kurtosis signs. The average normalized KVP contrast, defined as
U, (y)/¥.(s), is plotted as a function of the pairwise-iteration sweep number in Fig. 2(top). The
trajectories of index (12) are shown in Fig. 2(bottom). These plots confirm that the Jacobi-like
procedure of Sec. IV is able to maximize contrast (5) and, in turn, this maximization succeeds
in separating the sources without permutation. The sources are estimated as accurately as with the
original ICA method of [1] followed by re-ordering. The KSP method fails to resolve the source
permutation as soon as more than one source with the same kurtosis sign may appear in the mixture,
thus the poor average PI values. ‘KVP-opt’ in Fig. 2(bottom) denotes the procedure described in the
previous section that assumes no prior knowledge on the source kurtoses. Rocalfisidered in

this experiment, using the optimal weight ratios for each signal pair reduces the Pl by half (3 dB)

with just a single sweep over the sources estimated by CoM2.
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KVP’s robustness to the choice of weight coefficients in (5) is assessed by Fig. 3. For the above
mixtures realizations, coefficient, is left to vary whilec;, i # k, are kept matched to their respective
theoretical source kurtoses. Five sweeps over all signal pairs are performed. A successful permutation-
free source separation is achieved for a range of weight values bounded by neighbouring source
kurtoses, as pointed out by assumption A2. The impact of the mismatch between the weight parameter

and the source sample kurtosis seems to depend on the corresponding source statistics.

VIII. CONCLUSIONS

A contrast function for ICA using fourth-order statistics has been put forward in this paper. The new
contrast generalizes a recently proposed function based on the source kurtosis signs [3], proves that the
approximate ML criterion of [2] is a contrast and extends it to the case where a mismatch between the
weight coefficients and the actual source kurtosis values may appear. In turn, this connection confers
the new criterion a certain degree of optimality in the ML sense. As a by-product, our analysis confirms
that the CoM2 method of [1], despite arising from the MI principle, presents ML-optimality features,
since it achieves, up to permutation, the same asymptotic performance as KVP with weights matched
to the source kurtoses. Since these are only approximate ML techniques, asymptotic performance can
be further improved by a judicious selection of the weight coefficients in the two-signal case according
to theoretical asymptotic analysis results. If the source kurtoses are distinct, only rough guesses on
their values suffice for the new contrast to avoid the ICA permutation ambiguity at the separator
output. In the case the source statistics are totally unknown a priori, a simple procedure based on the
weights with optimal pairwise asymptotic performance can be used to refine a conventional fully blind
ICA method. Although the convergence of the pairwise optimization technique used to maximize the
contrast is in theory not guaranteed, it has always proven satisfactory in our experiments. Further
research should aim at its theoretical proof of global convergence, and the extension of the present

contrast to single-source extraction.
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APPENDIX
A. Proof of Proposition 2

The proposition relies on the following result.
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Lemma 1:Let u andv be two vectors oR”, and let the entries afi be sorted in non decreasing
order. Then the permutatid? that maximizes the scalar product Pv is the one sorting the elements
of v in non decreasing order.

The proof of this lemma is simple and proceeds by contradiction. Assume that, for the optimal
permutation, there exist two entries ofsuch thatv, > v;4,. By construction, we haveu;, —
ug) (v — vpyp) > 0. Expanding the product we ged, v, + UrUktp > UkUE + UkypUkyp, WhiCh
shows that transposing the two entriesvoincreases the scalar product; hence, the permutation was
not optimal.

Now we are ready to prove Proposition 2. Two cases can be distinguished.

e Case 1: Distincty;’s.

By definition (5) and relationship (3), we can write
Wal(y) < ) leal Y GEGE wi| < D lallGigl . (13)
i 7 i
SinceG is unitary, we haveG;|* < |G;;|? for any indices, so that:
Toly) <D loullGijl?|r)- (14)
ij

Yet, the matrix formed with entrie;;|? is itself bistochastic since its rows and columns sum up

to one. Hence, from Birkhoff’s Theorem [8], there exists a set of real positive nunihensch that
|Gij‘2 = Z,@gﬂj(ﬂ), andZﬁg =1
¢ ¢
whereP(¢) are permutations matrices. This yields the inequality:
Uoly) < leillrs] Y BePij(0).
i l

The maximum of the right-hand side is reached when the convex linear combination reduces to one
of its vertex, that is, when alp’s are null but one, sag(¢,). Then, from Lemma 1P (¢,) precisely

relatesj andi, so that botho;| and|x;| are sorted in increasing order:
\I}a(Y) < Z ‘Oéj'%j’ = \I/oz(s> (15)
J

If the equality holds, then the same reasoning as in [3] would showGhatAP.

e Case 2: Possibly non distinet;’s.

When o;'s are not distinct, we can group them by packets of equal values.A.edenote the
gth such packet. Similarly, values af; can be grouped within the same packets, according to
assumption A2. Since permuting indices within a ggtdoes not change the value of the criterion,

the proof still holds trueld
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B. Proof of Proposition 3

Now we shall make use of the fact that not only modulj| are sorted, but also weights;
themselves. If equality holds in (15), it means in particular that there exists a permubasoch

that:
Uuly) = E a;iPijk; = g ajkj = Vu(s)
] J

From Lemma 1, we know that permutati@his uniquely defined if there is a unique way to sort the
kn Inincreasing order. This will be the case if all source kurtosgsare distinct. Should not this
be the case, the permutation is not unique: any permutation of indices keeping the okgenari
decreasing will still lead to the same maximum of the contrast. The permutation indeterr®nacy
then made up of diagonal blocl3(q), whose size corresponds to the number of elements in each
setA,. U

It should be remarked that the above proofs are proper to contrast (5) and not immediate extensions

of those in [3].

C. Derivation and analysis of the contrast fof = 2

In the two-signal case, contrast (5) reducesltQy) = aiu1 + agpz, Which is to be maximized

under a Givens transformation (6). Using the multilinearity property of cumulants (2), we have:

[y = Y1111 + 4€71112 + 66271122 + 48371220 + EMY2020

(1+€)? (16)
2222 — 471222 + 6271122 — 4871112 + EMyin 17
e (1+ €22 an

By weighing these expressions lay and as, respectively, and adding them together, we readily
obtain (7).
ContrastV,(y12) is actually a function o only, and may be denoted ds,(¢) with some abuse

of notation. The first derivative of the contrast is given by:

WL = 18)

where, (§) = P'(€)(1 + €2) — 4¢P(¢) and P(¢) = Zizo ar&*. Simple polynomial products lead
us to wa(f) = Zi:o bkgk with by = a1, b = 2(&2 — 2&0), by = 3(&3 — al), by = 2(2&4 — ag)
andbs = —as. The contrast stationary points are the solutiong)Qf¢) = 0, which is equivalent to

egn. (8). From (18), the contrast second derivative is given by:

W6 6E%al)
(1+&2)3  (1+6)%

V() = (19)
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At the stationary points, the second term on the right-hand side cancels out, so that the convexity of
the contrast can be studied by analyzing the sigg/pf¢) at such points. Other candidate stationary
points are|{| — +oo. These are asymptotic horizontal directions with ordinate equal,to

By multilinearity [eqn. (2)], the contrast can be written as a function of the sources and the
global matrix entries by replacing the whitened observation cumulants by the source cumulants,
defined askinpg = Cum{sy, si, sp, 5}, in coefficients{a;};_, and redefiningt = tan(A9),
where A = (6 — é) is the rotation angle parameterizifg. When ensemble statistics are used (i.e.,

assuming infinite sample size), we have that
ag = a1kl + QKo a4 = Q1 kg + QoK1 (20)

andar = 0, k = 1,2,3. Then¥,(§) has stationary points if),(£) cancels or when¢| — +oc.
Function, (&) = 4&(as€? — ag) is null at¢é = 0 and ¢ = i\/%. The first root corresponds to the
desired permutation-free separation solution. The two other will generally be spurious and can appear
only if sign(ag) = sign(as). The limit |{| — +oco achieves source separation with permutation. As
explained before, the convexity of the contrast at the stationary points can be ascertained by looking
at the sign ofy, (¢). We have that)!, (&) = 4(3a4¢? — ag). Accordingly, the desired solutiofi= 0

is a local maximum only ifag > 0. In such a case, the spurious stationary points will be local
minima. For the local maximum to be also global, we also require¥hdb) > ¥, (€)|¢|—+o0, that

is. ag > a4. Taking into account eqgn. (20), these conditions can be expressed as in eqn. (9).

D. Asymptotic analysis of the contrast fdf = 2: derivation of variance (10) and optimal weight
ratio (11)

If the sample statistics used to compl{lt@}izo from finite data length are asymptotically unbiased,
so will be the estimator based on the maximization of (5) in the two-signal caseE{éa}.,—> 0 as
T — oo. The large-sample variance of the KVP estimator in the 2) real-valued scenario can be
computed as shown next. First, we dengte tan(A#0), with A9 = (§—§), and express the separator
output cumulants in terms of the source cumulants, as in Appendix C. For finite sample size, ensemble
statistics are approximated by their sample counterparts, giving rise to the sample fuin&;(i@)n
The estimating equatiod;a(g) = 0 will yield a sample estimaté of the solution to the contrast
optimization. To work out its variance, let us consider the first-order Taylor expansiaﬁm(@f)
around¢, which readsz), (&) & s (€) + UL, (€) (€ — €). The termy, (€) is null since, by hypothesis,
¢ maximizes the sample contrast. Then, evaluating the above expression at the permutation-free

ensemble solutiog = 0 yields:

Ya(0) 1)

SR
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For sufficient sample size, we can assume this close enough to the true solutign= 0 and

then v/, (€) ~ /,(0) = by ~ —4dg = —4(a1R1111 + Qafaz2), Where we have also considered that

the source sample cross-cumulants are negligible relative to the source kurtoses, @ane si.
Moreover,zﬂa(O) =by=a1 = 4(a1R1112 — a2fi1222). Under the working assumptions [egns. (9)], the
numerator of (21) will be dominated by the denominator, which can be assumed to be constant and
equal to its ensemble averade, = 4(a1k; + asks). As a result, the variability of will mainly

stem from the variability of the numerator, so that:

E{(a1k1112 — aaf1292)?}

E{{2)} ~ 22
{€ (1K1 + agka)? (22)
Now, for whitened sample cumulants estimated as
=
Riig = Z sp(n)sj(n)  i#j (23)
n=0

some tedious but otherwise straightforward algebraic derivations show that:
. 1 P 1
E{f%;} = TE{:;?} E{RiiijRijij} = TE{S?}E{Sﬁ}-

Because ~ 0, we haveAd ~ ¢ and thusvar(Af) ~ var(¢). The proof concludes by noticing that

~

var(f) = var(A#), hence egn. (10). Finally, the weight values minimizing the estimator's asymptotic
variance is found by cancelling the derivative of (10) with respect to the fatida; ); this readily
leads to (11)

The asymptotic variance of the CoM2 estimator [1] can be worked out similarly.
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Fig. 1. Fitness of theoretical asymptotic variance. Solid lines represent the average PI values obtained from the separation
of random orthogonal mixtures of sources with kurtogeg, 1) and7 = 1000 samples over 100 independent realizations.

Dotted lines plot the theoretical asymptotic variance (10) using the source ensemble statistics. The vertical dashed line

marks the location of the optimal rati@v2/a1)opt according to (11).
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Fig. 2. Source separation performance as a function of the sweep number. (Top) Normalized KVP contrast. (Bottom)
Permutation-sensitive quality index. Mixture sizéé:= 2 (solid), N = 3 (dashed),N = 5 (dotted).
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Fig. 3. Source separation performance on the mixture realizations F\§.=2 §, five sweeps) with varying,. Coefficients

ws, © # k, are matched to their respective source kurtoses; these are marked by vertical lines.



